
G22.1170.01: Fundamental Algorithms I
Hand Out 1: Analysis of Algorithms

(Wednesday, February 19, 1986)

1 Introduction

In general, there can be several algorithms to solve a problem; and one is faced
with the problem of choosing an algorithm for use. One way to differentiate
between two competing algorithms is to assign a complexity measure to the
algorithms. Having done this, one may choose the algorithm with the lowest
complexity.

There are two kinds of complexity measures:

• Static: A complexity measure is static, if it does not depend on the
input values. An example of such a measure is the program length. This
measure is relevant only if the algorithm is to be used once or only a
few times.

• Dynamic: A complexity measure is dynamic, if it varies with the input
values. Some examples of such a measure are running time or storage
space complexity of an algorithm as a function of the input values. This
measure is relevant, when the algorithm is to be run several times on
‘large’ input values.

In most practical applications, the dynamic complexity measure is signif-
icant, since all production softwares are assumed to run a large number of
times, and the cost of producing and maintaining the software (which depend
on static complexities) are amortized rather fast. We shall use running time
as our complexity measure, since almost all the algorithms we consider have
a space bound that is a linear function of the input size. Furthermore, while
analyzing running times, we will ignore constant factors, and will concentrate
only on the orders of growth. There are two reasons for doing so:

1. This allows us to ignore details of the machine model, (such as, the
hardware of the machine, the instruction sets of the computer, the
memory structure of the computer, the quality of code generated by
the compiler, etc.) thus giving us a machine-independent complexity
measure.

1

2. For large enough problem sizes the relative efficiencies of two algorithms
depend on the running times as an asymptotic function of input size,
independent of constant factors.

We shall generally measure the running time, T (n), as a function of the
worst-case input data of size n; that is, T (n) is the maximum, over all inputs
of size n, of the running time on that input. The worst-case analysis provides
a performance guarantee, but may be overly pessimistic, if the worst-case
inputs occur seldom.

An alternative is an average-case analysis: we measure the running time,
Tavg(n), as the average, over all possible inputs of size n, of the running
time on that input. However, such an analysis is frequently mathematically
intractable. Furthermore, we must take care that our probability distribution
is realistic—which may be much harder to accomplish.

Faced with these problems, algorithm-designers have suggested other
average-case complexity measures; but these measures have not achieved
wide-spread acceptance, and requires mathematics, outside the scope of this
class. Hence, we shall restrict ourselves to worst-case complexity analysis,
and occasionally, try to do the average-case analysis.

2 Big Omicron, Big Omega, Big Theta

We talk about the orders of growth of the function T (n) using the functions:
O(·) (known as big-omicron or more popularly, big-oh), Ω(·) (big-omega) and
Θ(·) (big-theta). They are defined as follows:

• T (n) = O(f(n)), if there are two positive constants C and n0 such that

T (n) ≤ C · f(n), for all n ≥ n0.

• T (n) = Ω(f(n)) 1, if there are two positive constants C and n0 such
that

T (n) ≥ C · f(n), for all n ≥ n0.

1Some define this differently: T (n) = Ω(f(n), if there is a positive constant C such
that T (n) ≥ C · f(n) infinitely often (for infinitely many values of n). This is a weaker
definition, and seems more useful for lower-bound proofs—but, for all practical purposes,
the stronger definition works pretty well.

2

• T (n) = Θ(f(n)), if there are three positive constants C, C ′ and n0 such
that

C · f(n) ≤ T (n) ≤ C ′
· f(n), for all n ≥ n0.

3 Algebra on O

Many of the rules of algebra work with O-notations, but some don’t. Here,
the main problem is that, in the expression T (n) = O(f(n)), ‘=’ is a one-way
equality (i.e. , it does not have the symmetry property of the equality.) For
instance: 1

2
n2 + n = O(n2) but not O(n2) = 1

2
n2 + n. (Why not?)

So how do you manipulate expressions with O’s? Very carefully. Here
are some of the simple operations you can do with the O-notation:

f(n) = O(f(n)),
c · O(f(n)) = O(f(n)), c is a constant,

O(f(n)) + O(f(n)) = O(f(n)),
O(O(f(n)) = O(f(n)),

O(f((n)) O(g(n)) = O(f(n) g(n)),
O(f(n) g(n)) = f(n) O(g(n)).

Using these, we can derive many other useful relations: Let T1(n) =
O(f(n)) be the running time of the program P1, and T2(n) = O(g(n)), the
running time of P2. The following program P

procedureP (N);
begin

P1(N); P2(N)
end.

has running time T1(n)+T2(n). It is easy to show that f(n) = O(max(f(n), g(n)))
and g(n) = O(max(f(n), g(n))). Using the above identities(?), we see that

T1(n) + T2(n) = O(f(n)) + O(g(n))
= O(O(max(f(n), g(n)))) + O(O(max(f(n), g(n))))
= O(max(f(n), g(n))) + O(max(f(n), g(n)))
= O(max(f(n), g(n)))

3

4 Analysis of Algorithms and Recurrence Re-

lations

In general, we are interested in analyzing algorithms that is made of a set of a
mutually recursive algorithms. Non-recursive algorithms are usually easy to
analyze, and require very little mathematical sophistication. In what follows,
we will concentrate on self-recursive algorithms, since these illustrate all the
main ideas, and generalization to mutually recursive algorithms is straight-
forward.

Let us write self-recursive algorithm in the following schematic form:

procedure P (N);
begin

Statement−1;
P (N1);
Statement−2;
P (N2);
Statement−3;
...
Statement−l;
P (Nl);
Statement−(l + 1);

end.

A general program may be transformed into this form after resolving if-

then-else’s and unrolling while-loop’s. Hence, l itself can be function of
Size(N). Such schemas are somewhat simplistic, but not overly restrictive.
Let Size(N) = n, Size(N1) = n1, . . ., Size(Nl) = nl. Assume that the time
spent by Statement−1, Statement−2, . . ., Statement−(l+1) is bounded from
above by f(n). Then we can write the complexity of the algorithm as follows:

T (n) ≤
l
∑

i=1

T (ni) + f(n).

Such an inequality is called a recurrence relation.
What we present here are, in fact, techniques to solve recurrence equations

4

of the form

T (n) =
l
∑

i=1

T (ni) + f(n).

Under a rather mild assumption, you can show that replacing the inequality
by an equality does not create any problem. (This will be a home work
problem.)

5 Solving the Recurrence Equations

The subject of solving recurrence equations (also called difference equations)
arise in many other areas too: combinatorics, probability theory, discrete-
time control theory, economics—to name a few. There are several powerful
mathematical techniques available to solve these—such as, summing factors,
generating functions, z-transformations, operator methods, etc. But most of
these techniques are beyond our scope. We develop only a few techniques—
though simple, they are sufficient for our purpose.

5.1 Guess-Work

The idea is to guess a solution, and then verify the guess by a mathematical
induction over the integer. This method requires you to know the solution
in order to get the solution, and does not work. Use it only when you have
no other way of solving the equation—try several guesses; if you are lucky,
one of them will work.

Example. 5.1 Consider the following recurrence equation:

T (n) =

{

c1, if n = 1;
2 T (n

2
) + c2n, if n > 1.

(1)

Suppose we guess that T (n) = c2 n lg n+c1 n, then by mathematical induction
over all positive integers, we can show the validity of our guess. Hence
T (n) = O(n lg n). It is left as an exercise for you to do the steps of the
inductive proof.

5

5.2 Expansion

Another way to solve a recurrence relation is to repeatedly expand the terms
as many times as possible. When this process stops, we will be left with a
sum consisting of functions of f(·) and lower values of T (·). In many cases the
summation can be evaluated to obtain a close form solution. This method is
rather messy, and prone to error—avoid it, in all but a few simple cases.

Example. 5.2 Consider the following recurrence equation:

T (n) =

{

c1, if n = 1;
2 T (n

2
) + c2n, if n > 1.

(2)

First rearrange the recursive part as

T (n) = c2n + 2 T
(

n

2

)

.

Expanding the recursive definition of T (n
2
) shows that

T (n) = c2n + 2
[

c2
n

2
+ 2 T

(

n

4

)]

.

Multiplying and canceling yields

T (n) = c2n + c2n + 4 T
(

n

4

)

.

Applying the recursive definition of T (n
4
) to above shows that

T (n) = c2n + c2n + c2n + 8 T
(

n

8

)

.

This process of expansion and cancellation can be iterated lg n times to yield

T (n) =

lgn
∑

i=1

c2n

+ n · T (1) = c2 n lg n + c1 n.

6

5.3 Recursion Tree

Another way to solve the recurrence equation of the form

T (n) =
{

T (n0), if n = n0;
T (n1) + T (n2) + · · ·+ T (nl) + f(n), if n > n0,

(3)

is by expanding the terms of it in a tree like manner. The tree corresponding
to this expansion is called a recursion tree, and is defined as follows. The
recursion tree for the equation ?? at the value n is:

• a single node with the value T (n0), if n = n0;

• otherwise, a node with the value f(n) and l sons such that the ith son

is the root of a recursion tree of the equation ?? at ni.

It is easy to see that T (n) is just the sum of values at the nodes.

Example. 5.3 Consider the following recurrence equation:

T (n) =

{

c1, if n = 1;
2 T (n

2
) + c2n, if n > 1.

(4)

The recursion tree for the equation ?? is as shown below.

You may prove the following facts about the above recursion tree:

7

1. The tree has a depth of lg n + 1. The sum of values at all the internal
nodes at level i (0 ≤ i < lg n) is c2n. Thus

∑

j=internal−node

value(j) = c2 n lg n.

2. The tree has n leaves. The value of each leaf node is c1.

∑

j=leaf−node

value(j) = c1n.

Hence
T (n) =

∑

j=node

value(j) = c2 n lg n + c1 n.

5.4 Telescoping

The idea of telescoping or summing factors is rather simple, and is developed
step-by-step in this and the next section. We start out by showing how to
solve recurrence equations of very simple form using this technique. But this
technique, when combined with the transformation techniques of the next
section, is quite powerful and handles almost all equations. Please try to
master this technique by trying to solve several recurrence equations—this is
the official technique for this course.

Consider the recurrence equation

T (n) =
{

1, if n = 0;
T (n − 1) + 1, if n ≥ 1.

(5)

We can write down the above equation as follows:

T (n)− T (n − 1) = 1
T (n − 1)− T (n − 2) = 1

...
T (1)− T (0) = 1

T (n) −T (0) = n

The simplification is obtained by cancelling −T (i) of the current line by the
T (i) of the next line. Thus when we added up all the equations most of the

8

terms canceled out. We say the sum telescopes . Note that the final answer
is T (n) = n + T (0) = n + 1.

Finding the solution above was almost trivial. Sometimes however we
have to use a little trickery to make the sum of successive equations telescope.
Suppose that our recurrence is

a0T (0) = c0;
anT (n) = bnT (n − 1) + cn, ifn ≥ 1.

(6)

where an, bn and cn are given. If we try to add to successive copies of this
equation, for example,

anT (n)− bnT (n − 1) = cn

an−1T (n − 1)− bn−1T (n − 2) = cn−1

then the T (n − 1) terms do not cancel since bn is not equal to an−1. Note
however that we could multiply the equations by some factor which would
make the T (n− 1) terms cancel and the sum will telescope. Let us multiply
the nth equation by some (so far unspecified) factor fn to obtain

fnanT (n)− fnbnT (n − 1) = fncn

fn−1an−1T (n − 1)− fn−1bn−1T (n − 2) = fn−1cn−1

In order to guarantee that the T (n − 1) terms cancel we require that

fnbn = fn−1an−1

or

fn = fn−1

(

an−1

bn

)

.

By unrolling the above equation we get:

fn = fn−1

(

an−1

bn

)

= fn−2

(

an−2

bn−1

)

(

an−1

bn

)

= · · · = f0

∏n−1
i=0 ai
∏n

i=1 bi

.

Fixing f0 = 1, we get

f0 = 1;

fn =
∏

n−1

i=0
ai

∏

n

i=1
bi

, if n ≥ 1.
(7)

9

fn is called the summing factor for the equation ??. Let us write

R(n) = fnanT (n).

Since

fnanT (n) = fnbnT (n − 1) + fncn = fn−1an−1T (n − 1) + fncn,

this yields
R(0) = c0;
R(n) = R(n − 1) + cnfn, if n ≥ 1.

Now the telescopy will work.

R(n)− R(n − 1) = cnfn

R(n − 1)− R(n − 2) = cn−1fn−1
...
R(1)− R(0) = c1f1

R(n) −R(0) =
∑n

j=1 cjfj

Hence

R(n) = fnanT (n) =

c0 +
n
∑

j=1

cjfj

 ,

and

T (n) =
1

fnan

c0 +
n
∑

j=1

cjfj

simplifying,

T (n) =

(

∏n
i=1 bi

∏n
i=0 ai

)

c0 +
n
∑

j=1

cj

∏j−1
i=0 ai

∏j
i=1 bi

 . (8)

Example. 5.4 Consider the following recurrence equation:

T (n) =
{

1, if n = 0;
2 T (n − 1) + 2n, if n ≥ 1.

(9)

This is same as

1 · T (0) = 1;
1 · T (n) − 2 · T (n − 1) = 2n, ifn ≥ 1.

10

This is an example of ?? with

an = 1, bn = 2.

By ?? we may choose
f0 = 1;
fn = 1

2n , if n ≥ 1.

Multiplying by fn (1
2n) gives the new equation

T (0) = 1;
T (n)
2n −

T (n)
2n−1 = 1, if n ≥ 1.

Using telescopy we get

T (n)
2n −

T (n−1)
2n−1 = 1

T (n−1)
2n−1 −

T (n−2)
2n−2 = 1

...
T (1)

2
−

T (0)
1

= 1
T (n)
2n −T (0) = n

Hence
T (n) = (n + 1)2n.

5.5 Range and Domain Transformations

Sometimes it is useful to apply a transformation to a sequence in order to
make it appear in a more desirable form. The function T maps the integer
n in its domain to a real T (n) in its range. We call a transformation on
the values of the sequence T (n) a range transformation and a transformation
on the indices n a domain transformation. We illustrate the ideas using
examples:

Domain Transformation

Example. 5.5 Consider the following recurrence equation:

T (n) =

{

c1, if n = 1;
2 T (n

2
) + c2n, if n > 1.

(10)

11

Let us use the following domain transformation first

n = 2k, (k = lg n) hence S(k) = T (n) = T (2k).

The above equation becomes

S(k) =
{

c1, if k = 0;
2 S(k − 1) + c22

k, if k ≥ 1.

Now we can use telescoping to get the following solution:

S(k) = T (2k) = 2k (c2k + c1) .

Back-substituting n for 2k and lg n for k, we conclude that

T (n) = n(c2 lg n + c1).

Range Transformation

Example. 5.6 Consider the following (pseudo-non-linear) recurrence equa-
tion:

T (n) =
{

1, if n = 0;
3 (T (n − 1))2 , if n ≥ 1.

(11)

Let us use the following range transformation first:

S(n) = log3 T (n),
(

3S(n) = T (n)
)

.

We may rewrite the recurrence as

S(n) =
{

0, if n = 0;
2 S(n − 1) + 1, if n ≥ 1.

Using multiplier fn = 1
2n , we get

S(0)
20 = 0

S(n)
2n −

S(n−1)
2n−1 = 1

2n

Using telescopy, we get

S(n)

2n
−

S(0)

20
=

n
∑

i=1

(

1

2i

)

=
(1/2) − (1/2)n+1

1 − (1/2)
= 1 −

(

1

2

)n

Hence,
S(n) = 2n

− 1.

Hence,
T (n) = 3S(n) = 32n

−1.

12

6 Examples

6.1 Example: Divide-and-Conquer

An important class of recurrence equations results from algorithms based on
the ‘divide-and-conquer ’ paradigm; such algorithms consist of three steps:

1. divide: Break the problem of size n into a smaller subproblems each
of size n

b
, using no more than g(n) time.

2. recur: Recursively solve each of the a subproblems using a · T (n
b
)

time.

3. marry: Combine the solutions to the subproblems to get a solution
to the original problem, using no more than h(n) time.

The recurrence equation is of the form:

T (n) = a ·

(

n

b

)

+ f(n), where f(n) = g(n) + h(n). (12)

Use the following domain-transformation first

n = bm (m = logb n).

The above equation becomes

T (bm) = a · T (bm−1) + f(bm).

Using the multiplying factor fm = (1
am) we get

T (bm)

am
=

T (bm−1)

am−1
+

f(bm)

am
.

Using telescopy

T (bm)
am −

T (bm−1)
am−1 = f(bm)

am

T (bm−1)
am−1 −

T (bm−2)
am−2 = f(bm−1)

am−1

...
T (b)

a
−

T (1)
1

= f(b)
a

T (bm)
am −T (1) =

∑m
i=1

f(bi)
ai

13

Hence

T (bm) = am

[

T (1) +
m
∑

i=1

f(bi)

ai

]

.

assumption f is a multiplicative function; that is, f has the following prop-
erty

f(m n) = f(m) f(n).

Example of a multiplicative function is f(n) = nc. Hence

f(bi) = (f(b))1 .

Rewrite the previous function as

T (bm) = am

T (1) +
m
∑

i=1

(

f(b)

a

)i

 .

Let

α =

(

f(b)

a

)

.

Then

T (n) = am

[

T (1) +
m
∑

i=1

αi

]

= am

[

T (1) + α
αm − 1

α − 1

]

.

There are three cases to consider

• case.1 a > f(b); that is, α < 1. Then

T (n) = am
· O(1) = O (am) = O

(

alogb n
)

= O
(

nlogb a
)

.

• case.2 a = f(b); that is, α = 1. Then

T (n) = am
· O(m) = O (amm) = O

(

alogb n logb n
)

= O
(

nlogb a logb n
)

.

• case.3 a < f(b); that is, α > 1. Then

T (n) = am
· O (αm) = O (f(b)m) = O

(

f(b)logbn
)

= O
(

nlogb f(b)
)

.

14

6.2 Example: Randomized Divide-and-Conquer

Let us consider a randomized algorithm (i.e. algorithm involving coin-
tosses), also based on the ‘divide-and-conquer ’ paradigm; such an algorithm
consists of three steps:

1. random-divide: Break the problem of size n into 2 smaller subprob-
lems as follows: first choose a number i (1 ≤ i ≤ n−1) with probability

1
n−1

; let the first subproblem be the one consisting of the first i elments,
and the second, consisting of the remaining n−i elements. The division
step takes no more than g(n) amount of time.

2. recur: Recursively solve each of the 2 subproblems using Tavg(i) +
Tavg(n − i) time.

3. marry: Combine the solutions to the subproblems to get a solution
to the original problem, using no more than h(n) time.

Let us assume that g(n) + h(n) = c · n.
Hence the recurrence equation will be

Tavg(n) =
n−1
∑

i=1

(

1

n − 1
[Tavg(i) + Tavg(n − i)]

)

+ c · n.

This can be rwritten as

Tavg(n) = 1
n−1

∑n−1
i=1 (Tavg(i) + Tavg(n − i)) + c · n

= 1
n−1

(

∑n−1
i=1 Tavg(i) +

∑n−1
i=1 Tavg(n − i)

)

+ c · n

= 1
n−1

(

∑n−1
i=1 Tavg(i) +

∑n−1
j=1 Tavg(j)

)

+ c · n

= 2
n−1

(

∑n−1
i=1 Tavg(i)

)

+ c · n.

Or

(n − 1) Tavg(n) = 2

(

n−1
∑

i=1

Tavg(i)

)

+ c · n(n − 1). (13)

Substituting n + 1 for n, we get

n Tavg(n + 1) = 2

(

n
∑

i=1

Tavg(i)

)

+ c · n(n + 1). (14)

15

Subtracting equation ?? from equation ??,

n Tavg(n + 1) − (n − 1) Tavg(n) = 2 Tavg(n) + 2c · n.

Simplifying the above equation

n Tavg(n + 1) = (n + 1) Tavg(n) + 2c · n.

Or
Tavg(n + 1)

n + 1
−

Tavg(n)

n
=

2c

n + 1
.

Using telescopy we get

Tavg(n+1)
n+1

−
Tavg(n)

n
= 2c

n+1
Tavg(n)

n
−

Tavg(n−1)
n−1

= 2c
n

...
Tavg(2)

2
−

Tavg(1)
1

= 2c
2

Tavg(n+1)
n+1

−T (1) = 2c
{

1
2

+ 1
3

+ · · ·+ 1
n+1

}

Hence
Tavg(n + 1) = (n + 1) [Tavg(1) + 2c (Hn+1 − 1)] .

Or,
Tavg(n) = n [Tavg(1) + 2c (Hn − 1)] .

The approximate size of the nth harmonic number Hn is a well-known quan-
tity

Hn = ln n + γ +
1

2n
− O

(

n−2
)

.

Here γ = 0.57721 56649 . . . is Euler’s constant. Hence

Tavg(n) = n
[

2c
(

ln n + γ + 1
2n

− O (n−2)
)

+ Tavg(1) − 2c
]

= (2 ln 2)c n lg n + (2c(γ − 1) + Tavg(1))n + c − O(n−1)
= 1.39c n lg n + [Tavg(1) − 0.85c]n + c − O(n−1)
= O(n lg n).

16

