
Lecture #15 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 15

Programming Languages • MISHRA 2008



Lecture #15 • 1

—Slide 1—

Scope Issues

• Those features which describe and control the use of

named entities such as:

variables , procedures and types

• Scope, Extent & Range
3 Related Concepts

• A variable consists of a name, an object
(Location or L-value) & value (R-value).

• Environment: name 7→ object

• Store: object 7→ value

• Example: Fortran, Algol 60, Pascal, Alphard,
Ada, C, . . .

• Exception: LISP, CLU, Algol 68, . . .

Programming Languages • MISHRA 2008



Lecture #15 • 2

—Slide 2—

Scope

• The scope of a name is

the portion of the program text in which

all uses of that name has the same meaning:

• Scope ⇒
The name denotes the same object.

• What about a pointer variable?

• Note:

A pointer variable is a name denoting
a single object whose value is a refer-
ence to another object.

Programming Languages • MISHRA 2008



Lecture #15 • 3

—Slide 3—

Extent

• Lifetime of an object

• The portion of the execution time of the program

during which the value contained in the object per-

sists unless explicitly changed.

• E.g., Extent of a local variable in
Algol 60 = The period between entry and
exit of the block in which it is declared.

Programming Languages • MISHRA 2008



Lecture #15 • 4

—Slide 4—

Range

• A range is a portion of a program, delimited by

some construct of the language, such that the scopes

of a name defined inside the program portion do

not extend outside that portion, unless explicitly

exported.

• Ranges are building blocks

out of which scopes are constructed.

• Examples: Procedures, Blocks (C, Algol
60), Modules (Ada).

• Note: Ranges never overlap.

• When one range is nested within another, the outer

range leaves off where the inner range begins.

Programming Languages • MISHRA 2008



Lecture #15 • 5

—Slide 5—

Dynamic and Static Ranges

• A context of a range consists of two parts:

1. Static Part: The name environment in which

the range is declared—Lexical Environment .

2. Dynamic Part: The name environment in which

the range is invoked—Calling Environment .

• Lexical Scope Rule

Free or nonlocal variables are given
name bindings in the static context
of a range.

• Dynamic Scope Rule

Free or nonlocal variables are given
name bindings in the dynamic context
of a range.

Programming Languages • MISHRA 2008



Lecture #15 • 6

—Slide 6—

Example 1

var i, k: integer;

procedure P(var j: integer);

var i: integer;

begin i := 1; Q; j := i end;

procedure Q;

begin i := i+1 end;

begin

i := 3; P(k); write(k)

end.

• What does the program print?

• Lexical ⇒ 1

• Dynamic ⇒ 2

Programming Languages • MISHRA 2008



Lecture #15 • 7

—Slide 7—

Example 2

var i: integer;

function GLOP(function Q: integer,

lower, upper: integer): integer;

var i,S: integer;

begin

S := 0;

for i := lower to upper do S := S + Q;

GLOP := S

end;

function A;

begin A := i*i end;

begin

i := 0; write(GLOP(A,1,3))

end.

• What does the program print?

• Lexical ⇒ 0

• Dynamic ⇒ 1 + 4 + 9 = 14

Programming Languages • MISHRA 2008



Lecture #15 • 8

—Slide 8—

Procedures and Functions

• In an imperative language, functions re-
turn values, and procedures do not. Func-

tions are abstraction of expressions—Procedures

are abstraction of commands.

• It is often desirable that functions do not have any

side-effect.

• Function has 4 parts: name , formal parameters ,

result type and body .

int succ(int i){ function succ(i: in INTEGER)

return (i+1)%size; return INTEGER is

} begin

return (i+1 mod size);

end succ;

Programming Languages • MISHRA 2008



Lecture #15 • 9

—Slide 9—

Parameter Passing Methods

• Procedure Invocation : Statements in the body are

executed as if they appeared at the point of call.

• Correspondence between the actual param-

eters (at call site) & the formal parameters

(in the body).

• Various Calling Mechanisms:

1. CALL-BY-VALUE

2. CALL-BY-REFERENCE

3. CALL-BY-VALUE-RESULT

4. CALL-BY-NAME

5. CALL-BY-NEED

Programming Languages • MISHRA 2008



Lecture #15 • 10

—Slide 10—

Calling Mechanisms

• CALL-BY-VALUE: Pass the R-value.

value(Formal) = Store(Environment(Actual))
... 〈 Procedure Body 〉

• CALL-BY-REFERENCE: Pass the L-value.

Location(Formal) = Environment(Actual)

... 〈 Procedure Body 〉
Since actuals and formals share the L-values, the values of

actual can be modified after the procedure call.

• CALL-BY-VALUE-RESULT: Pass the R-value.

Save the L-value. After the call, update.

value(Formal) = Store(Environment(Actual))

... 〈 Procedure Body 〉
value(Actual) = Store(Environment(Formal)

• CALL-BY-NAME: Pass the Environment.

Environment(Formal) = Environment(Actual)
... 〈 Procedure Body 〉

The expression in the actual parameter position is reevalu-
ated each time the formal parameter is used.

[End of Lecture #15]

Programming Languages • MISHRA 2008


