Computational Systems Biology: Biology X

Bud Mishra

Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA

Human Population Genomics

Outline

Wright-Fisher model

- Model Definition
- Fixation
- 2

Moran model

- Model Definition
- Related Topics of Interest
 Island Model

(日)

크

"Damn the Human Genomes. Small initial populations; genes too distant; pestered with transposons; feeble contrivance; could make a better one myself."

-Lord Jefferey (badly paraphrased)

Models in Population Genetics

Population Models

These are models to describe the evolution of allele frequencies...

There are two classical models Wright-Fisher model Moran model

B Mishra Computational Systems Biology: Biology X

Model Definition Fixation

Outline

Wright-Fisher model

- Model Definition
- Fixation
- 2

Moran mode

- Model Definition
- Related Topics of Interest
 Island Model

(日)

臣

Model Definition Fixation

Wright-Fisher model

- Assume a simple haploid model; it consists of a population of 2N genes (or alternatively – N diploid organisms) of random reproduction, with each haploid possessing either allele A₁ or allele A₂.
- Initially, we may disregard mutation as well as selective forces.
- At each time-step, a gene (allele) reproduces some number of offspring (which are the exact copies of itself) and dies immediately after that; thus has a life-span of only one generation.
- The process, modeled thus, describes how the genes get transmitted from one generation to the next.

Model Definition Fixation

Markov Model

• Process of birth and death in the population remains hidden. The only observable is the frequency of alleles changing from generation to generation. The allele frequency of the next generation is governed only by a genetic drift.

Definition (Genetic drift)

It is defined as a force that reduces heterozygosity by the random loss of alleles.

Focus on the frequency of allele A₁ in the population of 2N haploids. Think of this process as changing from one generation to the next in terms of a Markov Chain, where the state X of the chain corresponds to the number of haploids (genes) of type A₁.

Model Definition Fixation

- In any generation X takes one of the values 0, 1, ..., 2N, which constitutes a *state space*. Denote the value taken by X in generation t as X_t.
- The model assumes that genes for the generation t + 1 are derived by sampling with replacement from the genes of generation t. Thus, the make up of the next generation is determined by 2N independent Bernoulli trials so that X_t is a binomial random variable.

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Model Definition Fixation

Let the initial generation consist of *i* genes of type A₁ and 2N - *i* genes of type A₂. Then we define a probability of success (resulting in allele A₁) p_i and a probability of failure q_i (resulting in allele A₂) for each Bernoulli trial as

$$p_i = rac{i}{2N}$$
 $q_i = 1 - rac{i}{2N}$

Model Definition Fixation

- The process generates a Markov Chain $\{X_n\}$, where X_n is the number of A_1 genes in the n^{th} generation, among a constant population size of 2N individuals. Basically, X_{t+1} is a binomial random variable with index 2N and parameter (probability of success) $X_t/2N$.
- Observe that the transition probabilities from X_t = i to X_{t+1} = j for this Markov Chain are computed according to the binomial distribution as

$$P(X_{t+1} = j | X_t = i) = p_{ij} = {\binom{2N}{j}} p_i^j q_i^{2N-j}$$

= ${\binom{2N}{j}} (i/2N)^j \{1 - (i/2N)\}^{2N-j}$

Model Definition Fixation

- The states 0 and 2N are completely absorbing.
- In other words, no matter what the value of X_0 is, eventually X_t will take the value 0 or 2*N*.Once this happens, *X* will stay in that state forever. In the case of $X_t = 0$, the population will consist only of A_2 genes, while in the case of $X_t = 2N$ the population will be purely A_1 -gene population.

(日)

Model Definition Fixation

Absorption probability in Wright-Fisher model

In this model, eventually, the population attains fixation; at that point, it is composed of only A₁-genes (X_t = 2N) or A₂-genes (X_t = 0). That is, with probability one, either of the absorbing states (either 0 or 2N) is eventually entered (and this is true for both Wright-Fisher and Moran models).

$$\lim_{t\to\infty} P(X_t=j)=0.$$

Model Definition Fixation

Absorption at Zero

 Probability of extinction (absorption at 0) of a gene, given that it started with *i* copies

$$\lim_{n\to\infty} P(X_n=0|X_0=i).$$

Note that

$$E(X_n) = E[E(X_n|X_{n-1})] = E(X_{n-1}) = E(X_{n-2})$$

= \dots = E(X_0) = i.

This property is called the *constancy of expectation*. It is also true for Moran model.

Model Definition Fixation

Note further that

$$E(X_n) = 0 \cdot u_{i,0} + 2N \cdot (1 - u_{i,0}).$$

• Since
$$\lim_{n\to\infty} E(X_n) = i$$
, we have

$$i = 0 \cdot u_{i,0} + 2N \cdot (1 - u_{i,0}),$$

and therefore

$$u_{i,0}=\frac{2N-i}{2N}.$$

= 990

Model Definition Fixation

Absorption at 2N

 In an identical manner, we may calculate the probability that A₁ eventually becomes fixed in the population (absorption at 2N)...

$$i = 0 \times (1 - u_{i,2N}) + 2N \times u_{i,2N}$$

Thus

$$u_{i,2N}=\frac{i}{2N}$$

• Eventually every gene in the population is descended from one unique gene which appeared in generation zero. The probability that such a gene (allele) is A_1 is simply the initial fraction of A_1 alleles, namely i/2N, and this also must be a fixation probability of allele A_1 .

Model Definition Fixation

Absorption starting from a Single A_1 Allele

- In a population of pure A₂ alleles a single new mutant A₁ allele (gene) arises.
- Since it is assumed that there are no more new mutations, we are starting with a population with one A_1 allele and $2N 1 A_2$ alleles.
- Thus, the probability of fixation for this allele is

$$u_{1,2N}=\frac{i}{2N}=\frac{1}{2N}.$$

• Symmetrically, the probability that the allele is lost is 1 - 1/2N.

(日)

Model Definition Fixation

Mean Time till Absorption in Wright-Fisher Model

- In general, computationally expensive; but can be approximated.
- Easy case: Mean time until absorption starting with one allele of type A₁
 (before the mutant is last or before the mutant is fixed)

...(before the mutant is lost or before the mutant is fixed).

• A cute trick... Just add up the expected number of visits to a state *j* along the path to absorption, starting from state $X_0 = 1$ Denote the mean number of generations to absorption in 0 or 2N, given that the population started with just one allele A_1 , as \bar{t}_1 .

 Summing up the expected number of such visits for all *j*, avoiding the absorbing states: 0 and 2N:

$$\bar{t}_1 = \sum_{j=1}^{2N-1} \bar{t}_{1,j},$$

where $\bar{t}_{1,j}$ is the mean number of times when the number of A_1 alleles assumes the value of *j* (i.e., the system is in state *j*) before reaching either 0 or 2*N*. Thus

$$\overline{t}_{1,j} \approx \frac{2}{j}$$

starting at i = 1.

Model Definition Fixation

• Since $\sum_{i=1}^{N} \frac{1}{i} = \ln(N) + \gamma$ where γ is the Euler's constant (0.5772...), we have

$$\bar{t}_1 = \sum_{j=1}^{2N-1} \bar{t}_{1,j} = \sum_{j=1}^{2N-1} \frac{2}{j} = 2 \sum_{j=1}^{2N-1} \frac{1}{j}$$
$$= 2(\ln(2N-1) + \gamma)$$

B Mishra Computational Systems Biology: Biology X

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シペペ

Model Definition Fixation

Approximating Mean Time until Absorption

- A simple approximation for \bar{t}_i . Start from state *i* and in the first step reach some intermediate step *k*.
- Define M = 2N, i/M = x, $k/M = x + \delta x$, and $\overline{t}_i = \overline{t}(x)$.

$$\overline{t}_i = \sum_{k=0}^M p_{ik} \overline{t}_k + 1$$

as

$$\overline{t}(x) = \sum P\{x \to x + \delta x\}\overline{t}(x + \delta x) + 1$$
$$= E\{\overline{t}(x + \delta x)\} + 1$$
(1)

Assuming that t
 (x) is a twice differentiable function of a continuous variable x, we can use Taylor series to approximate the above quantity.

Model Definition Fixation

The Taylor series states that

$$f(y) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (y-a)^n$$
(2)
= $\frac{f(a)}{0!} (y-a)^0 + \frac{\{f(a)\}'}{1!} (y-a)^1 + \frac{\{f(a)\}''}{2!} (y-a)^2 + \dots$
= $f(a) + \{f(a)\}'(y-a) + \frac{1}{2} \{f(a)\}'' (y-a)^2 + \dots$

• We re-write $\overline{t}(x)$ by applying Taylor's series

$$\bar{t}(x) = E\{\bar{t}(x+\delta x)\} + 1$$

$$\approx \bar{t}(x) + E(\delta x)\{\bar{t}(x)\}' + \frac{1}{2}E(\delta x)^2\{\bar{t}(x)\}'' + 1,$$
(3)

・ロン ・ 四 > ・ 回 > ・

臣

Model Definition Fixation

 All expectations are conditional on x. Since the expectation of a binomial random variable Y ~ B(n, p) is E(Y) = np,

$$E(x+\delta x)=E(j/M)=rac{E(j)}{M}=rac{M\cdot i}{M}=rac{i}{M},$$

where $p = \frac{i}{M}$.

• Since we know that $E(X_n|X_{n-1} = i) = i$, and since $x = \frac{i}{M}$ and E(x) = x, $E(\delta x) = 0$. As a result the term $E(\delta x)\{\overline{t}(x)\}' = 0$.

.

Model Definition Fixation

• Calculating $E(\delta x)^2$: In our case, the $E(\delta x)^2 = Var(\delta x)$ since $[E(\delta x)]^2 = 0$. The variance of the binomial r.v.

$$Var(x + \delta x) = Var(j/2N) = \frac{Var(j)}{4N^2}$$
$$= \frac{2N\frac{j}{2N}(1 - \frac{j}{2N})}{4N^2} = \frac{x(1 - x)}{2N}$$

B Mishra Computational Systems Biology: Biology X

Model Definition Fixation

• Hence,

$$ar{t}(x) pprox ar{t}(x) + rac{1}{2} rac{x(1-x)}{2N} \{ar{t}(x)\}'' + 1$$

 $-1 pprox rac{1}{2} rac{x(1-x)}{2N} \{ar{t}(x)\}''$
 $-4N pprox x(1-x) \{ar{t}(x)\}''$

B Mishra Computational Systems Biology: Biology X

Outline Wright-Fisher model Model Definition Moran model Fixation Related Topics of Interest

• The solution to this equation, subject to the boundary conditions $\overline{t}(0) = \overline{t}(1) = 0$ is

$$\bar{t}(x) = \int \int -4N \frac{1}{x(1-x)}$$

$$= -4N \int \int \left(\frac{1}{x} + \frac{1}{1-x}\right)$$

$$= -4N \int (\ln(x) + \ln(1-x))$$

$$\approx -4N \{x \ln x + (1-x) \ln(1-x)\}$$
(4)

where $x = \frac{i}{2N}$, the initial frequency of allele A_1 .

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

E

Model Definition Fixation

Diffusion Approximation to the Mean Absorption Time

• Starting with just one A_1 allele $x = \frac{1}{2N}$, the mean time to absorption is

$$\overline{t}\left(\frac{1}{2N}\right) = -4N\left\{\frac{1}{2N}\ln\left(\frac{1}{2N}\right) + \left(1 - \frac{1}{2N}\right)\ln\left(1 - \frac{1}{2N}\right)\right\}$$
$$\approx 2 + 2\ln 2N. \tag{5}$$

• When
$$x = \frac{1}{2}$$
,
 $\overline{t}\left(\frac{1}{2}\right) \approx 2.8N$

• For equal initial frequencies $(x = \frac{1}{2})$, the mean time is relatively long.

(日)

Model Definition

Outline

Fixation

Moran model

Model Definition

(日)

臣

Model Definition

Moran Model

- In each generation of the Moran model, one gene is chosen at random to give 2 offspring and one gene is chosen to die (all other genes survive to the next generation).
- In contrast to Wright-Fisher model, Moran model has overlapping generations. This model is also known as a birth-and-death model.
- We still consider a constant population size of 2N haploids, each of which has either allele A₁ or allele A₂. Let us (for now) ignore mutation or selection pressures.

(日)

- Define X to be a random variable, representing the number of alleles of type A₁ in the population. Question: What are the transition probabilities for the implied Markov chain?
- Suppose that in population at *t* (which corresponds to state X_t in underlying Markov chain), the number of alleles A₁ is *i*. Then in population t + 1, the number of alleles A₁ can be either (j = i 1), (j = i + 1), or j = i.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Model Definition

 The system can go from *i* to *i* – 1 if *A*₂ is chosen to reproduce 2 offspring and *A*₁ is chosen to die; similarly, it can go from *i* to *i* + 1, if *A*₂ is chosen to die and *A*₁ is chosen to reproduce:

$$p_{i,i-1} = \left(\frac{2N-i}{2N}\right) \left(\frac{i}{2N}\right) \& p_{i,i+1} = \left(\frac{2N-i}{2N}\right) \left(\frac{i}{2N}\right)$$

 And for going from *i* to *i*, it takes either A₁ to reproduce and die or A₂ to reproduce and die:

$$p_{i,i} = \left(\frac{2N-i}{2N} \cdot \frac{2N-i}{2N}\right) + \left(\frac{i}{2N} \cdot \frac{i}{2N}\right) = \frac{i^2 + (2N-i)^2}{(2N)^2}$$

Note that p_{ij} = 0 for all other values of j.

Properties of a Continuant matrix in Moran model.

- In Moran model, the transition probability matrix is a Continuant... *p_{ij}* = 0 iff |*i* − *j*| > 1.
- Using standard Continuant matrix theory, calculate explicitly the probability of fixation and mean time to absorption ...
- A "birth-and-death" process model (a special case of Continuous-time Markov process) ...When a birth occurs, the state *i* goes to state *i* + 1, defined by the birth rate *p*_{*i*,*i*+1} = λ_{*i*}. ...When a death occurs, the process goes from state *i* to state *i* - 1, defined by the death rate *p*_{*i*,*i*-1} = μ_{*i*}.

• Define $\rho_0 = 1$ & $\rho_i = \frac{\mu_1 \mu_2 \dots \mu_i}{\lambda_1 \lambda_2 \dots \lambda_i},$

• M = 0 and M = 2N are both absorbing states; the probability of absorption in either of them becomes

$$u_{i} = \sum_{k=0}^{i-1} \rho_{k} / \sum_{k=0}^{M-1} \rho_{k}$$

٢

Model Definition

 Thus the mean number of times the system is in state j given that it started in state i is

$$\bar{t}_{ij} = \frac{(1-u_i)\sum_{k=0}^{j-1}\rho_k}{\rho_{j-1}\mu_j}, (j = 1, \dots, i) \&$$

$$\bar{t}_{ij} = \frac{u_i\sum_{k=j}^{M-1}\rho_k}{\rho_j\lambda_j}, (j = i+1, \dots, M-1)$$

$$\bar{t}_i = \sum_{j=1}^{M-1} \bar{t}_{ij} = \sum_{j=1}^i \frac{(1-u_i)\sum_{k=0}^{j-1} \rho_k}{\rho_{j-1}\mu_j} + \sum_{j=i+1}^{M-1} \frac{u_i \sum_{k=j}^{M-1} \rho_k}{\rho_j \lambda_j}$$

臣

Model Definition

Probability of fixation in Moran model

• Thus, in the Moran model

$$\lambda_i = \mu_i = i(2N - i)/(2N)^2$$

so that

$$\rho_i = \frac{\mu_1}{\lambda_1} \frac{\mu_2}{\lambda_2} \dots \frac{\mu_i}{\lambda_i} = \mathbf{1}$$

for i = 0, 1, ..., 2N.

- It can be shown that, similarly to Wright-Fisher model, $E(X_t) = i$.
- Putting all together... the probability of fixation (given that we started with *i* copies of A₁) is

$$u_i = \frac{i}{2N}$$

given that M = 2N.

(日)

Model Definition

Expected Absorption Time: $j \le i$

- Note that $\rho_i = 1$; we can derive the following:
- First, for *j* = 1,...,*i*

$$\begin{split} \ddot{i}_{ij} &= \frac{(1-u_i) \sum_{k=0}^{j-1} \rho_k}{\rho_{j-1} \mu_j} \\ &= \frac{(1-\frac{j}{2N}) \sum_{k=0}^{j-1} 1}{1 \frac{2N-j}{2N} \frac{j}{2N}} \\ &= \frac{(\frac{2N-i}{2N}) j \cdot 2N \cdot 2N}{(2N-j)j} \\ &= \frac{(2N-i) \cdot 2N}{2N-j}, \end{split}$$

(6)

1

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Model Definition

Expected Absorption Time: j > i

• Next, similarly, for $j = i + 1, \ldots, M - 1$

t

$$ij = \frac{u_i \sum_{k=j}^{M-1} \rho_k}{\rho_j \lambda_j}$$
$$= \frac{\frac{i}{2N} \sum_{k=j}^{M-1} 1}{1 \frac{2N-j}{2N} \frac{j}{2N}}$$
$$= \frac{\frac{i}{2N} (2N-j) \cdot 2N \cdot 2N}{(2N-j)j}$$
$$= \frac{i \cdot 2N}{j}.$$

(7)

臣

(日)

The expected time to absorption can be expressed as

$$\overline{t}_{i} = \sum_{j=1}^{M-1} \overline{t}_{ij}$$

$$= \sum_{j=1}^{i} \frac{(1-u_{i}) \sum_{k=0}^{j-1} \rho_{k}}{\rho_{j-1}\mu_{j}} + \sum_{j=i+1}^{M-1} \frac{u_{i} \sum_{k=j}^{M-1} \rho_{k}}{\rho_{j}\lambda_{j}}$$

$$= \sum_{j=1}^{i} \frac{(2N-i) \cdot 2N}{2N-j} + \sum_{j=i+1}^{M-1} \frac{i \cdot 2N}{j}$$

$$= (2N-i)2N \sum_{j=1}^{i} \frac{1}{2N-j} + 2Ni \sum_{j=i+1}^{M-1} \frac{1}{j} \qquad (8)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Island Model

Outline

Fixation

Moran model
 Model Definition

(日)

臣

Island Model

Other Models

- Coalescent and Phylogenetic Trees
- Ancestral States and MRCA (Most Recent Common Ancestor)
- Population Changes in the Coalescent
- Population Bottlenecks
- General Models: Finite Island Models, Models of Division, Non-Equilibrium Models
- Coalescent with Selection
- Coalescent with Recombination
- Parameter Estimation from Data
- LD mapping and the Coalescent
- Human Evolution, Migration and Population Structure

Island Model

Coalescence in the Island Model

- Model of Population subdivision and migration [Wright(1931)]
- Population is divided into *D* demes each of size *N* haploid individuals...
- Each island accepts a fraction *m* migrations every generation
- It does not take into account explicit geography... Nor the nature of migration (e.g., urbanization, forced evacuation, etc.)... "Scatter-Gather" nature of migration affecting structure population...

< (四)
 <li

Island Model

[End of Lecture #7]

THE END

B Mishra Computational Systems Biology: Biology X

<ロ> <同> <同> < 回> < 回> < □> < □> <

臣