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Structure and Function

In the last lecture, we argued that we will need to focus on two
aspects of a social network: the static combinatorial structure, en-
coded in a Graph and a dynamic strategizing structure, encode in
a Game. The nodes in the graph are the social agents, constrained
to interact in a pairwise manner (possibly directed). Each social
agent has now a set of well-defined neighbors as well as a strat-
egy space, which will be assumed not to be private — in fact, they
will be commonly known. We will explore why and how some of
these simplifying assumptions will need to be changed. What we
will be interested in are:

Who are my friends? Who should I connect to? If everyone con-
nects to everyone else using certain rules, will the social
network benefit me? How long will it take for it to become
beneficial? Will it remain beneficial in the long-run?

Are my friends reasonable? Will my friends and their friends be
rational? Will everyone know that their friends are rational?
Will everyone know that all their friends know that all their
friends are rational? - - - Will it be common knowledge that
everyone is rational?

Will we do the right thing? How will we know what to do? How
should we exercise our strategic choices? How do we know
what’s good for us? How do we know what’s good for all?

Will we get spammed? If my friend is a “mutant,” will my world
fall apart? Will my friend ever deviate from what should be
her best response to my strategic choice?

Will we get exploited? Information asymmetry. If someone has
more information than rest of us, can that pose a problem
for me?

How soon can we arrive at a “nice” functional social-network?

Graph Theory

Note that the structure of the graph underlying a Social Network
will determine its behavior: Think of a graph that is all singletons
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vs. a completely connected graph. Another example would be a
star-like graph representing a market-maker connected to buyers
and sellers. In each case, the behavior of the social network will
vary widely. The right mathematical framework, in which we can
think about this comes from Graph Theory.

Graph theory is fundamental to a number of applied fields, in-
cluding operations research, computer science, and social network
analysis. Here, we discuss the basic concepts of graph theory from
the point of view of social network analysis.

Graphs: The fundamental concept of graph theory is the graph.
We start by describing an (undirected) graph, a simple (com-
binatorial) mathematical object describing (irreflexive, sym-
metric) binary relations on a discrete set.

The binary relation we will describe first will represent the
friendship relation: It is irreflexive: one is not considered one’s
friend; It is symmetric: one is friend to a friend; It is usually
non-transitive: A friend’s friend is not necessarily a friend.

Graphs have a very natural graphical representation (see
figure 1), hence the name.

A graph - usually denoted G(V,E) or G = (V,E)
— consists of set of vertices V together with a set of
edges E C 'V x V. Vertices are also known as nodes,
points and (in social networks) as actors, agents or
players. Edges are also known as lines or connection
and (in social networks) as ties or links. An edge

e = (u,v) is defined by the unordered pair of vertices
that serve as its end points.

Two vertices u and v are adjacent if there exists an edge (u, )
that connects them. An edge e = (u, u) that links a vertex
to itself is known as a self-loop or reflexive tie. The number

of vertices in a graph is usually denoted |V| = n while the
number of edges is usually denoted |E| = m.

e()-20

n = # of ways to choose one end of the edge u
(n—1) = # of ways to choose the other end of the edge v
Identify the two ways the same edge can

be represented, namely (u,v) = (v,u). O
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As an example, we can draw a graph (as in figure 1), which has
vertex set V = {a,b,c,d, e, f} and edge set E = {(a,b), (b,¢c), (c,d),
(ce), (@), (¢,/)). (Figurs 1)
All our graphs will be assumed to be strict graphs. We will allow J
neither self-loops:

vM(u/ u) g E/
nor multi-edges:

v a b c e _f
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To represent social networks, each line typically represents
instances of the same social relation, so that if (a,b) indicates a £ = i (a)b) ) (<),
friendship between the person located at node a and the person Ce,dy, Cc, e),
located at node b, then (d, e) indicates a friendship between d and 7
e. Thus, each distinct social relation that is empirically measured on the (d,e), (Q,f)}
same group of people is represented by separate graphs, which can have
drastically different structures: people you are genetically related
to are not necessarily your friends — and vice versa.

Note that the only information contained in a diagram depict-
ing a graph is adjacency; the position of nodes in the plane (and
therefore the length of lines) is arbitrary (unless the underlying
geometry has some information). Thus the spatial position of
the nodes is completely irrelevant. For example, nodes near the
geometric centroid of a graph-diagram are not necessarily more
important than nodes on the peripheries. a

Every graph has associated with it a (symmetric) adjacency ma-
trix, which is a binary n x n matrix A in which a;; = 1 (and
aj; = 1) iff vertex v; is adjacent to vertex v;, [otherwise, a;; = 0 c
and aj; = 0]. The natural graphical representation of an adjacency 4 .
matrix is a table. )

Examining the preceding example, we see that not every vertex € e e t

£

Figure 1: Example Graph
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is adjacent to every other.

Complete Graphs: A graph in which all vertices are adjacent to
all others is said to be complete. The extent to which a graph
is complete is indicated by its density (or, equivalently its
sparsity), which is defined as the number of edges divided by -

the number of possible total.

Figure 2: Adj trix f h,
If self-loops are excluded, then the number of possible total S

ls (5)- 52

(If self-loops are allowed, then the number of possible total
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(in strict-graphs)
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n(n+1)

density =

(in graphs with self-loops, but without multi-edges)

Hence the density of our example graph in figure 1 is
6/15 = 0.40. J

While not every vertex in the example-graph is adjacent, one
can construct a sequence of adjacent vertices from any vertex to
any other. Graphs with this property are called connected. Simi-
larly, any pair of vertices in which one vertex can reach the other
via a sequence of adjacent vertices is called reachable. If we de-
termine reachability for every pair of vertices, we can construct a
reachability matrix R. The matrix R can be thought of as the result
of applying transitive closure to the adjacency matrix A. Note that
A represents a constrained reachability relation, where we only
consider the pair of nodes that are reachable from each other in
one or fewer steps. Similarly A% (with addition + interpreted as
logical OR: V and multiplication interpreted as logical AND: A )
represents reachability relation, constrained to two or fewer steps.
In general, A* (with the appropriate algebraic interpretation as
before) is the reachability constrained to k or fewer steps. Note that
since if a pair of vertices are reachable, then one can be reached
from the other in n or fewer steps and thus

R=A"

Another way to say this, would be

R=A"=T+A+ A+ = A iai_ain.

The parameter A = minj : A/ = A/*! is rather important in
social networks, and is called the diameter (or degrees-of-sepration)
of the graph. If a graph with n vertices has a diameter ~ O(lgn),
then we may call it a “small-world graph.” We believe that humans
have a small-world-graph with about six-degrees-of-sepration,
which has apparently gone down to 4.5, with the advent of social
networks like facebook, \google+, etc.

888
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Degree The number of vertices adjacent to a given vertex is called
the degree of the vertex and is denoted d(v).

d(v) = [{wl|(v,w) € E}|
= Hul(w,0) € E}

It can be obtained from the adjacency matrix of a graph by
simply computing each row sum. For example, the degree of
vertex c in the graph of figure 1 is 3. The average degree, d,
of all vertices of the graph of figure 1 is 2. In figure 3, vertex

c has a degree 4, and the graph’s average degree is 2.29.

The minimum degree of a graph G is denoted §(G). A ver-
tex with degree o is known as an isolate or a singleton (and
constitutes a component of size 1), while a vertex with de-
gree 1 is a pendant.

Note

Y d(v) = 2|E| =2m.

veV
(Suppose every agent in a social network broadcasts a mes-
sage to all its friends. Then the total number of messages is
just the sum of the degrees of the vertices: }_,cy d(v). But for
every friendship relation there are two messages traveling
between two friends it connects. The total number of mes-
sages is twice the total number of friendships: 2|E|. These
two numbers must be same.)

Thus the average degree of a graph is

d_: ZUGVd<U) _ 2m

vl o’
There is a direct relationship between the average degree, d,
of all vertices in a graph and the graph’s density:
, |E| nd/2 -
density = - = —— =d/n—1.
YTH T an-1)/2

If a social network has many “well-connected people,” then
the network is “dense.” Thus

d = density(n —1). O

Note that if I connect to a well-connected individual in a social
network, then I'll belong to a subnetwork with a high-density.
Holding average degree constant, there is a tendency for graphs
that contain some nodes of high degree (i.e., high variance in de-
gree) to have shorter distances than graphs with lower variance,



with the high degree nodes serving as “shortcuts” across the net-
work. These high-degree nodes are said to be “hubby” and many
social network graphs have a fat-tail distribution with an unusu-
ally large number of hubby nodes. Kevin Bacon in Hollywood and
Paul Erdos in mathematics are supposed to have been examples

of this phenomenon. We will try to identify such high density
subnetworks, in the forms of cliques, clubs and clans.

Assume that we are in a social network whose average degree
is d > 1. Now, suppose I start with you and start counting all of
your friends (who are separated by a DOS (degree of separation)
of = 1), which on the average is d. Assuming that they have also
d friends each (on the average), the total number of individuals
separated from you by a DOS < 2 is less than

. -1
l+d+d=——.
+d+ T
And so on. Thus the total number of individuals separated from
you by a DOS < A = the diameter of the graph, will have every-
one in the social network (which is assumed to be connected for
now): thus,

< > —1
—_ [1__1/
Or
Algd >1g (n(d—1) +1),
Or

AS lg(n(d_—_l)+1)l
- lgd

Thus, in a graph d > 2, A = Q(lgn/lgd) gives us a lower-bound.
In a Poisson (Erdos-Renyi) random graphs, for large 1, average
distance can be approximated by A = lgn/lgd, where d = the
expected degree of a node. It can be even shorter, if the graph has
some other special properties: “small-worldness.”

The notion of a “small world” comes from a Hungarian poet
Frigyes Karinthy. In a play, he wrote, he conjectured that any two
people among the one and half billion inhabitants of the earth
then were linked through at most five acquaintances. Thus by the
formula above, we can calculate d of such a graph to estimate how
many friends one had, on the average, in that world.

[m 1.5-10°

~ 68.5.
o

Thus, we can state the above estimation, in terms of a Karinthy
Conjecture: Each person should have had approximately 68 “indepen-
dent” friends.
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In another study, socilogist Stanley Milgram tried to study the
“small-world phenomenon” more systematically, and also coined
the phrase: “six degrees of separation,” in a famous (but some-
what discredited paper) “The Small World Problem.” Milgram
polled residents of Omaha and Wichita, and asked 160 of them to
send a folder to a target recipient by sending it to an acquaintance,
who would then do likewise, etc. Forty-two out of hundred and
sixty folders found their way to the intended recipients, with a
median number of intermediate acquaintances = 5.5, which he
rounded up to six. Milgram’s “six degrees of separation” con-
jecture suggests that each person has approximately forty-one
friends.

88§

Given what we have understood so far, we would prefer a so-
cial network that has high density (at least locally), some highly-
connected (“hubby”) individuals and some intimate social groups
(“cliques”) that one can join.

Subgraph: A subgraph of a graph G is a graph whose vertices
and edges are contained in G. If H C G is a subset of G,
the subgraph induced by H in G consists of all vertices of H
together with all edges of G, which connect vertices u, v € H

in G.
G = (V,E)
H = (W, {(u,v) €Elue WAveE W})
where W C V.

Maximal Subgraphs (with respect to a property P): Subgraphs of
G satisfying P such that no larger subgraphs with property
P exist in G, which contain them.

Clique: A clique is a maximal complete subgraph K, in G.

Thus a complete subgraph of G is a section of G that is complete
(i.e., has density = 1). A maximal complete subgraph is a
subgraph of G that is complete and is maximal in the sense
that no other node of G could be added to the subgraph
without losing the completeness property. In our example
graph (figures 1 and 3), the nodes {c, d, e} together with
the edges connecting them form a clique. Cliques represent
what social scientists call primary groups. A nuclear family
is a clique in a social network — often childhood friends also
form primary groups or cliques.



Strong Triadic Closure Properties:

In a social network, if F; and F, are two close friends of yours
(connected to you by strong ties), it is likely that F; and F, are
acquaintances (connected to each other by weak ties) — or at least
your social network should recommend that F; and F, explore
contacting each other. In particular, if F; and F, have a large sub-
group of common friends (which would include you), it is prob-
able that they are acquaintances — the probability increasing with
the size of the set of mutual friends. Thus, you should expect
to see lots of cliques of size 3, or try to create as many Ks's as
possible by recommending connections among individuals with
common close friends.

Note that our simple and intuitive analysis of the diameter of
the social networks was based on friends being independent and
thus lacking triadic closures. But, a more rigorous analysis will
show that in a Poisson random graph (with some triadic closures),
a similar analysis will still work!

Back to “strong triadic closure properties”

Triadic Closures: Consider an “augmented” undirected graph,
G = (V,E, E'), in which E’ C E, where E are the edges (also
called, ties) and E’ represents the set of strong ties.
(u,v) € E = u and v are friends
(either acquaintances or close friends)
(u,v) € E' = wu and v are close friends

The strong triadic closure property states that: if (u,v) € E' and
(u,w) € E', then (v,w) € E. A more probabilistic version
states that

Pr[(v,w) € E|(u,v) € E' A (u,w) € E']
> Pr[(v,w) € EJ.

That is the knowledge that v and w have a common close
friend, u, raises the (conditional) probability that v and w are
at least acquaintances. Another way of saying this would be
to state that

Pr[(v,w) € EA (u,v) € E'|(u,w) € E']
> Pr[(v,w) € EA(u,v) € E'|(u,w) € E\E'] O
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Mark Granovetter, an American sociologist currently at Stan-
ford University, is widely known for his theory on the spread of
information in social networks, known as “The Strength of Weak
Ties,” discussed in a paper, with the same title and published in
1973. This highly influential sociology paper, with over 19,000 ci-
tations, proposed that weak ties enable reaching populations and
audiences with much higher efficiency than what is achievable or
accessible via strong ties. These findings were later published in
the monograph Getting A Job, an adaptation of his doctoral dis-
sertation at Harvard University’s Department of Social Relations.
Recall, from our lecture #1, that when Granovetter surveyed 282
professional, technical, and managerial workers in Newton, MA,
he found that of those 282 professionals, those who found jobs
through personal contacts (N=54), a substantial percentage 55.6%
reported seeing their contact occasionally, and 27.8% rarely. This
phenomenon can be modeled through the triadic closure proper-
ties as follows: Let us consider a relation R

{(u,v) € R} = Event u obtained a job through a referral by v,

and

Pr[(u,v) € R] = Probability of u obtaining a job through a referral by v,

There are two situations to consider: in both cases, assume that

v and w are close friends, and v provides the referral and w is

the potential employer. In the first case, when u and v are close
friends, w is likely to be an acquaintance and will use information
in addition to what v provides in the referral. In the second case,
when u and v are just acquaintances, w is unlikely to know u and
will go by v’s referral only. The argument is that the additional
information w may have will lower the probability of u being
offered a job.

Pr[(u,v) € R|(u,v) € E/]
= Pr[(u,w) & EA (v,w) € E'|(u,v) € E']
< Pr{(u,w) ¢ EA(v,w) € E'|(u,v) € E\ E]
— Pr[(u,0) € R|(1,0) € E\ E].

Next, we will explore how individuals get connected through
others in a social network. In a graph, not every pair of vertices is
adjacent, but it may be possible to construct “short” sequences of
“connecting” vertices from one vertex to another. In that case, the
graph will be connected; if it is not, it can be described in terms of
a set of connected components.

Walk: A sequence of adjacent vertices vg, v1, ..., vy is known as a
walk. In our example graph (figure 3), the sequence a, b, c, b,

*notes*
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Figure 3: Walks, Trails & Paths.
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a, b, cis a walk. A walk can also be described as a sequence
of incident edges, where two edges are said to be incident if
they share exactly one vertex.

A walk in which no vertex occurs more than once is known
as a (simple) path. In our example, the sequence a, b, ¢, d, ¢, f
is a path. A walk in which no edge occurs more than once is
known as a trail. In our example, the sequence a, b, ¢, ¢, d, c,
g is a trail but not a path.

Every path is a trail, and every trail is a walk. A walk is
closed if vg = v,. A cycle can be defined as a closed path
in which n > 3. The sequence ¢, g, ¢, 4 in the example is a
cycle.

Connected Component: A connected component of a graph is de-
fined as a maximal subgraph in which a path exists from
every node to every other (i.e., they are mutually reachable).
The size of a component is defined as the number of nodes it
contains. A connected graph has only one connected compo-
nent.

Tree: A tree is a connected graph that contains no cycles. In a tree,
every pair of points is connected by a unique path. That is,
there is only one way to get from u to v.

The length of a walk (and therefore a path or trail) is defined as
the number of edges it contains. For example, in our graph, the
path a, b, ¢, d, e has length 4. A walk between two vertices whose
length is as short as any other walk connecting the same pair of
vertices is called a geodesic (the shortest walk/path). Of course, all
geodesics are paths. Geodesics are not necessarily unique. From
vertex a to vertex f, there are two geodesics: a, b, ¢, d, e, f and a, b,
c, 8¢ f.

The graph-theoretic distance (usually shortened to just “dis-
tance”) between two vertices is defined as the length of a geodesic
that connects them. If we compute the distance between every
pair of vertices, we can construct a distance matrix D. The max-
imum distance in a graph defines the graph’s diameter, A. If the
graph is not connected, then there exist pairs of vertices that are
not mutually reachable so that the distance between them is not
defined and the diameter of such a graph is also not defined.

888

The powers of a graph’s adjacency matrix, A? (over the inte-
gers), give the number of walks of length p between all pairs of
nodes. For example, A2, obtained by multiplying the matrix by
itself, has entries that give the number of walks of length 2 that



join node v; to node v;. Hence, the geodesic distance matrix D
has entries d;; = p, where p is the smallest p such that A7[;; > 0.
(However, there exist much faster algorithms for computing the
distance matrix.)

The eccentricity e(v) of a point v in a connected graph G(V, E)
is maxd(u,v), for all u € V. In other words, a point’s eccentricity
is equal to the distance from itself to the point farthest away. The

eccentricity of node b in our example (figure 3) is 3. The minimum

eccentricity of all points in a graph is called the radius p(G) of the
graph, while the maximum eccentricity is the diameter A(G) of the
graph. In the graph of figure 3, the radius is 2 and the diameter is
4. A vertex that is least distant from all other vertices (in the sense
that its eccentricity equals the radius of the graph) is a member of
the center of the graph and is called a central point. Every tree has
a center consisting of either one point or two adjacent points.

Breadth-First Search: For a small graph, we can generally figure
out the distance between two nodes by visual inspection;
but for larger graphs we need a well-formalized algorithm.
The following simple algorithm works well — takes linear
amount of work in the number of vertices and edges. Its
time complexity is O(n + m).

(0) You are at distance o from yourself.
(1) You first declare all of your actual friends to be at distance 1.

(2) You then find all of their friends (not counting people who are
already friends of yours), and declare these to be at distance
2.

(3) Then you find all of their friends (again, not counting people
who you’ve already found at distances 1 and 2) and declare
these to be at distance 3.

(...) Continuing in this way, you search in successive layers, each
representing the next distance out. Each new layer is built
from all those nodes that (i) have not already been discov-
ered in earlier layers, and that (ii) have an edge to some
node in the previous layer.

This technique is called breadth-first search, since it searches the
graph outward from a starting node, reaching the closest nodes
first. In addition to providing a method of determining distances,
it can also serve as a useful conceptual framework to organize the
structure of a graph, arranging the nodes based on their distances
from a fixed starting point.

Of course, despite the social-network metaphor, the process
can be applied to any graph: one just keeps discovering nodes

*notes*
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Procedure BFS(G, v)
Create a queue Q
ENQUEUE(v, Q)
mark v; D(v) := 0;
while Q is non-empty
t := DEQUEUE(Q)
for all edges (t, w) in E do
if w is not marked
mark w; D(w) :=D(t) + 1
ENQUEUE (w, Q)

Figure 4: BFS: Breadth-First Search
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layer-by-layer, building each new layer from the nodes that are
connected to at least one node in the previous layer.

A node whose removal from a graph disconnects the graph (or,
more generally, increases the number of components in the graph)
is called a cutpoint or an articulation point. The example graph
(figure 3) has three cutpoints, namely b, ¢, and e. A connected,
non-trivial graph is called non-separable if it has no cutpoints. A
block or bi-component is a maximal nonseparable subgraph. Blocks
partition the edges in a graph into mutually exclusive edges. They
also share no nodes except cutpoints. Thus, cutpoints decompose
graphs into (nearly) non-overlapping sections. In blocks of more
than two points, every pair of points lies along a common cycle,
which means that there is always a minimum of two ways to
get from any point to any other. Our example (figure 3) has the
following blocks: {a, b}, {b,c}, {c,d,e,g}, {e f}.

The notion of a cutpoint can be generalized to a cutset, which
is a set of points whose joint removal increases the number of
components in the graph. Of particular interest is a minimum
weight cutset, which is a cutset that is as small as possible (i.e.,
no other cutset has fewer members). There can be more than one
distinct minimum weight cutset in a graph. The size of a graphOs
minimum weight cutset defines the vertex connectivity x(G) of
a graph, which is the minimum number of nodes that must be
removed to increase the number of components in the graph (or
render it trivial). The vertex connectivity of a disconnected graph
is 0. The vertex connectivity of a graph containing a cutpoint is no
higher than 1. The vertex connectivity of a non-separable graph
is at least 2. We can analogously define the vertex connectivity
(1, v) of a pair of points u, v as the number of nodes that must
be removed to disconnect that pair. The connectivity of the graph
k(G) is just the

min x(u,v).
u,veVvV

Thus, we can think of the point connectivity of a graph as an
indicator of the invulnerability of the graph to threats of discon-
nection by removal of nodes (“unfriending”). If x(G) is high, or
if the average «(u,v) is high for all pairs of nodes, then we know
that it is fairly difficult to disconnect the nodes in the graph by
removing intermediaries.

The vertex-based notions of cutpoint, cutset, vertex connectivity,
etc. have analogous counterparts for edges. A bridge or isthmus
is defined as an edge whose removal would increase the number
of components in the graph. Edge connectivity is denoted A(G)
and the edge connectivity of a pair of nodes is denoted A(u,v). A
disconnected graph has A(G) = 0, while a graph with a bridge has
A(G) = 1. Vertex connectivity and edge connectivity are related to



each other and to the minimum degree in a graph by WhitneyOs
inequality:
k(G) < A(G) < (G).

Social Network Extensions to Graph Theory

Let us look at how graph theory can help us in understanding
social networks. Let us start with the notion of cohesive subsets.

Cohesive Subsets

It was mentioned earlier that the notion of a cligue can be seen as
formalizing the notion of a primary group. A problem with this,
however, is that it is too strict to be practical: real groups will con-
tain several pairs of people who don’t have a close relationship. A
relaxation and generalization of the clique concept is the n-clique.
There are also the related ideas of n-clans and n-clubs.

n-Clique: An n-clique L of a graph G is a maximal subgraph of
G such that for all pairs of vertices # and v of L the distance
between them in G is bounded from above by #:

vu,UGLdG(u/ U) <n.

In other words, an n-clique is a set of nodes in which every
node can reach every other in n or fewer steps, and the set is
maximal in the sense that no other node in the graph is dis-
tance n or less from every other node in the subgraph. A 1-
clique is the same as an ordinary clique. The set {a,b,c,d, e}
in our graph (Figure 5 (i)) is an example of a 2-clique. Note
that ¢ and e are connected through f, which, however, is not
part of the 2-clique. Thus, the path of length n or less link-
ing a member of the n-clique to another member may pass
through an intermediary who is not in the group. In this
sense, n-cliques are not as cohesive as they might otherwise

appear.

n-Club: An n-club N of a graph G is a maximal subgraph of G of
diameter n:
vu,veNdN(u/ U) <n.

The set {a,b,c,d, e} is not a 2-club, since

dg(c,e) =2, butdi(c,e) = 3.

However, {a,b,c,d} is a 2-club, but it is not a 2-clique (since
it is not the maximal subgraph satisfying 2-clique property).
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Figure 5: Cliques, Clubs & Clans.
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n-Clan: An n-clan M of a graph G is an n-clique of G such that
for all pairs of vertices u and v of M the distance between
them in M is bounded from above by n:

vu,vGMdM(ur Z)) <n

In our example, {b,c,d, e, f} is a 2-clan. It is a 2-clique with a
diameter of 2.

Note that n-clan is both an n-clique and n-club.

Whereas n-cliques, n-clans and n-clubs all generalize the
notion of clique via relaxing distance, the k-plex generalizes
the clique by relaxing density.

k-plex A k-plexis a subset S of nodes such that every member of
the set is connected to n — k others, where 7 is the size of S.

Although not part of the official definition, it is conven-
tional to additionally impose a maximality condition, so
that proper subsets of k-plexes are ignored. There are some
guarantees on the cohesiveness of k-plexes. For example,
k-plexes in which k < (n 4 2)/2 have no distances greater
than 2 and cannot contain bridges (making them resistant to
attack by deleting an edge). In Figure 5 (i), the set {a,b,¢,d}
fails to be a 2-plex because each member must have at least
4 — 2 = 2 ties to other members of the set, but ¢ has only one
tie within the group. In the graph in Figure 5 (ii) and (iii),
the set {a,b,d, e} are both 2-plexes.

More cohesive than k-plexes are LS sets.

LS sets: Let H be a set of nodes in graph G(V,E) and let K be a
proper subset of H. Let a(K) denote the number of edges
linking members of K to V — K (the set of nodes not in K).
Then H is an LS set of G if for every proper subset K of H,
a(K) > a(H).

The basic idea is that individuals in H have more ties with other
members than they do to outsiders.

In the figure 5 (ii), the set {a,b,d, e} is not an LS set since
a({b,d, e}, {a}) is not greater than a({b,d, e}, {c}). In contrast,
the set {a,b,d, e} in the figure 5 (iii) does qualify as an LS set.

A key property of LS sets is high edge connectivity.



