LECTURE #7 @ O

V22.0490.001
Special Topics: Programming Languages

B. Mishra
New York University.

Lecture # 7

Programming Languages e MISHRA 2008

LECTURE #7 @ 1

—Slide 1—

The C Programming Language
Language Survey 2

e General Purpose “High-Level” Programming
Language.
Not ‘very’ high-level: Has many features allowing
access to low-level operations. Similar to Bliss, in

this regard.

e Originally designed by Dennis Ritchie.
First implementation on the UNIX operating
system on the DEC PDP-11.

e Short History

— BCPL, Martin Richards. Late 60’s.

— B, Ken Thompson. 1970, First UNIX implemen-
tation on PDP 7.

— BCPL & B = “typeless”

Programming Languages e MISHRA 2008

——olide 2—
History of C

e C, designed by Dennis Ritchie.
e Typed (A hierarchy of derived data-types.)

e ANSI C, (1983-1988)
(Syntax of Function Declaration, Elaborate
Preprocessor, Arithmetic, Standard Library.)

o “Algol Like”
Similar to Algol, PL/1, Bliss, Pascal, Ada,
Modula, ...
Features: Variable Declarations, Impera-
tive, Block-Structured, ...

Programming Languages e MISHRA 2008

LECTURE #7 @ 3

—Slide 3—
SYNTAX

e Declarations: Variables
<type-name> <name> { ’,’ <name> } ’;’
Sequence of <name>s separated by commas and ter-
minated by a semicolon.
int i,j;

int A[3], B[5][7];
int *p; /* pointer to an integerx/

Programming Languages e MISHRA 2008

LECTURE #7 @ 4

—Slide 4—
SYNTAX

e Declarations: Functions

<result-type> <name>(<formal-pars>){
<declaration-list>
<statement-1list>

Function Procedure:
<formal-pars> +— <result-type>
Default Result Type = int

main(){} === int main(void){
return O;

}

e True Procedures
A result type ‘void’ indicates that a “func-
tion” is a proper procedure with no result.

Programming Languages e MISHRA 2008

LECTURE #7 @ 5

—Slide b—

Assignment Operator

e Assignment statement is a C expression.

<expression-1> = <expression-2>

R-Value of <expression-2> is put in the location

given by the L-Value of <expression-1>.

e Example

c = getchar();

while((c = getchar()) '= EOF)
putchar(c);

for(A[0] =X, i =n; X != A[i]; --1i);
return i;

Linear Search with a sentinel!

Programming Languages e MISHRA 2008

LECTURE #7 @ 6

—Slide 6—

Syntax of Statements

<stmt-list> ::= <empty> | <stmt-list> <statement>

<statement> ::=

<expression> ;
{<stmt-1list>}
if (<expression>)<statement>

if (Kexpression>)<statement> else <statement>

while(<expression>) <statement>

do <statement> while (<expression>)

for (<opt-exp>;<opt-exp>;<opt-exp>)<statement>
switch (<expression>) <statement>

case <const-exp> : <statement>
default : <statement>

break;

continue;

return;

return <expression>;

goto <label-name>;
<label-name> : <statement>;

Programming Languages e MISHRA 2008

LECTURE #7 @ 7

—Slide 7—

Control Structure

e Compound Statement
{

printf(...);
1= Xx;

+

1. Semicolon is a statement terminator, not separator.

2. Braces { and } group declarations and statements into
a block.

e Conditional Statement

if(n > 0)
if(a > b)

else

Dangling else is resolved by associating the
else with the closest previous else-less if.

Programming Languages e MISHRA 2008

LECTURE #7 @ 8

—Slide 8&—

Control Structure

e Conditional Statement: else if

if(x == 0)

y =’a’;
else if(x == 1)
y = ’b’;
else if(x == 2)
y = ’¢c’
else if(x == 3)
y = ’d’;
else

y =z’

e Conditional Statement: switch

¢ = getchar();
switch(c){
case ’0’: case ’1’: case ’2’: case ’3’: case ’'4’:
case ’b5’: case ’6’: case ’7’: case ’8’: case ’'9’:
ndigit[c - 207]++;
break;
case ’ ’: case ’\n’: case ’\t’:
nwhite++;
break;
default:
nother++;
break;

¥

Programming Languages e MISHRA 2008

LECTURE #7 @ 9

—Slide 9—

Iterative Statement

e while & for

A[0] = X; for(A[0] = X, i =n;
i = n; X 1= A[i]; --1)
while(X !'= A[il) ;
--1; return 1i;
return i;
A[0] = x;
1= n;
for(;;){

if (X == A[i])A{
return i; break;

+

Programming Languages e MISHRA 2008

LECTURE #7 @ 10

—>lide 10—

break, continue é goto

e A break causes the innermost enclosing loop
or switch to be exited immediately.

e A continue statement causes the next it-
eration of the innermost enclosing loop to
begin
1. while & do: The test part is executed

immediately:.
2. for: The increment step is executed im-

mediately.

e A goto interrupts normal control flow. goto

L causes the control to go to the statement
labeled L.

Programming Languages e MISHRA 2008

LECTURE #7 @ 11

—>olide 11—

FEramples of break € continue

for(i = 0; 1 < n; i++){ for(i = 0; 1 < n; i++){
if(ali] < 0) if(ali] < 0)
break; continue;
+ +

for(;;c = getchar()){
if(c == ’|lc == ’\t’)
continue;
if(c !'= ’\n’)
break;
++lineno;

+

Skips over blanks, tabs & newlines, while keeping

track of line numbers.

Programming Languages e MISHRA 2008

LECTURE #7 @ 12

—>olide 12—

Program Structure

e C is Block-Structured

e [ocal declarations can appear within any block
(Grouping of statements).
Compound Statement

{

<declaration-list>
<statement-list>

+

e A C program consists of global declarations of:
procedures, types and variables

e Types and variables can be declared local to a pro-
cedure.

e A procedure cannot be declared local to another.

Programming Languages e MISHRA 2008

LECTURE #7 @ 13

—Slide 13—
Scope 1n C

e C is statically scoped
Scope of a declaration of X in a block is 4) that block
+ i) all its nested blocks — iii) all the nested
blocks in which X is redeclared.

int main(void)

1{

| int i; /* Scope of i = %/

| for(...) /¥ A+B-C-D %/

1 {

| | int c;

[| ifC ...)

| 1{

| BI C | int i; /% Scope of i = =%/
Al | | ... /* C */

| |3

[

|1}

| while(...)

1 {

| DI int i; /* Scope of i = %/

| - /* D */

|1}

|

| 3

Programming Languages e MISHRA 2008

LECTURE #7 @ 14

—Slide 14—

Automatic and External Variables

e Variables declared in a function are local to that func-
tion.

e Other functions can have access to them indirectly,
if they are passed as parameters.

Or directly by name, if they are explicitly redefined
as extern’s.

e extern variables are globally accessible and remain
in existence permanently.

int getline(char line[], int maxline);

main(){. ..
char line[MAXLINE];

getline(line, MAXLINE);
+

int getline(char s[], int 1lim){

+

Programming Languages e MISHRA 2008

LECTURE #7 @ 15

—>lide 15—

Usage of extern: Example

char line[MAXLINE];
int getline(void);

main(){...
extern char line[];

getline();

+
int getline(void){...
extern char linel[];

+

e Note: Usuallyall extern declarations are
collected in a “header” file, and included by
“#include” (compiler declarative) in each
source file.

Programming Languages e MISHRA 2008

LECTURE #7 @ 16

—Slide 16—
Static Variables

e External Static
A static declaration, applied to an external
variable, limits its scope only to the rest of

its source file.
Provides a way to hide information

static char buf [BUFSIZE];
static int bufp = O;

int getch(void{...}
void ungetch(int c){...}

e buf & bufp can be shared by getch &
ungetch. But not visible to the user
of getch & ungetch

Programming Languages e MISHRA 2008

LECTURE #7 @ 17

—Slide 17—
Static Variables

e Internal Static

Like automatic variables, they are local to a
particular function.

But they remain in existence from one
activation to the next.

e Provide permanent private storage within
a single function.

[End of Lecture #7]

Programming Languages e MISHRA 2008

