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1 Probability of absorption in Birth-and-Death process

1.1 Probabilistic method

Since the growth of the population results exclusively from the existing population, it is clear that when the
population size becomes zero, it remains zero thereafter. Let us assume a birth-and-death process with zero as
an absorbing state. The probability of ultimate absorbtion into state 0, given that we start in statei, is denoted as
ui. We will perform a first-step analysis and construct a recursion formula forui: The first transition will entail
the following movements

i −→ i + 1 with probability
λi

µi + λi

i −→ i− 1 with probability
µi

µi + λi

Invoking the first step analysis, we obtain

ui =
λi

µi + λi
ui+1 +

µi

µi + λi
ui−1, i ≥ 1

ui =
1

λi + µi
(λiui+1 + µiui−1)

λiui + µiui = λiui+1 + µiui−1

λiui+1 − λiui = µiui − µiui−1

ui+1 − ui =
µi

λi
(ui − ui−1)

whereu0 = 1. If now we letvi = ui+1 − ui, then the above formula becomes

vi =
µi

λi
vi−1, i ≥ 1

Let us iterate on this formula
vi =

µi

λi
vi−1

vi =
µi

λi

µi−1

λi−1
vi−2

vi =
µi

λi

µi−1

λi−1

µi−2

λi−2
vi−3

. . .

vi =
µi

λi

µi−1

λi−1

µi−2

λi−2

. . .

. . .

µ1

λ1
v0

1



If we let
ρi =

µiµi−1 . . . µ2µ1

λiλi−1 . . . λ2λ1

andρ0 = 1, we can obtain

vi = ρiv0

If now we returnvi to ui+1 − ui, then

ui+1 − ui = ρi(u1 − u0)

ui+1 − ui = ρi(u1 − 1)

Let us sum both sides fromi = 1 to i = m− 1,

m−1∑
i=1

(ui+1 − ui) =
m−1∑
i=1

ρi(u1 − 1)

(u2 − u1) + (u3 − u2) + · · ·+ (um−1 − um−2) + (um − um−1) = (u1 − 1)
m−1∑
i=1

ρi

um − u1 = (u1 − 1)
m−1∑
i=1

ρi

whereu0 = 1.
Now, in order to solve foru1, we letm −→∞. In such a case,um −→ 0. Thus

um − u1 = (u1 − 1)
m−1∑
i=1

ρi (1)

0− u1 = (u1 − 1)
∞∑

i=1

ρi (2)

0 = u1

∞∑
i=1

ρi −
∞∑

i=1

ρi + u1 (3)

∞∑
i=1

ρi = u1(
∞∑

i=1

ρi + 1) (4)

u1 =
∑∞

i=1 ρi

1 +
∑∞

i=1 ρi
(5)

We can now plug inu1 to solve for a generalm:
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um − u1 = (u1 − 1)
m−1∑
i=1

ρi (6)

um = u1

m−1∑
i=1

ρi −
m−1∑
i=1

ρi + u1 (7)

um =
( ∑∞

i=1 ρi

1 +
∑∞

i=1 ρi

)m−1∑
i=1

ρi −
m−1∑
i=1

ρi +
∑∞

i=1 ρi

1 +
∑∞

i=1 ρi
(8)

um =
∑∞

i=1 ρi ×
∑m−1

i=1 ρi −
∑m−1

i=1 ρi(1 +
∑∞

i=1 ρi) +
∑∞

i=1 ρi

1 +
∑∞

i=1 ρi
(9)

um =
∑∞

i=1 ρi −
∑m−1

i=1 ρi

1 +
∑∞

i=1 ρi
(10)

um =
∑∞

i=m ρi

1 +
∑∞

i=1 ρi
(11)

(12)

We can obtain similar results by considering an “embedded random walk” associated with this process.
In Moran model, the absorption in one of the states (either 0 or 2N) is definite. It is of interest to compute a

probability of absorbing at 0 and absorbing at 2N (starting at state i) separately. Let us apply a similar analysis
to calculating Absorption Probabilities in Moran process (in whichXt is the number ofA1 alleles in a haploid
population of 2N genes). In Moran population model, it is possible to make a transition from statei into states
i + 1, i, andi− 1. Let us denote the probabilities of going to the corresponding states aspi,i+1, pi,i, andpi,i−1.
By applying the first step analysis, we are able to obtain the recursive equation for the probability of absorption
in 0:

ui = pi,i+1ui+1 + pi,iui + pi,i−1ui−1 (13)

ui = pi,i+1ui+1 + (1− pii+1 − pi,i−1)ui + pi,i−1ui−1 (14)

ui = pi,i+1ui+1 + ui − pii+1ui − pi,i−1ui + pi,i−1ui−1 (15)

0 = pi,i+1ui+1 − pii+1ui − pi,i−1ui + pi,i−1ui−1 (16)

pi,i+1ui+1 − pii+1ui = pi,i−1ui − pi,i−1ui−1 (17)

pi,i+1(ui+1 − ui) = pi,i−1(ui − ui−1) (18)

ui+1 − ui =
pi,i−1

pi,i+1
(ui − ui−1) (19)

(20)

Observe now that this formula corresponds to one derived in section 1:

ui+1 − ui =
µi

λi
(ui − ui−1),

in which casepi,i−1 corresponds toµi andpi,i+1 corresponds toλi.
If apply a similar analysis to a Moran model, then the probability of extinction (absorption at zero) becomes

um =
2N −m

2N

Similarly, the probability of fixation (absorption at 2N) is

um =
m

2N

since the probability to absorption at 0 and at 2N should sum up to 1.
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1.2 Absorption probabilities by Matrix Manipulations (finite states)

Let us consider a finite state spaceS = {0, 1, 2 . . . , M}. We assume thatλ0 = µ0 = λM = µM = 0, and thus 0
and M are absorbing states.

Further we defineW
′

1 = (µ1, 0, 0, . . . , 0), W
′

2 = (0, 0, 0, . . . , λM−1), and1M−1 = (1, 1, 1, . . . , 1) as vectors
of size(M − 1)× 1.

Let us consider a matrixQ (which is an infinitesimal generator of the process) with two absorbing states 0 and
M; then we can design a matrix̂Q with rows and columns ,which correspond two absorbing states, eliminated.
In particular, thêQ would look like matrixQ with deleted rows (0 and M) and columns (0 and M):

Q̂ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−(λ1 + µ1) λ1 0 0 . . . 0
µ2 −(λ2 + µ2) λ2 0 . . . 0
0 µ3 −(λ3 + µ3) λ3 . . . 0
...

...
...

...
...

...
0 µM−2 −(λM−2 + µM−2) λM−2

0 . . . . . . 0 µM−1 −(λM−1 + µM−1)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
Observe that a matrixQ can now be expresses in terms ofQ̂ andW1 andW2 as

Q =

∥∥∥∥∥∥
0 0′ 0

W1 Q̂ W2

0 0′ 0

∥∥∥∥∥∥
If now we want to calculateQm, then

Qm =

∥∥∥∥∥∥
0 0′ 0

Q̂
m−1

W1 Q̂
m

Q̂
m−1

W2

0 0′ 0

∥∥∥∥∥∥
Let us now calculateP(t) = eQt: consideringQ̂ in this formula

∞∑
m=0

tm

m!
Q̂

m
= eQ̂t

If we considerQ̂
m−1

W1 in the above calculations:

∞∑
m=1

tm

m!
Q̂

m−1
W1 =

[ ∞∑
m=0

tm

m!
Q̂

m−1
− t0

0!
Q̂

0−1

]
W1 (21)

= Q̂
−1

[ ∞∑
m=0

tm

m!
Q̂

m
− IM−1

]
W1 (22)

= Q̂
−1

[ ∞∑
m=0

tm

m!
Q̂

m
− IM−1

]
W1 = h(t)

0 (23)

Similarly, theh(t)
M can be derived, with respect toW2. Observe thath(t)

0 is a vector of absorption probabil-

ities of states{1, . . . ,M − 1} into state 0 over timet andh(t)
M is a vector of absorption probabilities of states

{1, . . . ,M − 1} into stateM over timet. It follows that

4



P(t) = eQt =
∞∑

j=0

tj

j!
Qj (24)

=

∥∥∥∥∥∥
1 0′ 0

h(t)
0 eQ̂t h(t)

M

0 0′ 1

∥∥∥∥∥∥ (25)

Furthermore, it would follow that̂P(t), which corresponds tôQ, is

P̂(t) = eQ̂t

Observe thateQ̂t −→ 0 ast −→ ∞; thereforeh0 – the vector of ultimate absorption probabilities of the
states{1, . . . ,M − 1} into state 0 is

h0 = lim
t−→∞

h(t)
0 = −Q̂

−1
W1

and the vector of ultimate absorption probabilities of the states{1, . . . ,M − 1} into state M is

hM = lim
t−→∞

h(t)
M = −Q̂

−1
W2

Observe that sinceW1 + W2 + Q̂1M−1 = 0, then

W1 + W2 = −Q̂1M−1

If applied toh0 + hM , then

h0 + hM = −Q̂
−1

W1 + (−Q̂
−1

W2) (26)

= −Q̂
−1

(W1 + W2) (27)

= (−Q̂
−1

)(−Q̂)1M−1 (28)

= I1M−1 = 1M−1 (29)

This is equivalently to saying that, with probability 1, the states{1, . . . ,M − 1} will eventually be absorbed into
0 or M .

Let us ease the computation of−Q̂
−1

and describe it in terms of birth and death ratesλj andµj . Let us
denote the inverse of−Q̂ asC. It turns to be that the entrycts (wheret = 1, 2, . . . ,M − 1 is the row and
s = 1, 2, . . . ,M − 1 is the column) in the matrix-inverseC is

cts =

min(t,s)∑
l=1

l−1∏
i=1

µi

s−1∏
j=l

λj

M−s−max(t−s,0)∑
n=1

M−n∏
i=s+1

µi

M−1∏
j=M−n+1

λj

 /

 M∑
n=1

M−n∏
i=1

µi

M−1∏
j=M−n+1

λj


Basically, the computation of the probability of absorption into 0 from a statek, h0k, is calculated based on

multiplication ofW1 andC. In particular, the elementh0k is the product ofµ1 and the elementck1:

h0k = µ1ck,1 = µ1

(
1∑

l=1

1× 1

)M−1−(k−1)∑
n=1

M−n∏
i=s+1

µi

M−1∏
j=M−n+1

λj

 /

 M∑
n=1

M−n∏
i=1

µi

M−1∏
j=M−n+1

λj



= µ1

M−k∑
n=1

M−n∏
i=1+1

µi

M−1∏
j=M−n+1

λj

 /

 M∑
n=1

M−n∏
i=1

µi

M−1∏
j=M−n+1

λj
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= µ1

M−k∑
n=1

M−n∏
i=2

µi

M−1∏
j=M−n+1

λj

 /

 M∑
n=1

M−n∏
i=1

µi

M−1∏
j=M−n+1

λj


=

M−k∑
n=1

M−n∏
i=1

µi

M−1∏
j=M−n+1

λj

 /

 M∑
n=1

M−n∏
i=1

µi

M−1∏
j=M−n+1

λj


Similarly, for the probability of absorption into M is

hMk = λM−1ck,M−1 = λM−1

 k∑
l=1

l−1∏
i=1

µi

s−1∏
j=l

λj

( 1∑
n=1

1× 1

)
/

 M∑
n=1

M−n∏
i=1

µi

M−1∏
j=M−n+1

λj



= λM−1

 k∑
l=1

l−1∏
i=1

µi

(M−1)−1∏
j=l

λj

 /

 M∑
n=1

M−n∏
i=1

µi

M−1∏
j=M−n+1

λj


= λM−1

 k∑
l=1

l−1∏
i=1

µi

M−2∏
j=l

λj

 /

 M∑
n=1

M−n∏
i=1

µi

M−1∏
j=M−n+1

λj


=

 k∑
l=1

l−1∏
i=1

µi

M−1∏
j=l

λj

 /

 M∑
n=1

M−n∏
i=1

µi

M−1∏
j=M−n+1

λj


It is easy to check thath0k + hMk = 1, once again satisfying the condition that the ultimate absorption at

one of the absorbing states is unescapable.
If we apply the above calculations to the Moran model, in which

µi = λi =
i(M − i)
M ×M

,

then the above probabilities become

h0k =
M − k

M

and

hMk =
k

M

as has been shown before with a probabilistic argument.

2 Mean time to absorption in Birth-and-Death Process

2.1 Probabilistic method

Now, consider a mean time until absorption into state 0 starting from statem (we assume that the absorption is
certain) in a birth-and-death process. In this method we would like to consider time spent in each state for the
calculation of the mean absorption time. We will use the fact that the mean sojourn time spent in statei is 1

µi+λi

Let w1 be the mean absorption time from statei, then taking into account the waiting (sojourn) time in the
statei,

wi =
1

µi + λi
+

λi

µi + λi
wi+1 +

µi

µi + λi
wi−1, i ≥ 1

wherew0 = 0.
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Rearranging the above gives

wi =
1

µi + λi
+

λi

µi + λi
wi+1 +

µi

µi + λi
wi−1 (30)

wi =
1 + λiwi+1 + µiwi−1

µi + λi
(31)

wi(µi + λi) = 1 + λiwi+1 + µiwi−1 (32)

µiwi + λiwi = 1 + λiwi+1 + µiwi−1 (33)

λiwi − λiwi+1 = 1 + µiwi−1 − µiwi (34)

λi(wi − wi+1) = 1 + µi(wi−1 − wi) (35)

wi − wi+1 =
1
λi

+
µi

λi
(wi−1 − wi) (36)

(37)

If now we setzi = wi − wi+1, then

zi =
1
λi

+
µi

λi
zi−1

Iterating this relation gives

z1 =
1
λ1

+
µ1

λ1
z0 (38)

z2 =
1
λ2

+
µ2

λ2
z1 (39)

=
1
λ2

+
µ2

λ2
(

1
λ1

+
µ1

λ1
z0) (40)

=
1
λ2

+
µ2

λ2λ1
+

µ2µ1

λ2λ1
z0 (41)

z3 =
1
λ3

+
µ3

λ3λ2
+

µ3µ2

λ3λ2λ1
+

µ3µ2µ1

λ3λ2λ1
z0 (42)

(43)

It follows that

zm =

 m∑
i=1

1
λi

m∏
j=i+1

µj

λj

+ z0

 m∏
j=1

µj

λj


Again, using the notationρ0 = 1 and

ρi =
µ1µ2 . . . µi

λ1λ2 . . . λi

we obtain

zm =
m∑

i=1

1
λi

ρm

ρi
+ ρmz0

Substitutingzm for wm − wm+1 and noting thatz0 = w0 − w1 = −w1 sincew0 = 0:
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wm − wm+1 =
m∑

i=1

1
λi

ρm

ρi
− w1ρm (44)

1
ρm

(wm − wm+1) =
1

ρm

m∑
i=1

1
λi

ρm

ρi
− w1 (45)

1
ρm

(wm − wm+1) =
m∑

i=1

1
λi

ρm

ρiρm
− w1 (46)

1
ρm

(wm − wm+1) =
m∑

i=1

1
λiρi

− w1 (47)

(48)

In order to solve forw1, we letm −→∞:

w1 =
m∑

i=1

1
λiρi

− 1
ρm

(wm − wm+1) (49)

w1 =
∞∑

i=1

1
λiρi

− lim
m−→∞

1
ρm

(wm − wm+1) (50)

w1 =
∞∑

i=1

1
λiρi

− 0 (51)

w1 =
∞∑

i=1

1
λiρi

(52)

(53)

Plugging in the above into the formula forwm gives

wm − wm+1 =
m∑

i=1

1
λi

ρm

ρi
− ρm

∞∑
i=1

1
λiρi

(54)

wm − wm+1 =
m∑

i=1

1
λi

ρm

ρi
−

∞∑
i=1

1
λi

ρm

ρi
(55)

wm − wm+1 = −
∞∑

i=m+1

1
λi

ρm

ρi
(56)

(57)

Summing both sides fromm = 1 to m = k − 1, we obtain

k−1∑
m=1

wm − wm+1 = −
k−1∑
m=1

∞∑
i=m+1

1
λi

ρm

ρi
(58)

w1 − wk = −
k−1∑
m=1

∞∑
i=m+1

1
λi

ρm

ρi
(59)

wk = w1 +
k−1∑
m=1

∞∑
i=m+1

1
λi

ρm

ρi
(60)

wk =
∞∑

i=1

1
λiρi

+
k−1∑
m=1

ρm

∞∑
i=m+1

1
λi

1
ρi

(61)

(62)
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However, for Moran process we would need to consider a finite state space and two absorption states in order
to calculate a mean time to absorption.

2.2 Mean time to Absorption with Matrix method (finite state)

Let us define a vector of mean time to absorption from states{1, . . . ,M − 1} to either state (0 or M) as̄t. Then,
following the calculations above

t̄ = −Q̂
−1

1M−1

From the previous section we know how to calculate matrixC, which is−Q̂
−1

. Basically, the element̄tk is
equal to the sum of the elements of the k’th row ofC :

t̄k =

M−1∑
s=1

 min(k,s)∑
l=1

l−1∏
i=1

µi

s−1∏
j=l

λj

M−s−max(k−s,0)∑
n=1

M−n∏
i=s+1

µi

M−1∏
j=M−n+1

λj

  /

 M∑
n=1

M−n∏
i=1

µi

M−1∏
j=M−n+1

λj


When applied to Moran model (recall thatλi = µi = i(M−i)

M×M ), the mean time to absorption becomes

t̄k = (M − k)M
k∑

i=1

1
M − i

+ kM
M−1∑

i=k+1

1
i

3 Appendix

3.1 Calculating transition probabilities by Spectral method

Here we are interested in calculating these transition probability matrix bySpectral Method. Let Q be (m +
1)(m + 1) matrix with eigenvaluesα0, α1, . . . αm (possibly with repetition) and corresponding eigenvectors

x0 =

x00

...
xm0

 , . . . , xm =

x0m

...
xmm


which are linearly independent.

In general the eigenvalues of the Matrix can be calculated as follows:
x is an eigenvector ofQ iff there exists anα so thatQx = αx; then

Qx = αx

Qx = (αI)x

(Q− αI)x = 0

whereI is the identity matrix (identity matrix has 1’s on its main diagonal and 0’s elsewhere).
In order for this equation to have non-trivial solution, it is required that the determinantdet(Q − αI) is

zero. This determinant is also called the characteristic polynomial of the matrix. The distinct eigenvalues
α0, α1, . . . , αm are given by the zeros of the characteristic polynomial

det(Q− αI)

After the eigenvaluesα0, α1, . . . αm are calculated, we can determine eigenvectors (for each eigenvalue) as:

[
Q− αiI

]


x0i

x1i

...
xmi

 = 0
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Let us now have a matrixB with columns consisting of eigenvectors ofQ:

B = (x0x1 . . . xm) =


x00 x01 . . . x0m

x10 x11 . . . x1m

...
... . . .

...
xm0 xm1 . . . xmm


SinceQxi = αixi, it follows that

QB = (α0x0 α1x1 . . . αmxm) (63)

Q2B = Q(α0x0 α1x1 . . . αmxm) = (α2
0x0 α2

1x1 . . . α2
mxm) (64)

QnB = (αn
0 x0 αn

1 x1 . . . αn
mxm) (65)

Therefore

etQB =
∞∑

n=0

tn

n!
QnB (66)

=
∞∑

n=0

tn

n!
(αn

0 x0 αn
1 x1 . . . αn

mxm) (67)

= (etα0x0 etα1x1 . . . etαmxm) (68)

= B diag(etα0 , . . . etαm) (69)

wherediag(etα0 , . . . etαm) is the(m+1)(m+1) matrix withetαis on the main diagonal and zeros elsewhere

diag(etα0 , . . . etαm) =


etα0

etα1 0

0
...

etαm


As a result

etQ = B


etα0

etα1 0

0
...

etαm

B−1
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