LOGIC HW #1

B. Mishra

09 October 2012 (due in 2 weeks)

Q1. [10] Augment the signature $\{\neg, \land\}$ by \lor and prove the completeness and soundness of the calculus obtained by supplementing the basic rules used so far with the rules:

$$(\vee 1)\frac{X \vdash \alpha}{X \vdash \alpha \lor \beta, \beta \lor \alpha}; \quad (\vee 2)\frac{X, \alpha \vdash \gamma \mid X, \beta \vdash \gamma}{X, \alpha \lor \beta \vdash \gamma}$$

- Q2. [10] Prove: (Finiteness Theorem for \models) If $X \models \alpha$, then so too $X_0 \models \alpha$ for some finite subset $X_0 \subset X$.
- Q3. [10] Using the preceding theorem, prove that if $X \cup \{\neg \alpha | \alpha \in Y\}$ is inconsistent and Y is nonempty, then there exist formulas $\alpha_0, \ldots, \alpha_n \in Y$ in Y such that

$$X \vdash \alpha_0 \lor \cdots \lor \alpha_n$$
.