

Computational Systems Biology ... Biology X – Lecture 4...

Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology

Molecular Evolution

- ◊ Life is ubiquitous and old.
 - (3.7 billion years old!)
- Living organisms on the Earth have diversified and adapted to almost every environment.

- All living organisms can replicate, and the replicator molecule is DNA.
 - The information stored in DNA is converted into products used to build similar cellular machinery.
 - Comparative study of the DNA can shed light on its function in the cell and the process of evolution.

Five Kingdoms

- All living organisms are divided into five kingdoms:
 - 1. Protista,
 - 2.Fungi,3.Monera (bacteria),4.Plantae, and
 - 5. Animalia.

Tree of Life

- A different scheme:
 - 1. Prokaryotae (bacteria, etc.)
 - 1. Bacteria
 - 2. Archea
 - 2. Eukaryotae (animals, plants, fungi, and protists).
- No one of these groups is ancestral to the others.
- A fourth group of biological entities, the viruses, are not organisms...

Human Evolution

◊ Two Models:

- Multiregional Model
- Out of Africa Model

 Evolution of a tree of hominids originating in Africa. Left Africa about 1 million years ago. Two waves of migration are speculated.

 African human population has the most diversity.

- Australopithecus (3.5million years old)
- Homo habilis (2 million yrs)
- Home erectus (1 million yrs),
- Homo sapiens (60,000-100,000 yrs)
 - Cro Magnon Man (Our immediate H. sapien ancestor)
 - Neanderthal Man (Became extinct ~30,000 yrs ago.)
- Two distinct species; supported by DNA amplification and sequence alignment (S. Paabo)

- Mitochondrial DNA (mtDNA): Extra-nuclear DNA, transmitted through maternal lineage. Mitochondria are inherited in a growing mammalian zygote only from the egg.
- 16.5 Kb, contains genes: coding for 13 proteins, 22 tRNA genes, 2 rRNA genes.
- mtDNA has a pointwise mutation substitution rate 10 times faster than nuclear DNA.
- Phylogeny based on human mtDNA can give us molecular (hence accurate?) information about human evolution.

African Eve

- Statistical analysis of mtDNA extracted from placental tissue of 147 women of different races and regions. (Cann, Stoneking, & Wilson, 87).
- Phylogenetic tree (assuming a constant molecular clock) was constructed by Wilson.
- A single rooted tree with the root being closest to the modern African woman.
- Conclusion: Modern man emerged from Africa 200,000 years ago. Race differences arose 50,000 years ago. <u>"Mitochondrial Eve Hypothesis"</u>
 Made by A-PDF PPT2PDF

Mitochondrial Eve's Africanness

- A simple reordering of the data could result in 100 distinct trees all at most 2 steps away---all supporting non-African hypothesis. (Templeton)
- Assuming a non-constant molecular clock results in a least universal common ancestor (Luca) ... that is too young.
- In general, mathematical descriptions and algorithms that may lead to "historically correct phylogenetic tree" remain to be developed.

Taxon

 Taxon (Taxonomical Unit): is an entity whose similarity (or dissimilarity) can be numerically measured. E.g., Species, Populations, Genera, Amino Acid Sequences, Nucleotide Sequences, Languages.

Phylogeny

 Phylogeny is an organization of the taxa in a rooted tree,

- with distances assigned to the edges in a such manner that the "tree-distance" between a pair of taxa equals the numerical value measuring their dissimilarity.
- The dissimilarity and the edge lengths of the phylogenic trees can be related to the rate of evolution (perhaps determined by a molecular clock).

Comparing a Pair of Taxa

- Discrete Characters: Each taxon possesses a collection of characters and each character can be in one of finite number of states.
 One can describe an *n* taxa with characters by an *n*×*m* matrix over the state space.
 Character State Matrix.
- Comparative Numerical Data: A distance is assigned between every pair of taxa. One can describe the distances between n taxa by an n×n matrix over R₊. Distance Matrix.

Тахоп	c _T	٢ _Z	c3	¢4	۲5	¢6
A	0	0	0	1	1	0
В	1	1	0	0	0	0
c	0	0	0	1	1	1
D	1	0	1	0	0	0
E	0	0	0	1	0	C

Edges where state transition takes place is given by an associated character.

Some Assumptions:

- The characters are inherited independently from one another.
- Observed states of a character have evolved from one "original state" of the nearest common ancestor of a taxon.
- <u>Convergence</u> or <u>parallel evolution</u> are rare.
 That is the same state of a character rarely evolve in two independent manners.
- <u>Reversal</u> of a character to an ancestral state is rare.

Classifying Characters

Characters:

 Vnordered / Qualitative Character: All state transitions are possible.
 Ordered / Cladistic Character: Specific rules regarding state transition are assumed.

Linear Ordering
 Partial Ordering (with a derivation tree).

Perfect Phylogeny

 A phylogenic tree T (with edges labeled by state transitions) is called perfect, if it does not allow reversal or convergence--that is, with respect to any character c, and any pair of states w and s at most one edge is labeled

 $w \rightarrow s \text{ or } s \rightarrow w.$

 Example: Binary characters with two states {O=ancestral, and 1=dervied}: any character c_i labels at most one edge and implies a transition from

 $0 \rightarrow 1$ in the th position.

- Perfect Phylogeny Problem:
 - <u>Given</u>: A set O with n taxa, a set C of m characters, each character having at most r states.
- <u>Decide</u>: If O admits a perfect phylogeny.
 A set of defining characters are compatible, if a set of objects defined by a character set matrix admits a perfect phylogeny.

- Allow reversal and convergence properties in the models of evolution.
- Parsimony Criteria: Minimize the occurrences of reversal and convergence events in the reconstructed phylogeny tree.
 - Dollo Parsimony Criterion: Minimize reversal while forbidding convergence.
 - Camin-Sokal Parsimony Criterion: Minimize convergence while forbidding reversal.

Compatibility Criteria

 Compatibility Criteria: Exclude minimal number of characters under consideration so that the reconstructed phylogeny tree is perfect and does not admit any occurrence of reversal or convergence.

- Perfect Phylogeny Problem for arbitrary (>2) number of unordered characters and arbitrary (>2) number of states is NPcomplete.
- Optimal Phylogeny Problem under compatibility criteria is NP-complete.
- Optimal Phylogeny Problem either under Dollo or Camin-Sokal parsimony criteria is NP-complete.

Binary Character Set

- Each character has two states = {0, 1}
- ◊ If a character is ordered then 0 → 1
 (O=ancestral and 1=derived), or converse.
- For binary characters (ordered or unordered), perfect phylogeny problem can be solved efficiently
 - Poly time, for *n* taxa and *m* characters, Time
 = O(nm).
- A two phase algorithm:
 - 1. Perfect Phylogeny Decision Problem
- 2. Perfect Phylogeny Reconstruction Problem Made by A-PDF PPT2PDF

Compatibility Condition

- T = Perfect Phylogeny for Miff
 (∀_{ci} = character)(∃! e = tree-edge) label(e) = {c_i, 0→1} root(T) = (0, 0, 0, ..., 0)
- A path from root to a taxon t is labeled (c_{i1}, c_{i2}, ..., c_{ij})
 ⇒ t has 1's in positions i₁, i₂, ..., i_j
- Perfect Phylogeny Condition
 - $M = n \times m$ Character State Matrix, $j \in \{1...m\}$

$$-O_{i} = \{i = taxon : M_{ii} = 1\}$$

- O'= { *i* = taxon :
$$M_{ij}$$
 = O}

Key Lemma

• Lemma: A binary matrix M admits a perfect phylogeny iff $(\forall i, j \in \{1, m\}) O_1 \cap O_1 = \emptyset \text{ or } O_1 \subseteq O_1 \text{ or } O_1 \supseteq O_1$

Proof of Lemma

- <u>Proof</u>: (⇒) T_i = subtree containing O_i T_i = subtree containing O_i T_i = root(T_i) and T_i = root(T_i)
 r_i is neither an ancestor nor descendant of T_i ⇒ O_i ∩ O_i =
 - *r*, is a descendant of $r_j \Rightarrow O_j \subseteq O_j$ *r*, is an ancestor of $r_j \Rightarrow O_j \supseteq O_j$
- (⇐) By induction, Base case m=1 is trivial. Induction case, m= k+1:
 - T_k = Tree for k characters. O_{k+1} is contained in a subtree with minimal # taxa rooted at r.

rmust be a leaf node. Either an edge needs to be labeled or the subtree rooted at r has to be split. □

Simple Algorithm based on the Lemma

- Compare every pair of columns for the intersection and inclusion properties.
 Total of O(m²) pairs, each comparison can be done in O(n) time.
- Total Time Complexity = O(nm²)
- Can be improved to O(nm) time.

Parsimony with Distance Based Tree

- Fitch's Algorithm
- Finding minimum number of changes for a given tree:
 - Assume any state (e.g., nucleotide, amino acid) can convert to any other state.
 - As before assume that positions are independent.

- (For Nucleotide Sequences)
- Traverse tree from leaves to root determining set of possible states (e.g. nucleotides) for each internal node.
- Traverse tree from root to leaves picking ancestral states for internal nodes.

Fitch's Algorithm (Example)

Fitch's Algorithm (Example)

Fitch's Algorithm-

- Step 1: Possible States for Internal Nodes
- Do a post-order (from leaves to root) traversal of tree
- Determine possible states of R_u of internal node u with children i and j:

$$\approx R_{\mu} = \begin{cases} R_{i} \cup R_{j} & \text{if } R_{i} \cap R_{j} = \emptyset \\ R_{i} \cap R_{j} & \text{otherwise.} \end{cases}$$

Fitch's Algorithm-

- Step 2: Select States for Internal Nodes
- Do a pre-order (from root to leaves) traversal of tree
- Select state r_a of internal node u with parent v:
- $\hat{R}_{a} = \begin{cases} r_{v'} & \text{if } r_{v} \in R_{a} \\ \text{Any state} \in R_{a}, \text{ otherwise.} \end{cases}$
- The cost of the tree is the number of state changes imposed by the tree topology.

- Weighted Version of Fitch's Algorithm
- All state transitions are not necessarily equally likely. Use different costs S(A, B) for different transitions

$$A \Rightarrow B$$

- Modification to Fitch's algorithm: (Step 1)
 Propagate costs up the tree.
- Base case: Leaf Nodes:

r rl i

{O, if the leaf is labeled by the character a;

Sankoff-Cedergren Algorithm:

Internal Nodes: R_a(a) = min_b [R_b(b) + S(a, b)] + min_b [R_b(b) + S(a, b)]

Sankoff-Cedergren Algorithm:

- ◊ Step 2:
- Do a pre-order (from root to leaves) traversal of tree
- Select minimal cost character for each internal node.

Maximum Parsimony Tree:

mtDNA data for Primates

Rate of Evolutionary Changes

- Taxa of nucleotide or amino acid sequences.
- Given two taxa s, and s, measure their distance
 - Distance(s_i, s_i), d_{ij} = Edit distance based on pairwise sequence alignment.
- Assumptions about the Molecular Clock (governing rate of evolutionary change):
 - Only independent substitutions
 - No back or parallel mutations
 - Neglect selection pressure.

Distance Based Approaches

♦ <u>Given</u>:

An $n \times n$ nonnegative-valued distance matrix $M \in \mathbb{R}_{+}^{n \times n}$, where M_{ij} is the distance between objects *i* and *j*:

◊ Construct:

An edge-weighted tree such that the distances between leaves / and / are "close" to M_{ii}

Average Linkage Clustering

◊ UPGMA

- (Unweighted Pair-Group Method using an Arithmetic Average).
- Distance between clusters (disjoint sets of taxa) C_i and C_i is
- ◇ Distance(C_i, C_j) = d_{ij} $= (1/|C_j| \cdot |C_j|) \sum_{p \in C_i, q \in C_j} d_{pq}$
- This is the average distance between pairs of taxa from each cluster.

UPGMA

- Assign each taxon to is own cluster.
- Define one leaf for each taxon—
 - Place it at height O.
- While more than two clusters exist
 - Determine two clusters /and /with smallest d //
 - Define a new cluster $C_k = C_i \cup C_j$
 - Define a node k with children i and j-
 - \diamond Place it at height $d_{ij}/2$.
 - Replace clusters C_i and C_j with C_k
- ◊ Join the last two clusters (Jand J) by root at height d₁₁/2. □

- Synonymous or Neutral Substitutions:
 = Nucleotide substitutions with no effect on expressed amino acid sequences
 - RECALL: Genetic code is redundant—Most substitutions to 3rd positions are synonymous.
 - Often a single non-synonymous nucleotide substitution is likely to change one amino acid into a related amino acid (e.g., both hydrophobic).
- Molecular clock is modeled based on non-synonymous substitution rate.

- Transitional Mutations:
 - purine-purine, i.e. $A \leftrightarrow G$
 - pyrimid ine-pyrimid ine, i.e. $C \leftrightarrow T$
- Transversal Mutations:
 - purine-pyrimid ine: A \leftrightarrow T, A \leftrightarrow C, G \leftrightarrow C, G \leftrightarrow C, G
- Vsually transitional mutations are more likely. Mutation into A is more likely.

DNA repair

Effect of DNA repair mechanism

λfor	#per site per year		
higher primate	pprox 1.3 $ imes$ 10-9 /site/yr		
sea urchins & rodents	pprox 6.6 $ imes$ 10 ⁻⁹ /site/yr		
mammalian mtDNA	pprox 10 ⁻⁸ /site/yr		
plant cpDNA	pprox 1.1 $ imes$ 10 ⁻⁹ /site/yr		

Markov Process Model of Mutation

- Evolution is modeled by a stochastic process, X(t) with real-valued time parameter t ≥ 0
- A time-homogeneous Markov process
- ◊ (Q, π, P(t))
- ◊ Q = {A, C, G, T} = States
- $\pi = \{\pi_A, \pi_C, \pi_G, \pi_T\} =$ Initial Distribution

Markov Process (Contd.)

 $\Rightarrow p_{\sigma,\tau}(t)$ = $\Pr[\sigma | \tau, f] = \Pr[X(f) = \sigma | X(O) = \tau]$ = Probability that a nucleotide with a value τ at time O mutates to a σ by time t \diamond P(t+s) = P(t)P(s) \Rightarrow p_i(t) = Pr[X(t) = I] $= \sum_{k \in \{A,C,G,T\}} \pi_k p_{k,i}(f)$ $\Rightarrow \pi^* = \{\pi_A^*, \pi_C^*, \pi_G^*, \pi_T^*\}$ is a stationary distribution for P(f) $\forall t \pi^* \mathbf{P}(t) = \pi^*$

Markov Process (Contd.)

- ◊ P'(f)
 - = $P(f) \lim_{\Delta t \to 0} [P(\Delta f) P(O)] / [\Delta f]$ = $P(f) \Lambda$
- Solution to the differential equation:
 P(t) = exp(Λ t) = ∑_{n=0}[∞] Λⁿ tⁿ/n!
 Row-sum for Λ is O:
 - $\sum_{i} \lambda_{i,i} = \lim_{\Delta t \to 0} \left[\sum p_{i,i} 1 \right] / [\Delta t] = 0.$

Juke-Cantor Model

 $(\pi_{A'}\pi_{T'}\pi_{C'}\pi_{G}) = (1/4, 1/4, 1/4, 1/4)$

Juke-Cantor Model (Contd.)

Example

 (Based on mtDNA Sequences) Let q = the proportions of nucleotides that is same in two mtDNA sequences. Kat $q = \frac{1}{4}(1 + 3 e^{-K});$ $K = \ln (3/(4q-1))$ Juke-Cantor distance between a pair of mtDNA sequences is given by $K' = (3/4) \ln (3/(4q-1))$

Example (Contd.)

Differences in mtDNA sequences

	Human	Chimpanzee	Gorilla	Orangutan	Gibbon
Human	- = -	1	3	9	12
Chimpanzee		-	2	8	11
Gorilla			-	6	11
Orangutan				e	11
Gibbon					

Example (Contd.)

◊ Juke-Cantor distances between primates

	Human	Chimpanzee	Gorilla	Orangutan	Gibbon
Human		0.015	0.045	0.143	0.198
Chimpanzee		-	0.030	0.126	0.179
Gorilla			-	0.092	0.179
Olangutan				e	0.179
Gibbon					23

UPGMA Phylogeny

VPGMA & The Molecular Clock

- Assumes a constant molecular clock:
 - Divergence of sequences is assumed to occur at the same rate at all points in the tree.
- This assumption is in general false
 - Selection pressures vary across time periods, organisms, genes within an organism, regions within a gene.

- ◇ Distance function p satisfies the axioms: $\rho(i, j) \ge 0 \text{ with equality iff } i=j;$ $\rho(i,j) = \rho(j,j) \text{ (symmetry)};$ $\rho(i,k) \le \rho(i,j) + \rho(j,k) \text{ (triangle inequality)}.$
- Path length between i, j of T = Sum of edge weights along the path connecting j and j.
- If ∀ i and j, p_{ij} = path length between i, j of T, then ρ is called an additive tree metric.
- If the path length from the root to every leaf is identical then p is called an ultrametric.

UPGMA & Ultrametric Data

- If the rates of evolution among different lineages are exactly the same, then the data is ultrametric.
- **Definition (3-Point Condition)**: For any triplet of sequences, $i \neq j \neq k$, of the three distances d_{ij} d_{jk} , d_{jk} r two are equal and not less than the third.

$$\mathbf{d}_{i,k} = \mathbf{d}_{j,k} \geqq \mathbf{d}_{i,j}$$

Additive Metric

- Every additive metric satisfies the 4-point condition:
- ◊ ∀ i, j, k, l, of the three sums S₁ = d_{k,l} + d_{k,l} S₂ = d_{kk} + d_k / and S₃ = d_{kl} + d_{k,l} two are equal and not less than the third. E.g. S₁ ≤ S₂ = S₃.

- Like UPGMA constructs a tree by sequentially joining subtrees
- Vnlike UPGMA
 - Does not make molecular clock assumption
 - Produces unrooted tree
- Does assume additivity: Distance between a pair of taxa is the path length in the tree.

Distances in Neighbor Joining

 Given a new internal node u, the distance to another node k is given by

$$s_{u,k} = (d_{i,k} + d_{i,k} - d_{i,j})/2$$

Distances in Neighbor Joining

 Calculate the distance from a leaf to its parent node similarly:

$$s_{i,a} = (d_{i,j} + d_{i,k} - d_{j,k})/2 = d_{i,j}/2 + (d_{i,k} - d_{j,k})/2$$

$$s_{j,a} = d_{i,j} - s_{i,a}$$

Generalizing the Scheme

- (To more than Three Leaves)
- ♦ Define $r_i = \sum_{k=j}^{N} d_{i,k}$
- Rate corrected distance between taxa / and /:

$$m_{i,j} = d_{i,j} - (r_i + r_j)/(N-2)$$

is used to choose the "nearest neighbors" to be joined.

Generalizing Distances in NJ

 Calculate the distance from a leaf to its parent node similarly:

$$s_{i,a} = d_{i,a} / 2 + (r_i - r_i) / (2(N-2))$$

 $s_{i,a} = d_{i,a} - s_{i,a}$

Picking a Pair of Nodes to Join

 At each step, pick a pair of "nearest neighbor" nodes to join-Nearest neighbor is not determined by minimal d_{i, i} but m_{ij}

- ◊ T= Set of leaf nodes
- While more than two subtrees in T
 - Pick a pair *i*, *j* in T with minimal m //
 - Define a new node u joining i and j
 - Remove i and i from T and insert u
- Join the last two remaining subtrees

Example

- Neighbor joining method creates an unrooted phylogenetic tree.
- A root is assigned to an unrooted tree by finding an *outgroup*.
 - An outgroup is a species known to be more distantly related to remaining species than they are to each other.
 - Point where the outgroup joins the rest of the tree is best candidate for root position.

- Phylogenetic Trees are constructed using:
 - Clustering Method: Identifies groups of close taxa. E.g. VPGMA or Average Linkage Clustering Methods.
 - ◊ Sequential
 - Agglomerative
 - Hierarchical
 - Nonoverlapping
 - Pairwise Method: Pairs a taxon (or a group of taxa) with its nearest neighbor. E.g. Additive trees constructed with Fitch-Margolish Algorithm.

To be continued...

