
Lecture #17 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 17

Programming Languages • MISHRA 2008



Lecture #17 • 1

—Slide 1—

Runtime Representations

• Variable Names ⇒ Environment ⇒ L-values

• Scope, Extent & Binding Time

– Scope: Portion of the program text in which

the identifier has a specific meaning.

– Extent: Duration for which the identifier is

allocated the location during execution (runtime).

– Binding Time: Time at which the associa-

tion is made between an identifier and its allo-

cated location.

• Usually, Extent ≤ Scope.

Programming Languages • MISHRA 2008



Lecture #17 • 2

—Slide 2—

Dangling Reference Problem

• Recall storage insecurity, when

Extent > Scope.

• Example

type r = record ... end;

t = ^r;

procedure P;

var q: t;

procedure A;

var s: t;

begin

new(s); q:= s; dispose(s);

end;

begin

... A ...;

q := ...; (*L-value whose lifetime has passed*)

end.

Programming Languages • MISHRA 2008



Lecture #17 • 3

—Slide 3—

Static Storage Management

• FORTRAN (as implemented commonly)

– The main program and each subroutine may de-

clare local data.

But all data are preserved across successive calls

on subroutines.

– A given subroutine cannot be called if there is an

as yet unfinished call of that same subroutine.

Forbids both direct and indirect (mutual) re-

cursion.

• All storage for FORTRAN data can

be allocated statically before execu-

tion begins.

Programming Languages • MISHRA 2008



Lecture #17 • 4

—Slide 4—

Activation Record

• Activation Record:

Set of informations necessary for the exe-

cution of a subprogram.

• FORTRAN

When a subroutine executes, it always finds

its activation record in the same place.

• Runtime structure of FORTRAN :

Needs only to store the “return address” in

the activation record of the called subroutine.

Programming Languages • MISHRA 2008



Lecture #17 • 5

—Slide 5—

Static Storage Management in FORTRAN

Call R

Call QAR for P

AR for R

AR for Q

return

return

return

code for P

code for Q

• Activation Records:

SUBROUTINE P(...) SUBROUTINE Q(...) SUBROUTINE R(...)

... ... ...

CALL Q(...) CALL R(...) ...

... ... RETURN

RETURN RETURN END

END END

• In FORTRAN, each of the following has an Activa-

tion Record

– Each subroutine

– The mainprogram

– Each COMMON block

Programming Languages • MISHRA 2008



Lecture #17 • 6

—Slide 6—

Stack Based Modern Languages
(ALGOL-like)

• Subprograms are allowed to be recursive.

– More than one activation of the same subprogram

can exist simultaneously.

– Each invocation of the subprogram may have

1) A different return point

2) Different values for local variables.

– Number of activations of a subprogram (that can

exist simultaneously) is unpredictable.

⇒ The activation record for a subpro-
gram can only be created, when the sub-
program is actually called.

• Support for scope-entry declaration of lo-
cal variables.

Programming Languages • MISHRA 2008



Lecture #17 • 7

—Slide 7—

Implications of
Call-Time Allocation of AR’s

• Allocation lasts for precisely the duration of
a particular subprograms execution.
⇒ Allocate AR, when the execution begins.

⇒ Release that space, when execution finishes.

• If a subprogram P calls a subprogram Q then
P cannot complete before Q.

Extent(Q’s AR) ⊂ Extent(P’s AR)

Q’s extent is wholly contained in P’s.

• Storage requirements of AR’s are Last-
In-First-Out.

• Stack-like data structure for AR’s suffices.

Programming Languages • MISHRA 2008



Lecture #17 • 8

—Slide 8—

Procedure Call

P ≡ Procedure
Call to P

• Push a new AR for P on stack
(containing “return address” as its return
field)

• Execute in the “new” environment

• Pop the current AR for P

(saving the “return address” in T )

• Go to T .

Programming Languages • MISHRA 2008



Lecture #17 • 9

—Slide 9—

Activation Records (AR)
Stack Based Storage Management

Algol and its relatives:

Call Q

AR for Q

return

return

code for P

code for Q

AR for P

AR for P

return

. . .

STACK

Call P

• Mutually Recursive Procedures:

procedure P(...)<-- procedure Q(...)

... \ ...

begin \ begin

... \ ...

Q(...) ----- P(...)

... -> ...

end ------------------/ end

• Each Activation of a procedure has an AR (allocated

dynamically).

Programming Languages • MISHRA 2008



Lecture #17 • 10

—Slide 10—

Up-Level Addressing and the Display

• In the absence of reference to “global variables”

(procedures reference only formal and locally de-

clared variables)

L-value of a variable

≡



























Address of the current AR

+

“offset” address within the AR

• Procedure Call:

– Allocate AR on top of the stack

– Save caller’s AR address in its own AR

• Return from Call:

– Restore the old AR address

– Branch to the return point

Programming Languages • MISHRA 2008



Lecture #17 • 11

—Slide 11—

Reference to the Global Variable

• Reference to the Global Variables:

Simple Case Global variables are all declared in

the main program—Outer-most Level.

• Each variable reference is either:

– Relative to the current AR (for locals), or

– Relative to the stack base (for globals).

• What about the intermediate non-local vari-

ables?:

Up-Level Addressing Problem

Programming Languages • MISHRA 2008



Lecture #17 • 12

—Slide 12—

Up-level Addressing Problem
Intermediate Non-Local Variables

Algol, Pascal, Ada, — Scope Rules
procedure P;

begin

var x, y: T1;

procedure Q;

begin

var z: T2;

procedure R;

begin

var: a, b: T3;

... <----------z is accessible in Q & R

end;

... <----------x, y are accessible in P, Q & R

end;

...

end;

• Can R tell where x, y and z are located?

• Not easily

(specially, if R calls itself recursively.)

Programming Languages • MISHRA 2008



Lecture #17 • 13

—Slide 13—

Displays

• Lexical Level of a Procedure:

An integer value one greater than the lex-

ical level of the procedure in which it is

declared.

• Lexical level of the main Program = 0.

LexLev(P ) = n ⇒

LexLev(Q) = n + 1 & LexLev(R) = n + 2.

• Up-level Addressing

Accessing an “intermediate non-local variable” at level

L, where 0 < L < Current-level.

• Note:

The number of AR’s accessible to procedure R =

Lexlev(R) + 1. (Dictated by the static nature of

the lexical scope rule.)

Programming Languages • MISHRA 2008



Lecture #17 • 14

—Slide 14—

Displays and Setting Them Up

• Solving the Up-level Addressing Problem:

Add LexLev(R) + 1 locations to the AR of R.

These locations are called a DISPLAY—Vector of

pointers to accessible AR’s

• Setting the displays:

Assumption: No procedure parameters (False in Ada)

• Procedure P calls procedure Q:

Assumption ⇒ LexLev(Q) ≤ Lexlev(P )

1. LexLev(P ) = n then Display(P ) = DP [0..n]

2. Two cases to consider:

1) Lexlev(Q) = n (P and Q are at the same

level) and

2) Lexlev(Q) = m < n (Q is up-level from P )

Programming Languages • MISHRA 2008



Lecture #17 • 15

—Slide 15—

Setting the Displays

• Case I) Lexlev(Q) = n (P and Q are at the same level)

Display(Q) = DQ[0..n]

DQ[0..n − 1] := Dp[0..n − 1]

First n displays are the same

DQ[n] := ARQ

The nth display of

Q is the base of the current AR

• Case II) Lexlev(Q) = m < n (Q is up-level from P )

Display(Q) = DQ[0..m]

DQ[0..m− 1] := Dp[0..m− 1]

First m displays are the same

DQ[m] := ARQ

The mth display of

Q is the base of the current AR

• More Efficient Implementation
1) Maintain one vector common to all AR’s + 2) One ad-
ditional word for each AR.

Programming Languages • MISHRA 2008



Lecture #17 • 16

—Slide 16—

Sample Display Configuration

STACK

. . .

DISPLAY

DISPLAY

DISPLAY

DISPLAY

DISPLAY

DISPLAY

Main Program AR

AR(P)

AR(Q)

AR(R)

AR(R’)

AR(R’’)

AR(M)

AR(M)

AR(M)

AR(P)

AR(Q)AR(P)

AR(M)

AR(M)

AR(M)

AR(R)

AR(R’)

AR(R’’)

AR(Q)AR(P)

AR(Q)AR(P)

AR(Q)AR(P)

[End of Lecture #17]

Programming Languages • MISHRA 2008


