

Computational Systems Biology

... Biology X - Lecture 7...

Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology

Systems Biology

Goal

- The goal of this subject is to understand, design and create large-scale computational system centered on the biology of
 - individual cells,
 - population of cells,
 - intra-cellular processes, and
 - realistic simulation, visualization and reasoning about these processes at multiple spatio-temporal scales.

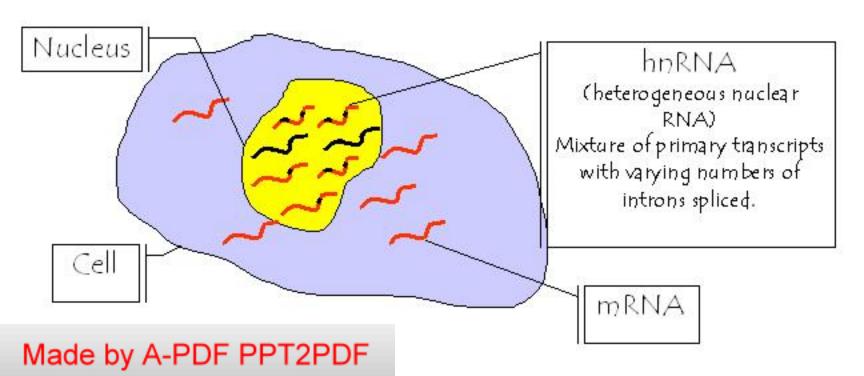
Why

- Such a reasoning system, in the hands of a working biologist, can then be used to
 - gain insight into the underlying biology,
 - design refutable biological experiments, and
 - ultimately, discover intervention schemes to suitably modify the biological processes for therapeutic purposes.



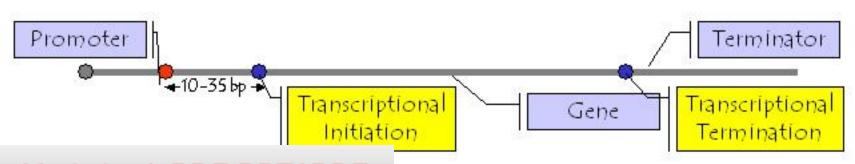
Interrupted Genes:

- An open reading frame (containing a gene) consists of
 - INTRONS: Intervening sequences → Noncoding regions
 - EXONS: Protein coding regions
- Introns are abundant in eukaryotes and certain animal viruses.


Interrupted Genes:

Interrupted Genes:

 Introns can occur between individual codons or within a single codon


Some Genes...

Gene Product	Organism	Exon Length	#Introns	Intron Length
Adenoshine deaminase	Haman	1500	11	30,000
Apolipoprotein B	Haman	14,000	28	29,000
Erythropoletin	Haman	582	4	1562
Thyroglobulin	Haman	8500	≧ 40	100,000
α-interferon	Haman	600	0	0
Fibroin	Silk Worm	18,000	1	970
Phaseolin	French Bean	1263	5	515

Regulation of Gene Expns

- Motifs (short DNA sequences) that regulate transcription
 - Promoter
 - Terminator
- Motifs that modulate transcription
 - Repressor
 - Activator
 - Antiterminator

Promoters

- pol I (RNA polymerase I)
 - Transcribes ribosomal RNA genes 100 \sim 1000 bp in front of the gene
- pol II (RNA polymerase II)
 - Transcribes genes encoding polypeptides
 - Complex and variable regulatory regions
- ⋄ pol III (RNA polymerase III)
 - Transcribes transfer RNA and other small RNAs
 - Both up and down stream

Motifs

- · Each motif is a binding site for a specific protein
- Transcription Factor:
 - Transcription factors (specific to a cell/environmental conditions) bind to regulatory regions and facilitate
 - Assembly of RNA polymerase into a transcriptional complex
 - Activation of a transcriptional complex.
- Termination Factor:
 - Assembly of proteins for termination and modification of the end of the RNA
- Epigenetic Changes
 - Methylation of the cytosine in the 5' region

Organization of Genetic Info

- Bacterial Genome:
 - Genes are closely spaced along the DNA.
 - The sequences of genes may overlap.
 - Related genes (encoding enzymes whose functions are part of the same pathway or whose activities are related) are linked as a single transcription unit.

Organization of Genetic Info

Eukaryotic Genome:

- Genes are separated by long stretches of noncoding DNA sequences.
- Multiple genes in a single transcription unit is extremely rare.
- Multiple chromosomes Linear
- Chloroplasts and mitochondria Circular
- Genes appearing on the same chromosome are syntenic.

Gene Locations

chromosome s		
16	Genes	chromosomes
11	Insulin	11
5	Galactokinase	11
	Viral oncogene homologues	
2	C-sis	22
22	C-mos	8
14	C-Ha-Ras-1	11
0724540	C-myb	6
9,52,15,18	Interferons	
17	α&β cluster	9
	γ	12
	9 16 11 2 2 22 14 9,32,15,18	S 16 Genes 11 Insulin Galactokinase Viral oncogene homologues 2 C-sis 22 C-mos 14 C-Ha-Ras-1 9,32,15,18 Interferons 17 α & β cluster

Eukaryotic Genome

- Multiple copies of the same gene
 - Solve "supply problem"
 - There are several hundred ribosomal RNA genes I mammals
- Pseudogenes
 - Nonfunctional copies of genes...(Deletions or alterations in the DNA sequence)
 - Number of pseudo genes for a particular gene varies greatly...Different from one organism to another.

Genes in Eukaryotes

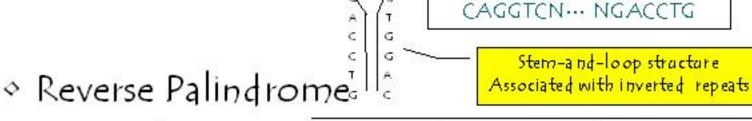
- A gene may appear exactly once
- It may be part of a family of repeated sequence. Members of a family may be clustered or dispersed.
- Members of a gene family may be related and functional (expressed at different times in development, or in different cells) or may be pseudo genes.
- Chromosomal Morphology:
 - Nucleolar organizers (genes for ribosomal RNA)
 - Telomeric and Centromeric regions (Tandemly

Genome Rearrangement

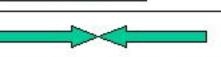
- Reshuffling of genes between homologous chromosomes via reciprocal crossing-over during both meiosis and mitosis.
- Gene synteny and linkages are usually preserved.
- Most rearrangements are random.
- Some rearrangements are normal processes altering gene expressions in an orderly and programmed manner.

Repeat Structure

- ♦ Copy Number: 2 ~ 10⁶
- Direct Repeats "head-to-tail"
 - Tandem repeats or separated by other sequences
- Inverted Repeats "head-to-head"
 - Stem-and-loop structure
 - Hairpin structure
- Reverse Palindrome
- ♦ True Palindrome



Repeat Structure


- Tandem Direct Repeats
- ♦ Inverted Repeats

5'-GTCCAGN··· NCTGGAC-3'

True Palindrome

5'-GTCAATGA AGTAACTG-3'

5'-<mark>GAATTC</mark>-3' CTTAAG

Repeats within the Genome

- Gene Family
 - Genes and its cognate pseudogenes
- Satellite: Repeats made of noncoding units
 - Minisatellites: Tandem repeats...Mostly in centromeric regions
 - Satellite repeat units vary in length from 2 base pairs to several thousands.

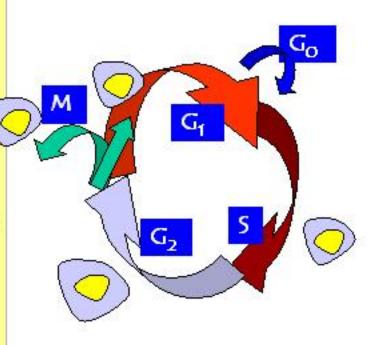
Interspersed Repeats

- SINES: Short Interspersed Repeats
 - Each repeat unit is of length 100 500 bps
 - Processed pseudogenes derived from class III genes
 - Example: Alu repeats...dimeric head-to-tail repeats of 130 bp
- LINES: Long Interspersed Repeats
 - Each unit is of length > 6 Kb.

The Cell

- A cell is a small coalition of a set of genes held together in a set of chromosomes (and even perhaps unrelated extrachromosomal elements).
- They also have set of machinery made of proteins, enzymes, lipids and organelles taking part in a dynamic process of information processing.

The Cell Cycle

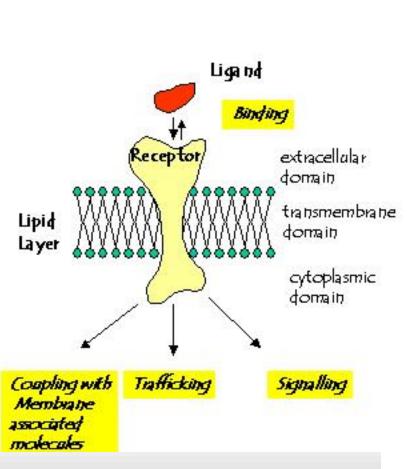

The dynamics of cell:

- The cell cycle) the set of events that occur within a cell between its birth by mitosis and its division into daughter cells again by mitosis
 - interphase period when DNA is synthesized and
 - mitotic phase
 - The cell division by mitosis (into 2 daughter cells) and meiosis (into 4 gametes from germ-line cells);
 - Working of the machinery within the cell---mainly the ones involving replication of DNA, transcription of DNA into RNA and translation of RNA into protein.

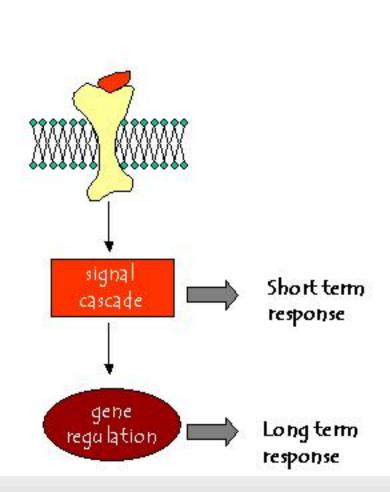
The Cell Cycle:

- oin growing cells, the four phases proceed successively, taking from 10-20 hrs.
- ointerphase: comprises the G₁, S, and G₂ phases. DNA is synthesized in S and other cellular macromolecules are synthesized throughout interphase, roughly doubling cell's mass.
- Ouring G₂ the cell is prepared for mitotic (M) phase when the genetic material is evenly proportioned and the cell divides.
- Nondividing cells exit the normal cycle, entering the quiesecent Go state.

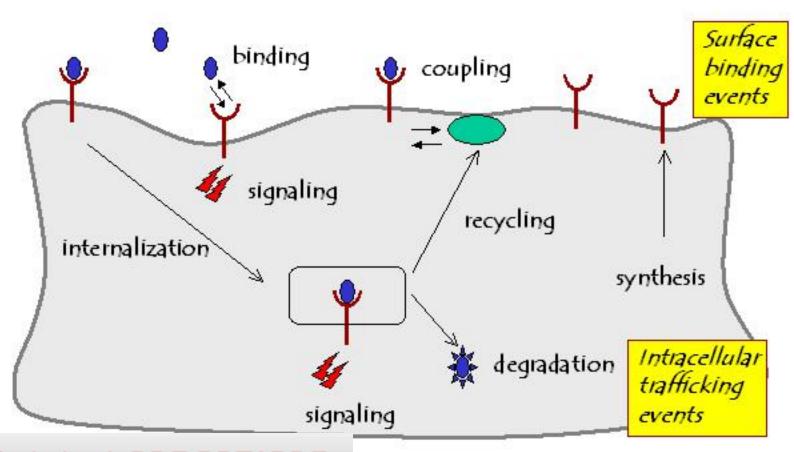
Differentiation & Suicide


- Cellular dynamics controls how a cell changes (or differentiates) to carry out a specialized functions
 - Structural or morphological changes (muscles, neural, skin..)
 - Immune systems: Many cell types come together in organized tissues designed to let the body distinguish self from non-self.
- Programmed Cell Death/Apoptosis:
 - Condensation of the nucleus.
 - Fragmentation of the DNA.
 - Morphological changes followed by consumption by macrophages.

Cell Talk


Cell Talk

- Cell Surface Receptors
 - Extracellular domain for binding ligands (e.g., growth factors, adhesion molecules, etc.)
 - Transmembrane domain
 - Intracellular cytoplasmic domain
- Receptor driven cellular behavior are extremely important
 - E.g., Growth, Secretion,
 Contraction, Motility and
 Adhesion


Receptors and Gene Regulation

- Ligands bind to receptors at the cell surface.
- Bound receptors activate various intracellular enzymes and initiate entire cascades of intracellular reactions
 - Some of these regions trigger short term (of the order of milliseconds to minutes) responses.
 - Some eventually trigger long-term responses..e.g., requiring protein synthesis and additional molecular interactions

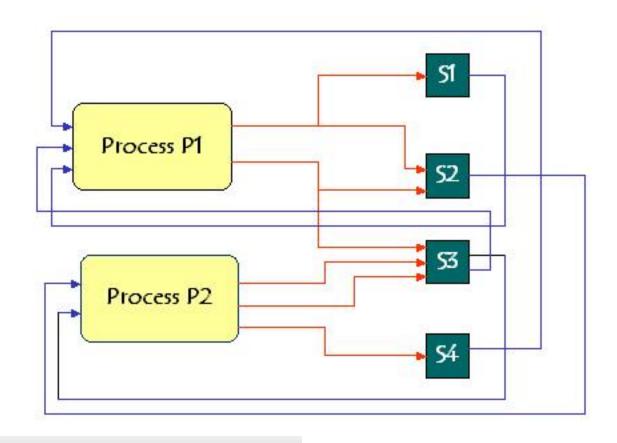
A Complex Picture

A Complex Picture

Trafficking

- Receptor population undergoes many complex events of coupling with other cell surface molecules
- Internalization (RME: receptor-mediated endocytosis)
- Recycling
- Degradation
- Synthesis

Modeling


Modeling Biomolecular Networks

Agents and Modes:

- Species and Processes: There are two kinds of agents:
 - S-agents (representing species such as proteins, cells and DNA): S-agents are described by concentration (i.e., their numbers) and its variation due to accumulation or degradation. S-agent's description involves differential equations or update equations.
 - P-agents (representing processes such as transcription, translation, protein binding, protein-protein interactions, and cell growth.) Inputs of P-agents are concentrations (or numbers) of species and outputs are rates.

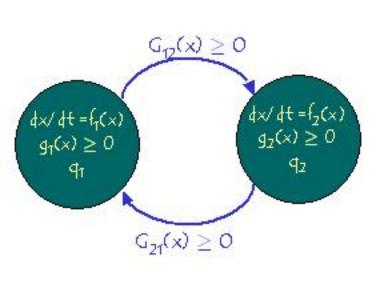
P-agents and S-agents

Agents & Modes

- \diamond Each agent is characterized by a state $x \in \mathbb{R}^n$ and
- A collection of discrete modes denoted by Q
- Each mode is characterized by a set of differential equations (q_i ∈ Q & z ∈ R^p is control)

$$dx/dt = f_{qi}(x,z),$$

- and a set of invariants that describe the conditions under which the above ODE is valid...
- these invariants describe algebraic constraints on the continuous state...



Mode Definition

- Modes are defined by the transitions among its submodes.
- A transition: specifies source and destination modes, the enabling condition, and the associated discrete update of variables.
- Modes and submodes are organized hierarchically.

Example of a Hybrid System

- q₁ and q₂ = two discrete modes
- x = continuous variable evolving as
 - $dx/dt = f_1(x)$ in mode q_1
 - $dx/dt = f_2(x)$ in mode q_2
- Invariants: Associated with locations q₁ and q₂ are
 - $g_1(x) \ge 0$ and $g_2(x) \ge 0$, resp.
- The hybrid system evolves continuously in disc. mode q₁ according to dx/dt = f₁(x) as long as q₁(x) ≥ 0 holds.
- ⋄ If ever x enters the "guard set" $G_{12}(x) \ge 0$, then mode transition from G_1 to G_2 occurs.

Generic Equation

 Generic formula for any molecular species (mRNA, protein, protein complex, or small molecule):

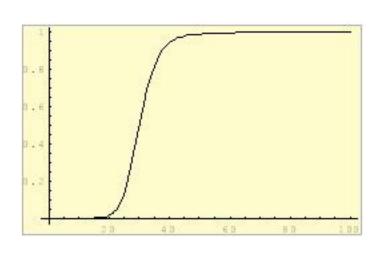
 $dX/dt = synthesis - decay \pm transformation \pm transport$

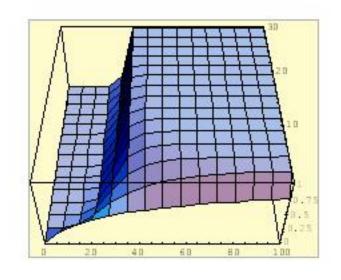
- Synthesis:
 - replication for DNA,
 - transcription of mRNA,
 - translation for protein
- Decay: A first order degradation process
- Transformation:
 - cleavage reaction
 - ligand binding reaction
 - Transperse Difference Dugh a membrane..

Model of transcription

$$X = concentration of a TF$$

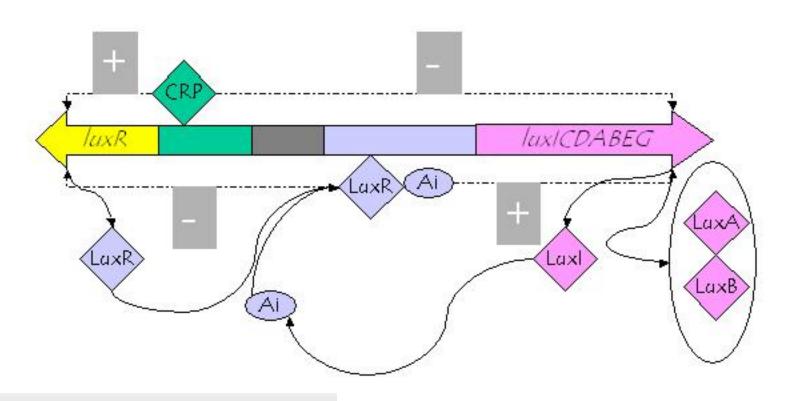
$$\{X, \kappa, \nu\}$$


$$\{X, \kappa, \nu\}$$


$$\{X, \kappa, \nu\}$$

- ν_{xm} = Cooperativity coefficient
- κ_{Xm} = Concentration of X at which transcription of m is "half-maximally" activated.
- $\Phi(X, \kappa_{Xm}, \nu_{Xm}) = X^{\nu}/[\kappa^{\nu} + X^{\nu}]$
- $\Psi(X, \kappa_{Xm}, \nu_{Xm}) = \kappa^{\nu}/[\kappa^{\nu} + X^{\nu}] = 1 \Phi(X, \kappa_{Xm}, \nu_{Xm})$
- ◇ A graph of function Φ = Sigmoid Function

Transcription Activation Function



Quorum Sensing in V. fischeri

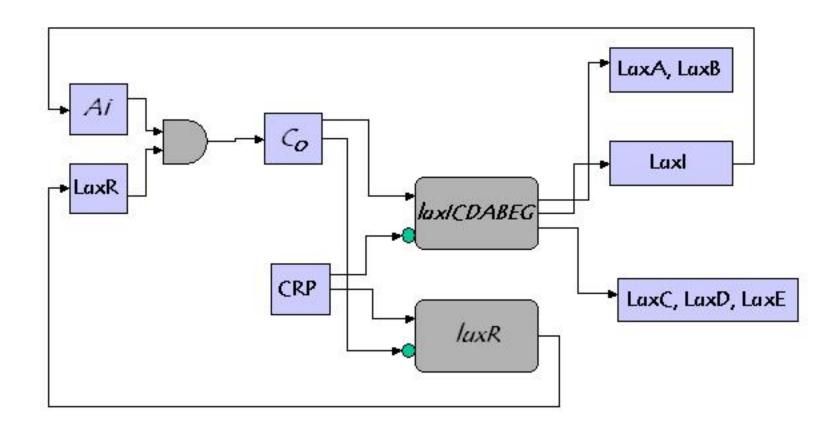
- Cell-density dependent gene expression in prokaryotes
 - Quorum = A minimum population unit
- A single cell of V. fischeri can sense when a quorum of bacteria is achieved—leading to bioluminescence...
- Vibrio fiscebri is a marine bacterium found as
 - a free-living organism, and
 - a symbiont of some marine fish and squid.
 - As a free-living organism, it exists in low density is nonluminescent..
 - · As a symbiont, it lives in high density and is luminescent ..
 - The transcription of the lux genes in this organism controls

lux gene

Quorum Sensing

The lux region is organized in two transcriptional units:

- O_L: containing /uxR gene (encodes protein LuxR = a transcriptional regulator)
- O_R: containing 7 genes luxICDABEG.
 - Transcription of lux/ produces the protein LuxI, required for endogenous production of the autoinducer A/(a small membrane permeable signal molecule (acyl-homoserine lactone).
 - The genes luxA & luxB code for the luciferase subunits
 - The genes luxC, luxD & luxE code for proteins of the fatty acid reductase, needed for aldehyde substrate for luciferase.
 - The gene luxG encodes a flavin reductase.
 - Along with LuxR and LuxI, cAMP receptor protein (CRP) controls luminescence.



Biochemical Network

- The autoimmune inducer Ai binds to protein LuxR to form a complex Co, which binds to the lux box.
- The lux box region (between the transcriptional units) contains a binding site for CRP.
- The transcription from the luxR promoter is activated by the binding of CRP.
- The transcription from the luxICDABEG is activated by the binding of Cocomplex to the lux box.
- Growth in the levels of Coand cAMP/CRP inhibit luxR and luxICDABEG transcription,

Biochemical Network

Notation

- $x_0 = \text{scaled population}$
- $x_1 = mRNA \text{ transcribed from } O_1$
- $x_2 = mRNA$ transcribed from O_R
- ⋄ x₅ = protein LuxR
- ⋄ x₄ = protein LuxI
- $x_5 = \text{protein LuxA/B}$
- x_6 = protein LuxC/D/E
- $x_7 = autoinducer Ai$
- $x_{g} = complex C_{0}$

Evolution Equations...

```
\phi dx_0/dt = k_0 x_0
- x_1/H_{RNA} - k_G x_1
-x_2/H_{RNA}-k_Gx_2
\phi dx_3/dt = T_1 x_1 - x_3/H_{sp} - r_{AiR}x_7 x_3 - r_{CO}x_8 - k_G x_3
\phi dx_4/dt = T_1 x_2 - x_4/H_{sp} - k_G x_4
\phi dx_5/dt = T_1 x_2 - x_5/H_{sp} - k_G x_5
\phi dx_6/dt = T_1 x_2 - x_6/H_{sp} - k_G x_6
\phi dx_7/dt = x_0(r_{All} x_4 - r_{AiR} x_7 x_3 + r_{CO} x_8) - x_7/H_{Ai}
4x_{8}/dt = r_{AiR} x_{7} x_{3} - x_{8}/H_{sp} - r_{C0}x_{8} - k_{G}x_{8}
```


Parameters

T _c	Max. transcription rate	v_{CRP}	Cooperativity coef for CRP
T _l	Max. translation rate	$\kappa_{\sf CRP}$	Half-max conc for CRP
H _{RNA}	RNA half-life	v_{CO}	Cooperativity coef for Co
H _{sp}	Stable protein half-life	κ_{CO}	Half-max conc for Co
Нир	Unstable protein half-life	Ь	Basal transcription rate
H _{Ai}	A/half-life	v _b	Volume of a bacterium
r _{All}	Rate constant: LuxI $ ightarrow A/$	V	Volume of solution
r _{AiR}	Rate constant: A/binds to Luxi	k _g	Growth rate
r _{CO}	Rate constant: Co dissociates	x _{Omax}	Maximum Population

Remaining Questions

- Simulation:
 - Nonlinearity
 - Hybrid Model (Piece-wise linear)
- Stability Analysis
- Reachability Analysis
- Robustness

To be continued...

. . .