V22.0490.001
Special Topics: Programming Languages

B. Mishra
New York University.

Lecture # 10

Programming Languages e MISHRA 2008

LECTURE #10 @ 1

—Slide 1—

The ADA Programming Language
Arrays

e Arrays in Ada:

— Fixed Size—Type may be unconstrained at def-
inition But bounds must be given at object dec-
laration.

— Elements are all of same subtype

— Permits: Assignment, Equality Testing, Slicing,

subtype NATURAL is INTEGER range 1..INTEGER’LAST;
type SHORT_STRING is array(l..10) of CHARACTER;

type STRING is
array (NATURAL range <>) of CHARACTER;

NAME: STRING(1..10);

Programming Languages e MISHRA 2008

LECTURE #10 @ 2

—Slide 2—

Array Assignment

e Assigning array Bto A: A := B
1. Legal, if type of A is same as type of B.

2. If A has same number of elements as B, then B is
copied into A positionally—Otherwise, constraint-error
exception is raised.

declare
A: STRING(1..10); B: STRING(11..20);
begin

e Array Attributes
A’LENGTH Number of elements

A’FIRST Lower Bound
A’LAST Upper Bound
A’RANGE subtype A’FIRST..A’LAST

Programming Languages e MISHRA 2008

LECTURE #10 @ 3

——olide 3—
Array Indexing € Shicing

e Array Indexing:

S: STRING(1..10);
S(3) := S(2);

e Array Slicing (1D arrays only)

S(3..7) --an array object
S(3..7) := 8(4..8);
S :=5(2..10) & S(1) -- & == concatenation opn

e Array Aggregates:

type SYM_TAB is array (CHARACTER range <>) of INTEGER;
TABLE: SYM_TAB(’a’..’c’) := (0, 1, 2);

TABLE := (’c’ => 2, ’b’ => 1, ’a’ => 0);

TABLE := (’c’ | ’b’ => 1, others => 0);

Programming Languages e MISHRA 2008

LECTURE #10 @ 4

—Slide 4—

Records

e Records in Ada:

— Heterogeneous: Components need not be of same
type.

— Fields are accessed by component names: E.g.,
MY_CAR.CAR_MAKE

— Variant Records Tag (discriminant) fields can-
not be changed at run-time.

— Permits: Assignment and Equality Testing.

type CAR_MAKE is (FORD, GM, HONDA);
subtype CAR_YEAR is INTEGER range 1900..1999;
type CAR is
MAKE: CAR_MAKE;
YEAR: CAR_YEAR;
end record;

MY_CAR: CAR;

Programming Languages e MISHRA 2008

LECTURE #10 @ 5

—>Slide 5—
Records (Contd)

e Records may be nested...initialized at declaration.

e A record B may be assigned to record A, provided
they have same type.

A, B: CAR;
A := B;

e Record Aggregates:

YOUR_CAR: CAR := YOUR_CAR: CAR :=
(GM, 1981); (MAKE => GM,
YEAR => 1981);

Programming Languages e MISHRA 2008

LECTURE #10 @ 6

—Slide 6—

Variant Records

e Similar to PASCAL variant records:

e Except—Type declaration only defines a template;
When object is declared, discriminant value must
be supplied.

type VEHICLE_TAG is (CAR, TRUCK);
type VEHICLE(TAG: VEHICLE_TAG) is record
YEAR: MODEL_YEAR := 93;
case TAG is
when CAR => COLORS: COLOR_SCHEME;
when TRUCK => AXLES: NATURAL;
end case;
end record;

YOUR_TRUCK: VEHICLE(TRUCK) ;
REFRIGERATOR: VEHICLE; --Illegal

e There may be more than one discriminant...But they
must all be of discrete types....Discriminant can be
used as an uninitialized constraint.

type BUFFER(LENGTH: NATURAL) is record

POOL: STRING(1..LENGTH);
end record;

Programming Languages e MISHRA 2008

LECTURE #10 @ 7

——olide 7—
Access Types

e Allow manipulation of pointers.

e Allow control of object creation.

type STRING_PTR is access STRING;
type STRING_10_PTR is access STRING(1..10);
P, Q: STRING_PTR; P10: STRING_10_PTR;

P10 := new STRING(1..10);

P10 := new STRING(2..11); --Constraint Error
P10 := new STRING; --Illegal

P := new STRING(1..3); --0K

P.all := "BUD",;

Q := new STRING("MUD");

P = Q;

P.all := Q.all

e new creates a new object that can be designated by

the access type.

Programming Languages e MISHRA 2008

LECTURE #10 @ 8

—Slide 8&—

Recursive Types

type NODE; --Incomplete Declaration;
type NODE_PTR is access NODE;

type NODE 1is
record
DATUM: CHARACTER;
NEXT: NODE_PTR;
end record;

Programming Languages e MISHRA 2008

LECTURE #10 @ 9

—Slide 9—

Generalized Access Types

e Inherent Access to declared objects
(Not just objects created by allocators)

type INT_PTR is access all INTEGER;

IP: INT_PTR;
I: aliased INTEGER;
IP := I’Access

e Note: Designated variable must be marked aliased.

e Access attribute is only applicable to an object whose
lifetime is at least that of the access type.

e Avoids “dangling reference” problem.

type CONST_INT_PTR is access constant INTEGER;
CIP: CONST_INT_PTR;

C: aliased constant INTEGER := 1815;

CIP := C’Access

e Access is restricted to read-only

Programming Languages e MISHRA 2008

LECTURE #10 @ 10

—>lide 10—

Control Structures

e Assignment Statements

DISCRIM := (B**2 - 4.0%AxC);
TABLE(J) := TABLE(J) + 1;
VECTOR := (1..10 => 0);

e Conditional Statements

if (A=1) then

end if; case A is
when 1 => ——...;
if (A=1) then when 2 => —-...;
-—. .. when others => null;
elsif (A=2) then end case;
else

end if;

Programming Languages e MISHRA 2008

LECTURE #10 @ 11

—>olide 11—

Control Structures: Iteration Clause

e [teration Statements—DBasic Loop

loop
-- Statements to be repeated
end loop;

e [teration Clause
Execution of a basic 1loop terminates when

1. The iteration is completed or

2. A loop exit statement is executed

SUM := 0; SUM := 0;

for I in 1..10 loop for I in reverse 1..10 loop
SUM := SUM + A(D); SUM := SUM + A(I);

end loop; end loop;

SUM :=0; I :=1; SUM :=0; I :=1;

while I <= 10 loop loop
SUM := SUM + A(I); exit when I > 10;
I =1+ 1; SUM := SUM + A(I);

end loop; I =1+ 1;

end loop;

Programming Languages e MISHRA 2008

LECTURE #10 @ 12

—Last Slide—
A Complete Ada Program

with I_O_PACKAGE;
procedure TEMPERATURE_CONVERSION is
use I_0_PACKAGE;
-- Convert temp in Fahrenheit to Celsius

FAHRENHEIT_TEMP; CELSIUS_TEMP: FLOAT,
begin
GET (FAHRENHEIT_TEMP) ;
CELSIUS_TEMP := (FAHRENHEIT_TEMP - 32.0)%*5.0/9.0;
PUT (CELSIUS_TEMP) ;
end TEMPERATURE_CONVERSION;

[End of Lecture #10]

Programming Languages e MISHRA 2008

