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“Damn the Human Genomes. Small initial populations; genes
too distant; pestered with transposons; feeble contrivance;
could make a better one myself.”

–Lord Jefferey (badly paraphrased)
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Wright-Fisher Model

Recombination and coalescent are treated as competing
processes that determine the graph structure of the
genealogy of n (n ≪ N) samples from a population of fixed
size of N male individuals, and N female individuals.

A recombination event (ignoring gene conversion events
for the time being) takes place with probability r . The
recombination point is chosen uniformly along the paternal
and maternal sequences, and the sequences recombine.
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Wright-Fisher Model: N diploid females + N diploid
males.

Each individual creates a haploid genome by
recombination each time they contribute genetic materials
to the next generation.

An individual in the next generation is then made by
choosing one haploid genome from the males and the
other from the females.

The 2N resulting individuals in the next generation are then
divided equally into males and females.
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We wish to view this process backward in time.

The effect of recombination is that the ancestral material to
a specific sequence is found on two DNA sequences in the
parent, etc.

If we focus on a single base on the sequence, it should
follow the classical Wright-Fisher model with coalescent
and mutation. A very close-by base (without having a
recombination event in the intervening region) will also
follow the same Wright-Fisher model.

The tree at the single base position is called a local tree.
As we move along the genome, base-by-base, the local
tree topologies will change only when one encounters a
recombination event. The local-trees at different bases are
the correlated instances of Wright-Fisher process without
recombination.
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Algorithm

We can create a graph structure describing the genealogy
process, as follows: As we move backward it time, from
one generation to the previous generation, recombination
will cause splitting; coalescence will cause merging.

The scaled mutation rate is θ = 4Nu and the scaled
recombination rate is ρ = 4Nr . (ρ is sometimes called the
population recombination rate.)

There are two algorithms to model coalescence with
recombination: (i) Hudson’s back-in-time algorithm & (ii)
Wiuf and Hein’s spatial algorithm. We will cover the first
only.

B Mishra Computational Systems Biology: Biology X



Outline
Recapitulation: Coalescence

Ancestral Recombination Graph (ARG)

Suppose we start with n extant genes. Suppose that the
first (earliest) event encountered is a recombination event.
Just after the recombination event, there are n sequences
carrying the ancestral materials for the n sequences in the
sample.

Before that recombination event, there are two ancestors
who recombined their genetic material to create one of the
ancestors (a brand new one) of the n extant sequences in
the sample. One ancestor contributed genetic material to
the left of the recombination break point, the other to the
right of it.
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The waiting time (measured backward, but in terms of
generations) for this recombination event to have occurred
is geometrically distributed with parameter r = ρ/4N.

Pr(TR = j) = r(1 − r)j−1.

Thus we have the following (with time now rescaled):

Pr(T c
R ≤ t) = 1 − (1 − r)⌊2Nt⌋ ≈ 1 − e−2Nrt = 1 − e−ρt/2.

If there are currently k sequences ancestral to the sample,
the time to the next recombination event is distributed
exponentially with parameter kρ/2. The recombination
event is equally likely to occur in any of the k ancestors,
and the position of the recombination breakpoint in the
chosen sequence is picked uniformly over he sequence
length.
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Stochastic Algorithm to Sample Genealogies for n
Genes

Algorithm
1 Start with k = n genes. Repeat until k = 1:

1 Simulate the waiting time T c
k to the next event

T c
k ∼ Exp(k(k − 1 + ρ)/2).

2 With probability (k − 1)/(k − 1 + ρ) the event is a coalescent
event; otherwise, it is a recombination event.

3 If it is recombination: choose a random sequence and a
random point on the sequence. Create an ancestor
sequence with the ancestral material to the left of the chosen
point and second ancestor sequence with the ancestral
material to the right of the recombination point.Increase the
sample size by one: k 7→ k + 1

4 If it is coalescent: choose a random pair (i , j) with
1 ≤ i < j ≤ k uniformly from the

`k
2

´

possible pairs. Merge i
and j into one gene and decrease the sample size by one:
k 7→ k − 1.
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Computational Relevance of the Coalescent Models

Given data D,

Parameter(s) Θ,

Model M.

We wish to make inference re. f (Θ|D).

f (Θ|D) = f (D|Θ)π(Θ)/P(D).

where π(Θ) = Prior & P(D) = Normalizing constant
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The problem

Given data D,

Parameter(s) Θ,

Model M.

Validate the model; interpret the data; ...

Data sets are growing much larger.

Larger implies more complex.

Traditional analysis methods may fail or become
computationally intractable. ... [f (D|Θ)]
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Possible response

Construct better theory

Use simpler (less realistic) models;

‘Approximate’ methods.
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Ancestral methods with no recom (haploid data)

A stochastic (Markov) process.

Time between events is exponentially distributed
As we look back in time two events may occur:

1 Two lines of ancestry will coalesce to form a single line of
ancestry, with prob. (k − 1)/(k − 1 + θ) where there are
currently k lines and θ/2 represents the mutation rate. (Pick
a random pair of lines)

2 A mutation will occur to a line of ancestry, changing the type
of a gene, with prob. θ/(k − 1 + θ). (Pick a random line)

The process continues until there is a single line of
ancestry: the most recent common ancestor (MRCA) of
the sample.
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Coalescent with recombination (diploid data)

As we look back in time three events may occur:
1 Two lines of ancestry will coalesce to form a single line of

ancestry, with prob. (k − 1)/(k − 1 + θ + ρ) where there are
currently k lines and θ/2 represents the mutation rate. (Pick
a random pair of lines)

2 A mutation will occur to a line of ancestry, changing the type
of a gene, with prob. θ/(k − 1 + θ + ρ). (Pick a random line)

3 A recombination will occur to a line, splitting it into two, with
prob. ρ/(k − 1 + θ + ρ). (Pick a random line)

The process continues until there is a single line of
ancestry: the most recent common ancestor (MRCA) of
the sample.
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Points of interest

Not all mutations on the recombination graph impact the
sample.

Not all recombinations impact the sample.

The space of possible graph topologies is (very!) infinite
(c.f. the finite space of possible coalescent tree
topologies).
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Ancestral Processes with Recombination

Key observation: Each locus still follows a coalescent

Explicitly allows for the non-independence of multiple loci
and use all data simultaneously.

Recombination makes life much more difficult.

Can wait a long time for the MRCA.

Can the coalescent produce human data?

“Calibrating a coalescent simulation of human genome
sequence variation,” Schaffner, et al. Genome Research,
15:1576-1583, 2005.
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Approximating the model: Fast “Coalescent”
Simulation

Goal

A faster way of producing coalescent data for
chromosomal-length regions (cf. existing methods such as
Hudson’s ms (mksamples software))
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Fast “Coalescent” Simulation

Why? Growth of genome-wide data (e.g. SNP-chips,
next-generation sequencing, etc.)

New analysis methodologies being developed. Need to
test them somehow.

Usual strategy: simulate test data

Problem: traditional (coalescent) models are too slow.

Simulation-based analysis methods (Rejection algorithms,
Importance Sampling, ‘no likelihoods’ MCMC -we will
cover this letter)
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Fast “Coalescent” Simulation

Generating test data:
(a) Real data + perturbation (e.g. bootstrap resampling);
(b) Model + simulation (e.g. coalescent)
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Real data + perturbation:
Advantage ‘Model’ is correct; we do not know how the

data got there, but it used the correct model;
Disadvantage Subsequent perturbation adds noise.

Model + simulation:
Advantage Know what you are getting;

Disadvantage May take a long while to get it; not clear
how accurate the model is...
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Finding a faster way

Use an approximation to the coalescent
Advantage It will be faster

Disadvantage It is an approximation (to an approximation)

Example: Wiuf and Hein’s “along the chromosome”
algorithm

Remarks: Builds subset of ARG; Slower than Hudson’s ms
(larger subset), as it includes many recombinations in
non-ancestral material; this suggests a simplification and
complexity reduction.
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‘Vanilla’ Rejection method

1 Generate θ from prior π.
2 Accept θ with probability P(D|θ). [Acceptance rate]
3 Return to step 1.

Set of accepted θ’s forms empirical estimate of f (θ|D)

If upper bound, c, for P(D|θ) is known replace step 2 with
step 2’. Accept θ with probability P(D|θ)/c.

In general, P(D|θ) cannot be computed, so...
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Alternate rejection method

1 Generate θ from π.
2 Simulate D′ using θ.
3 Accept θ if D′ = D.
4 Return to step 1.

(Likelihood estimation - Diggle and Gratton, J.R.S.S. B,
46:193-227, 1984.)

Note: Probability may be very small; Method is then very
inefficient
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Rejection method - (approximate Bayesian
computation)

Suppose we have a good summary statistic S.
1 Generate θ from π.
2 Simulate D′ using θ, and calculate S′.
3 Accept θ if S′ ≈ S.
4 Return to step 1.

(1) Result: f (θ|S) [rather than f (θ|D)].
(2) Best case scenario: S is sufficient
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We know that if the method works, we are getting a good
estimate of f (θ|S)

This makes the assumption that we know how to find a
sufficient statistic(s) S that captures the genome structures
well:

Issues

1 How to choose S?

2 How close is f (θ|S) to f (θ|D)?

3 Lack of theoretical groundwork/guidance
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MCMC - Metropolis-Hastings

MCMC — Monte Carlo Markov Chain Techniques
1 If at θ, propose move to θ′ according to “transition kernel”

q(θ 7→ θ′)

2 Calculate

h = min
{

1,
P(D|θ′)π(θ′)q(θ′ 7→ θ)

P(D|θ)π(θ)q(θ 7→ θ′)

}

3 Move to θ′ with prob. h, else remain at θ
4 Return to step 1.

Result: f (θ|D) ((Metropolis et al. 1953, Hastings 1970)
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MCMC ‘without likelihoods’

Algorithm
1 If at θ, propose move to θ′ according to “transition kernel”

q(θ 7→ θ′)

2 Generate data D′ using θ′

3 If D′ = D go to step 4; else stay at θ and go to step 1
4 Calculate

h = min
{

1,
π(θ′)q(θ′ 7→ θ)

π(θ)q(θ 7→ θ′)

}

5 Move to θ′ with prob. h, else remain at θ
6 Return to step 1.

Result: f (θ|D)
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MCMC ‘without likelihoods’

Algorithm
1 If at θ, propose move to θ′ according to “transition kernel”

q(θ 7→ θ′)

2 Generate data D′ using θ′, calculate S′

3 If S′ ≈ S go to step 4; else stay at θ and go to step 1
4 Calculate

h = min
{

1,
π(θ′)q(θ′ 7→ θ)

π(θ)q(θ 7→ θ′)

}

5 Move to θ′ with prob. h, else remain at θ
6 Return to step 1.

Result: f (θ|S)
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How to choose “the right” statistics

Not possible to just include ‘any and all’ statistics;
efficiency will degrade

A new idea motivated by the concept of sufficient statistics.

If S1 is sufficient for θ, then:

P(θ|S1) = P(θ|D);

P(θ|S1, S2) = P(θ|S1), ∀S2

With more statistics, the algorithm will be less efficient —
lower acceptance rate
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Definition

A set of statistics S1, S2, . . ., Sk are ǫ-sufficient statistics
relative to a statistic X if

sup
θ

ln P(X |S1, . . . , Sk−1, θ) − sup
θ

ln P(X |S1, . . . , Sk−1, θ) ≤ ǫ.

Definition

A score of a statistic Sk relative to a set of statistics S1, S2, . . .,
Sk−1 is defined as follows:

δk = sup
θ

ln P(Sk |S1, . . . , Sk−1, θ) − sup
θ

ln P(Sk |S1, . . . , Sk−1, θ).
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Procedure

Suppose a data-set D and a set of possible statistics S1,
. . ., SM

1 For i = 1, . . ., N (N, very large):
1 Sample θi from prior π()
2 Simulate data Di

3 Calculate S1,i , S2,i , . . ., SM,i

2 Start with no statistics in the rejection; proceed as follows
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Algorithm (applied to rejection method)

Existing posterior, Fk−1, using S1, S2, . . ., Sk−1

Calculate posterior, Fk , after addition of randomly chosen
currently unused stat Sk

If ‖Fk − Fk−1‖ “sufficiently large” add Sk

Else do not include SK

If SK added, try to remove S1, . . ., Sk−1

Repeat until no statistic can be added
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Coalescence

Coalescent tree provides a method for stochastic
simulation (time moving backward).

Imagine the parameters Θ governing the evolutionary
processes are known (e.g., population size [which
determines the coalescent-times], mutation rates, etc.; one
may add other parameters to the model: recombination
and gene conversion rates, population splitting, migration
and outbreeding rates, etc)
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Using these parameters Θ one can imagine calculating all
possible event waiting times W from their (exponential)
distributions; use the earliest time to chose a particular
event and select the participants in that event (e.g., these
two individuals a and b will coalesce at time Tc). Thus one
also creates a possible topology: T .

One can evaluate the fidelity of such a generated tree
(although it sounds rather infeasible)...
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Probability of a Sample Configuration

Given a set of sequences: Seq1, Seq2, . . ., Seqn we want
to understand how they have evolved.

In particular, at a location, we want to know if one can
postulate some effect of selection; linkage disequilibrium,
etc.

One idea is to organize the sequences, in terms of a
phylogeny with a topology T . But to put them in a
phylogenetic tree, we need to know the parameters Θ and
the branch lengths (e.g. the waiting times)... But to know
the parameters, we need to understand the population
structures (e.g., effective population sizes, bottlenecks,
migration, etc.)

Hopeless Circularity. We need to proceed in many
bay-steps.
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Probability of a Sample Configuration

For any 〈T ,W〉, we can compute the following

Pr(Seq1, . . . , Seqn|T ,W,Θ) =

L
∏

j=1

Pr(Nucj |T ,W,Θ),

where Seqi is the i th sequence, all of same length L nts,
Nucj is the j th column of nucleotides, T is the topology
relating the sequences and W the set of branch-lengths.

If the tree is described by the coalescent process the
probability of the sample (not conditioned on any particular
tree, but just the parameters) is
Pr(Seq1, . . . , Seqn|T ,W,Θ) integrated over all branch
lengths and possible topologies.
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That is, we have

Pr(Seq1, . . . , Seqn|Θ)

=

∫

T ,W
Pr(Seq1, . . . , Seqn|T ,W,Θ)f (T ,W|Θ)d(T ,W),

where f (T ,W|Θ) is the probability density of 〈T ,W〉.

Using the Bayes’ formula, we can then compute:

max{− ln Pr(Θ|Seq1, . . . , Seqn)}
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[End of Lecture #12]

***THE END***
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