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2 | Modeling Biomolecular Networks

> Adents and Modes:

~ Species and Processes: There are two kinds of
agents:

> S-agents (representing species such as proteins,
cells and DNA): S-agents are described by
concentration (i.e, their numbers) and its
varigtion due to accumulation or degradation. S-
agent’s dcfsczl'iptimr? involves differentia equations
ol update equations

> P-agents (representing processes such 3s
transcription, trans

gtion, protein binding,
protein-protein interactions, and cell grw.fth.:;.
Inputs of P-agents are concentrations (or
Prim |“-.=‘-I'-=. ) of SEries Hﬁj D-’.lt]:-‘u'_l'[:f; Jre |'3t'55.
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o Adents & Modes

=

o Each agentis characterized l'wy astate x € R"and
o A collection of discrete modes denoted by Q
o Each mode is characterized by a set of
diFFere htial equations (¢ € Q& zc RPis
control)

ax/dt = Fqi(x,z),

- and a set of invariants that describe the conditions
under which the above ODE is valid ..

— these invariants describe algebraic constraints on the
continuous state. .
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Example of 3 Hy brid System

o

o

ok

(el 20
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dyand g, = two discrete modes

x = continuous variable evolving as

- dx/dt = £(x) in mode q,

- dx/dt = £(x) in mode q,
Invariants:Associated with locations
Jq and s, are

- g((x) = 0 and g,(x) = O, resp.

The hybrid system evolves
continuously in disc. mode g,
according to dx/dt = £,(x) as long as
g;(x) > O holds.

If ever x enters the * quard set”
Gp(x) > O, then mode transition
from q,to g, occurs.



o Generic Equ ation

> Generic formula for any molecular species
(mRNA, protein, protein complex, or small
molecule):

dX./dt = synthesis — decay 4 transformation 4 transport

> Synthesis:

- replication for DNA,

- transcription of mRNA,

- translation for protein
> Decay: A first order degradation process
o Transformation:

- cleavage reaction

- ligand binding reaction

» et bl ootk 50k 3 membrane.
Made by A-PDF PPT2PDF



Model of transcri ption

", = coneantration of a TF transcription P = woncertrtion of an mRNA

|| {X, % vl q

> = Coopetativity coefficient
¢ g, = Conhcentration of X 3t which transc tiptioh of i is “half-
rmaximally* activated.

o DX, Ky Vi) = X/ 1Y + X¥]
o WX, Ky Vi) = KY/IKY + XV] =1 - DX, Ky, Vi)

> A graph of function @ = Sigmoid Function
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o Transcription Activation Function
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_q:;_ Quorum Ser}sing n V. fischeri

& Ce”-densi{:y dependent gene expression in
prokaryotes
- Quorum = A minimum population unit
> A sing|e cell of V. fischeri can sense when 3
quorum of bacteria is achiev&d—hading to
bioluminescence. ..
o Vibrio fiscehri is a marine bacterium found as
- 3 free-living organism, and
- 3 symbiont of some marine fish and squid.
s As a free-living organism, it exists in low density is non-
luminescent..

= As 3 symbiont, it lives in high density and is luminescent..
> The transcription ofthe lux genes In this ordganism controls

¥ ] R [ Y
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Jux gene
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"o Quorum Sensing

o The fux region is Dl*ganized in two
transcriptional units:

- Op: cc:rr:-tair_-ir"_-? /uxR gene (encodes protein LuxR = 3
transcriptional requlator)
- Og: containing 7 genes luxICDABEG!
> Transcription of /ux/ produces the protein Luxl, required for
endogenous production of the autoinducer A7(a small

membrane permeable signal molecule (acyl-homoserine
lactone).

<+ The genes JuxA & luxB code for the luciferase subunits

< The genes luxC, luxD & luxE code for proteins of the Eitt}r
acid reductase, needed foraldehyde substiate for luciferase.

o The gene /uxG encodes 3 flavin reductase.

= Along with LuxR and Luxl, cAMP receptor protein (CRP)
controls luminescence.
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RBiochemical Networl

o The autoimmune inducer A/ binds to protein

LuxR to form a complex C,; which binds to the
Jux box.

o The Jux box region ( between the 13 nscrip’ciona|

units) contains 3 bincling site for CRP.

o The tra hscription from the /JuxR promoter is

activated by the binding of CRP.

o The tr3 hscription from the lux/ICDABEG is

activated by the binding of Co comp|e;{ to the

lux Pox.

o Growth in the levels D‘FCQEIﬁd cAMP/CRP

inhibit /uxR and fux/ICDABEG transcription,
. ' e I
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— RBiochemical Networl

LaxA, LuxB

Lol |

— LaxE | i
laxfCDABEG

‘ feixR
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LaxC, LaxD, LaxE




B Notation

 Xq = scaled population
o x; = MRNA transcribed from O,
¢ x, = mRNA transcribed from O,

o x- = protein LuxRk

]
—

o x. = protein Luxl

2E

o x- = protein LuxA/B

3

> x, = protein LuxC/D/E

L

¢ x- = qutoinducer A/

o xo = complex C
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—, Evolution Equations...

“ d.:":o,/dt = kG ;':.ﬂ
> dxy/dt = T [W(xg Ko, Vo) Plcepp, Kcpp Verp) 0]
— X¢/Hpna —k6 X4

o dxy/dt = T_[@(xg, kKcg, Vo) P (Cepp. Kcrps Verp) bl
— X/ Hpna —kg X5

Xs/dqt = Ty x4 _‘:‘ZS/Hsp_I_AiRX?’ X3 —FcoXg —kg X3

g/ dt = Ty x5 —x¢/H ke x4

xg/dt = Ty %5 —x5/H kg X5

t=Tx _&/Hsp—kﬂxs

X/ dt = Xg(r gl Xg —F aipX7 X3*TXg) —X7/ H 4

Xg/dt = I pip X7 X3 _"‘"':W/Hsp —FcoXg-keXg

-
e S = S = W = W < WY .
k\\{‘ﬁ‘\
[
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Parameters

Max. transcription rate

e, N ] 5
Cooperativity coer tor CRF

dissocigtes

]
C v CRFP _ _
Tl Max. translation rate Kenp Half-rmax conc for CRP
[ 1] A |13-||1f—|H£E ; Coopelgtivity coeffor i
RINA Vep r ) o
_| Stable F-l'otel'r? hC"||F—|IFﬁ_ KCD H-.-"IlF—ITT'EI.m ConC ﬁ:«l' '*-:::-
5P
- U hstable protein half=life [-} Basal transcription rate
up
_I,-ﬁ.i Af |13||1i—||11e Vl:: Volume DFH bacteriom
If,ﬂ.ll Fate constant: Luxl — 47 \/ Volume oifsohﬁ.lor_-
. Fate constant: A/ binds to Growth 1ate
A
) Rate constant: Maximum Population
| (:I:' (i o ‘:{C'ma}{ A [ |.. i
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Regu|a‘cow Networks
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Transcription Initiation

cm’[ing
region

o I’EE]EJ'EI‘[‘GF’}F
/ region _]L

& / (Inlactivating
franscription factots

fotmn cornpl exes

»» r

9 EMAP copies DNA fo mRENA

» [\
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> Typically, TFs do not bind singly,

but in complexes:

o Once bound tothe DNA, TF

complex allows RNA polymerase
(RNAP) to bind to the DNA
upstream of the coding region.
RNAP forms a transcriptional
cc:rmp|e:-:. that separates the two
strands of DNA, thus ﬁ::nl'mir_-g an
open complex, then moves
along one strand of the DNA,
step by step and transcribes the
coding region into mRNA.



e

Requlatory Networks

> All cells in an organism have the same
denomic data, but the proteins
synthesized in each vary according to cell
type, time and environmental factors

¢ There are network of interactions among
various biochemical entities in 3 cell
(DNA RNA, protein, small molecules)
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Gene Requlation

DINA Transport to
tignscription cytosol
AR Nc::r",||;-|1f::sphi::|':f|3|tcd
proteln
|:1 nspot 1o
MNonphospharylated r-.-|._-|¢=|j|-;
protein -
Pest-tianslationgl medtications
Monphosphorylated
protein
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Transcriptional Requlation;

Examp|e: The lac Operon

- Regions coding fo rproteins
- Reguh{:or}r Regions

S Diffusable req l3to ry i roteihs

R NA
polymerase

mBEMA + m BMA, +
Hbosomes Fibosomes
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h he /3¢ Operon

& 1Ec_:]u|a’ces utilization of lactose bY the
bacterium £. coli

Lactose is not generally available to £ coli
as a food substrate, so the bacterium does
not usually synthesize the enzymes
necessary for its metabolic use.

> There is an operon, called the /acoperaon,
m::rma”y turned off that codes for three
€nNZyImes:

-~ B-?ahc‘coside permease, B-galactosidase and
B-thioga lactoside ace’cy| transferase.
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— Activation of the /ac operon

el

o |fthe bacterium is exposed to lactose, these
enzymes wor k ‘coge’cher to
~ transport lactose into the cell and
— isomerizes lactose into allolactose (an allosteric
isomer of lactose).

o The allolactose binds with 3 repressor molecule
to keep it from repressing the production of
mRNA.

s Production of allolactose turns on the
production of MRNA which then leads to
production of more enzyme, enabling
production of more lactose to allolactose. ..

A w*ﬂf*ﬂyi’cic reaction..
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S Transcriptional Requlation:

E;{al‘r‘,r]:'r|E: The lac Operon

Binds bat
cahnot move to
ta nsctibe

I Regions coding forproteins
- Reguhfor}r Fegions
<

Diffusable req l3to ry P roteins

iy
f
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Transcriptional Requlation;

Examp|e: The lac Operon

I Regions coding forproteins
- Reguh{:or}r Fegions

Diffusable req lato ry p roteihs

EMNA
polymerase

mREMNA +
ti bosames

L3 ctose

Canfitmational
change
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s Mathematical Model

G+rmPa, & X
¢ Production of enzyme is turned on by m
molecules of the product allolactose P...
o G=lnactive state of the dene
o X=Active state of the gene

> |n 3 |arc_:]e pc::pu|a'E|'mn -:::-Fgenes, the
percentage of active denes is given by the
chemical Equihbrium:

p = [PI™/Ckyy™ + [PI™)
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S Production of mRNA

-ld"""

o The cli{:Feren’cia| equation gqoverning the
(average) production of mRNA

dM/dt =M, + k; [PI™/(k ™ + [P1™) — k, M,

o where M is the concentration of m RNA that
codes for the enzyme.

s Production of the enzymes (I*esponsiHe for
ta rhsform Ing into a llolactose substrate):

dE./dt=cc M -4, E,
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B Lactose states

1!-

* 54 = Concentration of the lactose that is
exterior to the cell.

> § = Concentration of the lactose that is
interior to the cell.

s [P] = Concentration of allolactose.
CISD/CI{T = -UD E1 SD/(kD + Sﬂ)
45 = B.5 M ¥ 5o} — s, B SECK. + %)

d[P1/dt = o E; S/(k, + ) - 6, E [P1/Ck,, + [P1)
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Simp|iﬁcation

| =

1—

> Assume: mRNA is in quasi-steady state:
M = Cly/ky) [PI™/Ck ™+ [P1™) + M /k;
¢ Assume: d, = d,. Degradation is slow
compared to cell growth. Also, E, = E-.
dE./dt = ¢, M /k, +
(ciky/ koI IPI™/Ck "+ [P1™) — d Ey;
> Assume: No de|ay in conversion of the
lactose into allolactose:

d[P1/dt
= 65 Ey So/(ka*So) - 65 E¢ [P1/Ck, + [P]).
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2. Dimensionless Form

1—

> Dimensionless variables: S, = Iy s, [P] = .,
pEi=e e andt=1% 1.
de/dt=mg+p™/(x™ + p™) - € e,
dp/dt = pels/(s+1) - A p/(p+1)],
ds/dt = -e s/(s+1),

o where eg? = ¢kgk/(c5ks), t5 = k+0/(ep40),

A= GE/GD! ML= k':]/kpf K= I(/'(P Map = MD/kTF

and e =t5d,...
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Time Evolution

external lactose, s

0.8

0.6

B-galactosidase, e

Wﬂi@s‘e p

2ntration

0.4

0.2

10 20 a0

40

o= Chmalbes TH‘DE |
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5 The /3c operon

axternal lackose, s

|I--.31|J-:|:n:||!.2|'.n -

allolactose P
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s If the amount of lactose is too

small, then the lactose is
gradually depleted, although
there is no increase in enzyme
concentration.

However, if the lactose dose is
suFﬁciEﬂt|y |a|'ge, then there is
an autocatalytic response, as the
lac operon is turned on and
enzyme is produced.

> The production of enzyme

shuts Jown when the lactose
stimuls is consurmed, and the
enzyme cohcentration

gradually declines..



gl Example of Competition

o The mutant Lac repressor X186:

— This mutant represses transcription of the /3¢
denes in the presence of lactose. ..

— The mutant binds DNA so tig |ﬁ:|y that in the
absence of inducer (allolactose), it is
sequestered on non-operator DNA sites.

— The inducer weakens the bind ing of the
mutant repressor; thus, a||owing it bind to
the /3¢ operon.
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NS Lac repressor X 186

I Regions coding forproteins
- Reguhfor}r Fegions
<

Birds

Haln g Ewhere

Diffusable req l3to ry P roteins

ElSE

RMNA

! ulym era i
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NS Lac repressor X 186

I Regions coding forproteins

- Fequ l3to hy Kegiohs
i

Diffusable requlato roteins
T g Y ¥

polymerase

mRNH
rlb-;:ns-::umes ;
|'h|'J'J|l'_h'.r' '.r'rl.'_hJ iy 'H.'.II'Jl:ll'_\- e Tl P
-i'll_ Fat L _'2- F FEICT A, LA LIPS Ve BN E )

§ § j i f o
-'lu'."'?lr-_.l'."' .'l? 'Iu' T | l.'--_:\.f-_. :l'c'lu i Tl o ol .l.!'l . .I.:'I i
LHC'['C'S P R L L Lo B e RAL AR TSO

.':-".ii g L.IHLI_ .':-d--"' ?I_-._ Rl ) ?d—

Canfitmational
change
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5-Systems
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Graphical Representation

g | Beversi ble Reaction

iverge nee Bra hch Point
Deqradation processes of
#oinke BXoand X5 are
independent

Convergence Bra hch Poink
Degradaﬁﬂn processes of
Moinke Boand ¥gare
independent
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Single splitting reaction
denerating o prodacts
Azand Xz in
stoichiormetric proportion.

5ing|e synfheﬁc reaction
inwﬂving o soarce

cerrponents ¥oand X5 in

ctoichiomettic propotrtion.




§ Graphical Representation

\_/ The teaction bebween ¥ and ¥
¥ . s tequites coenzyme ¥z which is

converted fo X,

}{3
The conversion -::1{}{1 into X is
X, ¥ . ¥, modalated by X5
}{'3
@T The conversion -::'F?-{T into ¥4 is
g By modalated byan i nhibitor Kz
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¢ Glycolysis

E
4

Glacose Glacose-1-P thphc&rﬂase 3

G|uc¢kinase>\ / PhﬂSPhﬂglﬂcﬂmﬂ‘[‘ESE

Glacose-6-P

lF———— thphaghccﬂse isorergse

Fractose-6-P
l¢————F‘ hﬂsphﬂﬁ*ﬂ cto kingse
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B 5-Systems

¢ Dependent Variables: X,(t), i=1,...,n,0 = t.

> System is described in terms of the temporal
changes in dependent variables:
- E.q., Instantaneous product formation in response to

changes in the exogenous substiate, inhibitor or

enzyme concentration. ..
— Kinetic Laws: Relate 3 reaction rate to concentrations
~ Reaction Rate = Instantaneous temporal rate of
change in concentration of substrate or product.
s Is this information sufficient to ded uce
the dynamics of a biochemical system?
%,
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Systems c::.-FDigeren’cm Equaﬂans

o dX/dt = (instantaneous) rate of cha hge
in X, at time t = Function of substrate
concentrations, enzymes, factors and
products:

A/ =H5 S, o B B oo Fiy B s P P )
¢ E.g. Michaelis-Menten for substrate S &
product P:
1. dS/dt= -V, S/(Ky +S)
2. dP/dt= V,_, S/(Ky + 5)
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— Michaelis—-Menten

cofceitration

5 10 15 Z0 5 20
tirme =

Temporal decrease in substrate concentration and
increase in product concentration: with Vv, =2
and Ky = 4. Substrate concentration at time O is
10, and product concentration at time O is O.
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P General Form

e Cxl/dt - V|+(-‘></I" le, FRREY Kh) =] vl_(x,[, .}(2’. oy .:){h)
— Where V;*(-) term represents production (or

accumulation) rate of 3 particular metabolite and V-

-~

(-) represent s depletion rate of the same metabolite.

¢ Generalizing to n dependent variables and m
independent variables, we have:

dX,/dt =
VA % L KX e )
- Vi_(X1, XQ, .oy .}{.n; xn_ﬂ, Xn,,z, .uup Xmm):

o These n di‘FFEI*E htial equations are called: the
systems equations, or the system description or
Kirchhoff's node equation
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Q Canonical Forms

* S-systems result in Non-linear Time-
Invariant DAE System.

o Note that: Given 3 system of equations
with f and g being arbitrary rational
functions, we can transform the system
into 3 set of Differential Binomial
Equation System with Linear Constraints:

dxi/dt = o x@" x 2 = B oxtx P
8¢ Yy Xy T Y X =0
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B Transformation |

> Assume that an equation is given as
> dx/dt = p(x(®), u(®))/q(x(®), u(®))

— A rational function. p & q are polynomials

-p(x(0), u(®)) =aym+ -+ o M- Bip- e
- Brpi

- where m's and p'sare power-produc‘cs with
arbitrary power. a's and p's are positive-
valued.

dx/dt = p(x(®), u(®)) y(®),
dc/dt = q(x(®), u®)) — y(®),
c=0.
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g5 Tr3 nsForma‘cion |

> dx/dt=oymy - v oy my - Bipr- - - Brpy
= ('ﬂr]‘ m*[_W('t}f{k) L ('[Irk mk_W('t)f!k)

— By pr - WO/ — - — (B p - wCt)/1)
> Equivalent System
XCE) = (8 = wor = (8 # 9, (0) + e +y,,(B) = O
di/de=a m Ok, 1xizhk
dy/dt = Brpr- w)/l, k+1 <j< kel
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e Canonical Forms

Theorem 1  Fvery bio-chemical system arising from an S-system model can be |
expressed in a canonical form invelving r > n+ m variagbles Z1, 22, ..., Z;:

[ Z; ] " mi(Z) —m7(Z) ]
Z mi(Z) —m;(Z
2 | _ | m@-me |
i El' J _mj’{Z}—m;[Z} J
T a1n aiz v G | [ & (0]
az1 @z - Oze Z2 0
= , (0.5)
_ﬂal (yz """ ﬂar_ _zr_ _G_

where m; s and m; s are ratios of monomials and a;; s are constants in R[Z; , ..,
Z.| with positive coefficients.
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Ana |y5i5 GFSimPIE conversion
of metabolite X, into X, that is
cata|yzec| by Xs.

There is 3 constant flux into the
system that |'Ep|Er"_-i5hE5 the p::rr::r| of
Xy Vit is 3 constant = o

The degradation of X, depends on
the concentration or poal size of X,
and also on enzyme X5 V; depends
on X;and Xz but not on X,

Production of X, constitutes the
same process as degradation of X;
V,* ==V .

Degradation of X, depends only on
ts current concentration.



s Power-law Presentation

o While the exact forms -::-1(\/'1‘ and V5 are
not known, based on various models of
binciing, cooperativity, etc., it has been
arqued that t];ey should be represented by
‘power- laws:”

Vi (% Xa) S BXAXS
Vo (X)) & X5
> Final system:
dX,/dt=o - XA I“*i;"”'
dX,/dt = B X3 X -y X6
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Simulation

dX;/dt = a - B Xp XsP
dXo/dt = B X XgP -y Xo©
> Parameters:

- a=1,
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Example: Feedback

> X, is 3 dependent
variable:
— X, isthe product of 3
reaction that uses X,
35 3 substrate and
- *EEE |5 H':b"-.af'fd F"i::.-’r *hu[
and inhibited by X5
X/t = 2 X, — 12 X095 X
1
X(0) =2,
4,/ dt = 2 X P15 1,05 -

=y

M
P

ey
X,(0) = (
&

-
)
o

"

1,

¢, =0
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5

o Systems Equations

> Dynamics of X, and
X, from the example
are depicted:
> Xy initially
o undershoots but
8 A & ultimately reaches a
T level h I her than at
sk the beginning of the
i e s experiment.

concentration =

5 ¢ X; shows a simple
monotonic increase.

Hrme =
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B Rate Constants

o |In the 1(-:::||Dwing equation:

dX/dt = o, TT_"™ X9 = B, [T Xhi

— o,'sand s are rate constants in the production and
the depletion terms respectively.

— These terms are positive or zero, but cannat be
negative,

¢ Atany point, which term (production or
dep|e‘cic::n) dominates depends on the
— rate constants: o, and B,
- other parameters: g;;and h;, and

— the current concentration of all the metabaolites that

e itnsmlved ik W+ ’Jr“.d IL-_r_.-"_—
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gl Steady State

o £l equations are b3 lanced (ie. production is
balanced by depletion), then dX/dt=0,v¥
i=1.....n.

o Thus the stea dy-state is achieved at

i . ~_htm L]'l R - ntm .hii
O {]’l 1_[|=1 X| BI 1_[|=1 X|
- or
TT1. .rtm X dij = R TT .n*m ¥ hij
o, 1_[|=’| "Y\| I3I 1_[|=’| ‘X|
> A steady state is characterized by the condition

that no metabolite is cha nging (i.e., that 4 X/dt
= 0) and they remain constant.
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Indices & Kinetic Order

> The roles of the kinetic order parameters: g; and

b

o | = the first index of the kinetic order 3nd
* = second index of the kinetic order.
- g; represents how the production of X is influenced
h the variable X;
- h, ||Fp|r= sents hm the degradation of X, is influenced
h‘f <
= PESRIVE L.H?etm orders indicate activating influences
and heqative kinetic orders express inhibition.

_ Ifthe kinetic order is zero, then it indicates
independence from the metabolite,
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o |nteresting Properties oFS—sys’cems:

o S-systems can model "allometric

relationship:”

- dX,/X; and dX,/X; are linearly related .
~- Growth at ""cliFFere htscales:” The relative
growth of two parts are very often linearly

related. (Galileo, Thc:-mpmn, |—|u.:-;|e‘,f__
Needham & Adolph.)

Made by A-PDF PPT2PDF




R

2. |Interesting Properties oFS—systems:

> S5-systems can model "te |es-::c:p|’c: relationsh ip:”
o Models at different levels.

- First stage: Enzyme catalyzed relations constituting
chemical pathway.

— Second stage: Interaction between organelles

— Third Stage: Interactions between cells.

~ Final Stage: Dynamics of a system with different
orqans.
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Purine Metabolism: Telescopy

R ﬁi |

> Example: Purine Metabolism:

Lowest Level: |nter—conversion of the various

’1'19[""4’1{3-"5 ~..using adenine, adenosine, adenyl

succinate, AMP, ADP ang ATP.

- Next Lffwzl Dyhamic interactions between adenylates,
quanylates, and oxypurines

— We coul: ]‘ pool all adenine -1P|'ix-”1tix-'f:5 ’mq‘ consider
this pool 35 one variable: “ade

- Final LE\.fEI: Synthesis and degladatmr? of DNA and
RINA and use 3 pcacﬂ of all hucleosides and

nuclectides,
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o) An Artificial Clock

The Repressilator:
a cyclic, three-repressor, transcriptional network

Three proteins:
TetR —~ L.aCL tetl & M ¢
& AL - Arranged in 3 cyclic

Al — Lacl manhner (logially, not
HECESS&I'H‘:{ physl'ca”:ﬂ 50

—£} _.-mw |_|E">mn > that the protein product of
I ' T one gehe Is rpressor for the
/A -'u'-;*-..-r e hext gehe,

mirA A | miMA B | mRMA © — —— ,
| | Lacl— = fefiR, fefl— Tetk
(|

A TetR—+o> Kl ke Kl

.‘ J Oﬁ- A M L_'I;» = igc/ ?—r L:1u_';

profein A protein B J_-" probein ©
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— Cycles of Repression

o The first repressor protein, Lacl from E.
coli inhibits the transcription of the
second repressor dene, tetR from the
tetracycline-resistance transposon Tn10,
whose protein product in turn inhibits the
expression of 3 third dene, cl from phage.

> Finally, Clinhibits lacl expression,
> completing the cycle.
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S Biological Model

Plasmids

Repressilator Reporter

P, laci1]

B
s |
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o Standard molecular
bio|c:gy: Construct

- A low-copy plasmid

encoding the
repressilator and

A compatible higher-
copy repoiter plasmid
containing the tet-
repressible promoter
PLtetO1 fused to an
intermediate stability
variant of afp




5 Reporter
bropris  oromery b Fosaaters o The inducer IPTG
Can be Measured in vivo interferes with
e repression by
= Lacl.. A transient
TRE pulse of IPTG
P,,.- TetR 5 Sy nchronizes 4
1 |I® population of
Pua-GIP I‘EPI'ESSi'ﬂ‘EDI“-

IPTG (M)
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Cascade Model: Repressﬂa‘cmf

+++++++++++++++++++++++++ | dxo/dt =y Xg920X82T - B, X,N22

-"HLE'-F d}gi/dt - U‘i __\gzgi?_ﬁ.ggiz = I\i_q’_ Xﬂ_hgj_i
| dxg/dE = o X 94X 95 - B, X o0

—~E ol X1, Az, X5 = const

N EN N
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How Stable is This???

A

llllll
""""""""""""




!@ Robustness?

"a’n’ﬁa’s’x‘a’ﬁ'&”@x’t’x’

..................

‘ M Lfegl'JJE'E. 5|r51ht|*f s|m-,'|'}-' ‘ Mg Jegl':ﬁ es slig tiy taster
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s Rescaled Symmetric System

o a = proteins/cell from wrrepressad promoter
o a p=proteins/cell from /=0 =52/ promoter
¢ P = protein: IT?'PHiR Jecay rate ratio
o h = Hill (cooperstivity) coefticient
dmi/d’c =-m; +a/(l+p") +ap
dp/dt=- B (p,-m))
> where m, =% [mRNAI p, = i® [repressor protein]
- 1= lacl, terR, ¢l
- [=cl, lacl, tetR
¢ (Concentration units: Ky

¢ Time units: T ena
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!@ Oscillation

Mumencal Integration of differential
equations shows penodic behavior:

1000

:

:

Proteins par call

:

o 139 2008 277
e (BN A hifetirmes)
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Stability Issue

2 kinds of oscillations

(Damnped) harmomse oscillaton

‘/h &, peniditluen
T

»
hiie

posifion

¢ Unhstable Oscillator:
Limit eyele cscillation - [am Pid l']ﬂl'ﬁ?':]f'.'l-c
s oscillator..
eg.c - ]
oscillaing chemical reactions - Asymptotically
(Belousov-Zhabotinskzi) gpproaches 3 stable
“ i | ' | steady state value.
" o Stable Oscillator:
- l| || - Limitcycle
rl|lr' | .| oscillator.
AR AR R 7
e i - The steady state in

the interior of the

£

g“ s SIS cycle is repelling
£l g-,?-{- (unstable)

= 1L ]

i

=

pomeemtratiom |
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B Phase Portrait

> Two phase portaits
- 3) Damped linear

’J-JJH—F--F‘-‘--"""'I*~I-
S e ascil|lator
B T oF I_\___\__.l__l :-] L
-"'r-""-""'-"'-""r-ll-l-h.i.q.|,,'l‘
.-f.-'l".-!'--"-fr-*-trrr;; . s
e e N % -'.L'x,'l_f'['.—‘:-"’—.'w
.-"'.-'l'.-l"-rr.,.-.,.._-r..*i_’j_llr J
.-'l'.l".-l'rul'-fq--."ll--l".l'ul'.!'_.c' o |i'-.'."'-"ri'|:=—"'
.i".-'.-l'-r.r-rn-.ﬂ...p,.-_,.-‘-‘_.- -.___r'_ "
.f.l'ul.l'.f...ﬁ._._,__’r_’_’__
:’rf-a....-.--.--..-r..-'_.-'_..-' _ F.l'l L|[-1-1|-[- "‘-."'“"|,:':'
lli[-\....-,“__."__.‘-_.‘._. ¥ f "'\-I‘—:l'l'— 3,
Jal.;.h,._,____‘___!_:_’__‘__ g
L N T ol 5 i
L T R q-;-_._*_:::r-"'-. |::|:|I__| |:‘]t':-_:||

P o
—_Tr e e+ = b okoh ol ; ] a :
s Rt e = ’LH;"-H_ W %3+ x
—T S - e o 2L A s ) #
—— o oo om A A s - :H. '..i"-\."-..r'. -_H:: —_."H'-,
el N R R R T B ]
—r e oo v AT A
L B T L T A
QL b U TR T R
Ty o v a2 FF & odoa e
=L e g o mow AT A b m e
Ty R TR R R b oaom g
—rrE oy o o A Rt A b
—r o g T 7w oW P A m g
ekt T R T R R SR P
=T g ooy v moem A A A o
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Dependence on Parameters

Analytical condition for oscillations:

(e ) < 25

v, 4
d"u ey —fae

=
=

=2
Mon-cacillatory I
T s

B Cratio of mENA and protein decay rates)

— "-
O

o 10
o (max. number of proteins

(Leak = 4
leak=0

J:*':':p-:c.t-}d.
parameters

1 i
1] 1a

per cell)
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S

W

S

e

{: =o/(1 -|—pl'.I::l
H":' = d{_f '._‘h__;'| P=P|:|

=_on PCII'.'—TI;F{'] -|—p|:||'.|:||2
and pg is the solution to
p=o/(l+p") +ap.
The system of equations
has a unique steady state
which becomes unstable
whenh
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Cooperativity

The oscillatory domain depends on Hill coefficient

/J n*=2.0
| eritical value
{
:IIII‘ ||
b g A
=3 HELS |u=1:15 e
A
3 | e
10 .II L
I| ..u"
} / j/
sl ([ /) el |
| 4 ,_p-"'dd_P'_'_
{ _,-"jl .-""-F
i S
i P
il | f o e
0 | .{-ﬁf -~ =175
1 i P
|| .II ':I;|IIEIII I_.l l___.d'-""_'-'_'_._
"IN i
10 5 | "]
11 I ] ] ] ]
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'Q Stochasticity

Small numbers of molecules and
discrete reaction events
—» significant variability

Continuous
u_..ﬂ:m 1
$ .
§ 000! |
E (2] L 1] {501
T 20004 'I'ﬁ' il |'
E ] |||'I| l Ii il
11 [}"1 UAYAVAUA

i 500 mm

Time {min) Time (min)
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Circadian Clock
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= Circadian Oscillations

s "A model for circadian oscillations in the
Droaophﬂa period protein (PER),” Albert
Gold beter,

- Proc R Soc Lond B(1995) 261.319-324.
A theoretical model:

- Takes into account contemporary
experim ental observations

>

— Model for circadian clock is based on
1. multiple phosphorylation of PER protein
2. the neqative feedback exerted by PER on the

i

transcription of the period (per) gene.
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= Model

o This minimal biochemical model provides 3
molecular basis for circadian oscillation of the

lim it cyc|e type.

¢ During oscillations, the peak in per mRNA
precedes by several hours the peak in total PER
protein.

— Accepted view: Multiple PER phosphorylation
induces time delays which strengthen the capabi
of negative teedback to produce oscillation.

— The rthythm occurs only when the maximum rate of
PER degradation is in a range bounded by two
critical va

> Many u hresolved issues:
| n der Pol system,

i.-t 1.:’.."

LIES:
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B Two Competing Biological Models

o Edery et al. (1994) Model:

- Based upon mu|’cip|e phosphoryh’cion of PER
and on repression :::prf‘cra nscription by 3
phosp|mry|a’ced form of the PER protein.

o Abbott et 3l. (1995) Model:

- Based upon the effect c::-ifa |a|*ger hum ber of
phosp|mry|a’ced residues and their effect upon
de|aying the entry of the protein into nucleus
and the resu |‘cin<_:] negative feed back effect on
pertranscription.
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~ Circadian Oscillation of PER and per mRNA

s

Assumptions:

7 permRNA is synthesized in the
nucleus and transferred ti
cytosol, where it is degraded.

— ~ M = Cytosolic concentration ﬂlfpfr
perti I'.I:::riFtiC,n Nachar LR, P} 2. Rate of S}f'nthcﬂﬁ of PER. ( f‘y
= J translation of per mRNA) is
v ’ 7 7 proportional to M.
R A 3. PER is multiply phosphorylated:
permpNA (M PP ER PER, PER. ] Ply phosphorylq
7 fﬁu»’UfPr) w By P> Pis Py
& L5 Vs 4. Phcvﬁphcrl":,rhtcd PER. is
tlanspol'ted into the nucleus: Py
5. Pyacts directly asa repressor
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rate.



— Phosphorylation of PER

¢ PER is multiply phosphorylated:

- To keep the model simple, only three states of the

PER protein is considered:
Py Ur?phosphc:rlyhted, P, = Monophosphorylated and
= Biphosphorylated

— The precise n IH"'I'F'I of phosphorylated residues is still
uhkhown. The role of PER phm} h”‘"l”’| ation is still
unclear.

= lesplmlﬂa’clon may control nuclear
localization and/or deglada’clon of PER.

- Assume that the f I||I|,hDH|.,hDI ated form P, is marked both
for degradation and reversible +|1|rﬂqpol't into t 2‘1& hucleus.

o The effect fﬂHluP nuC |P’1| form of PER (Py) on the pel
transcrintion (M) is described by an e Lrﬁm* of |—||||

Made by A-PDF PPT2PDF gtivity) coefticient of n =



5

DiFFeren‘cia| Equa’cions

F
A

dM/dt = v KN (KN + P ) —v M/(K_+M)

dP5/dt = kM -V, P/ (KPg) + VS, P/ (K, + Py)

dP;/dt =

Vi P/ (K#+Pg) =V, P/ (K + Py} =V P/ (Kg+Py) +V, P/ (K 4P,)
dpP,/dt =

V3 Py/ (Kg#Py) =V Po/(K#+Py) — kg Py + K, Py —vy Po/ (ke P)
dP/dt =k P, — k, Py

P=P5+P;+ P, + P,
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Simulation 1




Phase Plane 1

. 2

1i5

1.25

0.75

0.5

Hago
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5| Simulation 2

'\

AR
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Made by A-PDF PPT2PDF




5| Phase Plane 2
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—, Periodic Orbits and Limit Cycles

o (Stable) Limit Cycle =

A

periodic trajectory

hich attracts other

=
s A member of 3 f3 mi|y

Stable Limit Cyele D( !Pa |a||E| PEHDC' i

solutions (with linear
@ centers) is not 3 limit
cyc|e.

ot 3 Lim it R::_I-:er"_

utions to it.

o Limit cycles are robust

In two ways:
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S Robustness of Limit Cycles

o If perturbation moves state to different initi
state away from the cycle, then the system
will return to cycle .

- e.q. CIreg dian I'chhm- Phase 3 i|'|5t5 E|FE¢|' |=t |aq

— For 3 linear oscillator, this is not true; it will 5|IT"'|.')|H-’
start oscillating along 3 ditferent orbit and will
hevel return to the cr-l'lglr?a| orbit,

_If J:{ﬂ.a mics chg hdes 3 little 3 lim it cyc|ﬁ_ will still
exist (can be proved using Poin@re-Bendixon
thearem. )

.4 TI'"J”_."LT. OT ¢
dx/dt=vy, ay/dt = x+ey
(= d2x/dt? - & dx/dt +x =0)

- Changes to 3 spiial orbit (whether stable of
Made by A-PDF PPT2PDF
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5

Poincare-Bendixon Theorem

1_
A

> For systems of two equations
dx/dt = F(x,y) & dy/dt = G(x,y),

o The following criterion determines the

existence of 3 limit cycle

> Suppose 3 bounded region D inthe plane
s so that no trajectory can exit D (on
boundary, the vector field (F,G) points
inside or tangentially) and either there gre
no steady states inside or there is 3 single
steady state that is repelling then there is 3
periodic orbit inside D,

o |t the periodic orbit is unique then it is 3
limit cycle.
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e Bendixon’s Criterion

e

> Given region D simp|y-connec’cec
o if the cliverc_:]e hce of the vector fie

positive or is a|way5 negative insic

(no holes)

d is a|way5
e D, then there

cannot be a periodic orbit inside D-:
F(xy) =1f(x,y) g(xy)1T & divF=0f/ox+af/ay

> By Gauss diverge hce theorem:

[[odivFdxdy=[-n-

P2 )

¢ Thus F is not tangential to any closed path...No

periodic orbit inside D!
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"o Van der Pol Equation

> Consider a system inw:r|ving two variables: eq.,
an mRNA and a protein: xand v.

> For instance, consider the equations:
dx/dt=y — x® +x
dy/dt = -x
o |n other words:
?x/dt2 = dy/dt + (1-3 x2) dx/dt = (1-3 x2) dx/dt —x or
4?x/qt2 + (B3x2-1) gx/qt +x=0
o This system has a stable limit c:yc|e'

o These equations were Dl‘igir'ra”‘)’ introduced to
madel a ""qP|-FPfri+ihq"" elec‘h- Ic circuit.
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o Lienard Equations

o Generalization oFUan der Pol system:

d°x/dt* + g(x) dx/dt +x =0

ator.

— It q(x) is zero, this is the linear osci

— The term involving dx/dt is 3 “trictional “ term, where
the friction depends on the position x

— For small x we are going to take q(x) negative so that
tisan “anti-frictional” term

~ For large x we are going to take q(x) positive so that
tisa "frictional” term

o This is sumcien’c to quara htee the existence :::Fa
robust lim it cyc|e, .
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o When f(x) = —x + x5
.l r'/
T s, P e
> A S >
rlf -0, 5
.'K 1

> The graph of f(x) = —x + 3.
> Lienard’s Equation: dx/dt =y — f(x); dy/dt = —x.
- fisan odd function of x

- ftx)<0in (01} and f(x) * 0 in (0, )
- fisa strictly monotone increasing function of x (for x *1)

- Fgacs to inﬁnity as x goes to oo
N 123050 Y you. . SPNN [
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Van der Pol Equation

R A A

A |

W A
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Van der Pol Equation

o Phase Portrait of the
Lienard Equation for
F(x) = -x + 3 with -1.4
“x=l4&14<y <
14 ..

o S’cal‘rih’cy of the lim it

cycle follows from
Poincare-Bend ixon.
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To be continued...
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