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— Probes & ProbeSets in Affymetrix Chips

Target Sequence
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25 mer probe

11 probeset
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GeneChip® Expression Array Design
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TGTGATGGTGGGMTGGGTCAGAAE;EACTCCTATGTGGGTGACGAGGCC
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TTACCCAGTCTTICCTGAGGATACACCCAC  Perfect Match Cligo

:_TTACCC&GTCTTQ TGAGGATACACCCAC Mismatch Oligo

Perfect match probe cells

Fluorescence Intensity Image

Mismatch probe cells

Figure 1-3 Expression tiling strategy
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¢ Summarize 20 PM,MM pairs (probe level data) into one

number for each probe set (gene)
= We call this number an expression measure
= Affymetrix GeneChip Software has defaults.

> Does it work? Can it be improved?
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Where is the evidence that it

o works?
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Comments

= The chips used in Lockhart et. al. contained around
1000 probes per gene

= Current chips contain 11-20 probes per gene
= These are quite different situations

> We haven't seen 3 plot like the previous one for current
chips
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Data Processing

o The original GeneChip® software used AvDiff
AVDIff = |AF Y 4 (PM, - MM)

= where A is 3 suitable set of pairs chosen by the
software. Here 30%-40-% could be <O, which was 3
major irritant.

= Log PM| / MM| was also used in the above.
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Data Processing

o L}i)and Wong (dChip) fit the following model to sets of
chips
PM,-j-MM,-j = 0¢ t+ g

= where &ij ~ N(O, 62). They consider 0, to be
expression in chip i. Their model is also fitted to PM
only, or to both PM and MM. Note that by taking
logs, assuming the LHS is | O, this is close to an
additive model.
 Efron etal consider log PMj-0.5 log MM;. It is much
less frequently <O.

¢ Another summary is the second largest PM, PM(2).
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Data Processing

o The latest version of GeneChip® uses something else,
namely

Log{Signal Intensity} = TukeyBiweight{log(PM; - MM;*)}

= with MM|* a version of MM that is never bigger than
PM|.
o Here TukeyBiweight can be regarded as a kind of
robust/resistant mean.
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Tukey Biweight
et A robust mean

o Tukey Biweight mean of the dataset

= Calculate the median (MED) of the data and the
mean absolute deviation (MAD)

= MED +- 5.0 * MAD comprise the limits outside which
we consider the data to be outlier. (5.0is 3
parameter)

= X - MED is used to compute a weight that decays to
zero outside the limits of outlier using the bi-square
function.

= Compute the weighted mean to eliminate the
outliers.
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Data Processing .

o RMA (Robust Multi-Array Averaging)
¢ 3 Step

= Background removal

= Normalization

* Summarization
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Data Processing ...

¢ For example, dChip Background Removal was PM
MM, MAS-5 was somewhat similar

¢ RMA bg.correct uses 3 signal + plus noise model and
uses the posterior mean to detect the signal.

» Works only on the PM values. The MM values serve in
parameter estimation for this and normalization steps
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m) RMA bg.correct ...

¢ Signal: exponentially distributed
o Observed PM probe value: X =Y + Noise
¢ Noise: independent, mean p, std dev=o

o 1, o, a (for the exponential distribution) are the three
parameters to be estimated.

Different methods for this.

= All PM’s

= All MM’s

= Alpha from PM’s mu and sigma from MM’s

<
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RMA bgq.correct

o The last might be problematic
= The MM’s have a strong signal components and lead
to mis-estimation of rand o
= Result sensitive to mis-estimation of o.
= ais usually very small 0.001 - 0.002
= We are looking at an improper flat prior being
approximated Ey 3 slowly decaying exponential
= We can take a. = 0.0 in the final formula and
formulate the estimation problem as estimating from
an improper prior by taking limits.
11/28/2005
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Normalization

< Goal:

= Remove unwanted variability between
chips/experiments

= Combined with scaling to get the values between
certain pre-fixed limits (MAS-5)

= RMA: quantile normalization. Tries to achieve a
linear relation between gene expression rank and
response.
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Summarization

+ Combining the responses of the probes in the probeset
to generate one value for the probeset.

A form of mean.
= Usually robustified
RMA: median polish on the logged expression values
MAGS-5: Tukey Biweight (as explained earlier)
dChip: Model based (see eatlier)

<

<

<

<
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Probe level data exhibiting parallel
S behaviour on the log scale

BaE—.
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o~ RMA in summary

BaE—.

o We background correct PM on original scale
* We carry out guantile normalization
o We take log2

<

Under the add/tive model
log2 n(PMij -*BG) = m +ai + bj + &ij

<

<

We estimate chip effects 4/ and probe effects 5/ using a
robust/resistant method.
11/28/2005
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i e 50

BaE—.

Avg.Diff MVA plot
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Avg.Difi QQ-plot
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i e 50

BaE—.

MAS-5

MAS 5.0 MVA plot
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MAS 5.0 QQ-plot
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Li and Wong's B MVA plot Li and Wong's b QQ-plot

relerence quantiles
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Average log(PM-BG) MYA plot Average log(PM-BG) GQ-plot

relerence quantiles
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RMA MVA plot RMA QQ-plot
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=
RMA backqround correction
.L.g;«)\l:; J

o Itassumesa model O =S+N,

o where S is an exponentially distributed (parameter a)
signal, and N is a Gaussian noise with mean p and
standard deviation .

¢ Various truncation possibilities have also been sugqgested.

o The estimator used in all these papers is

E [S]O=o].

<
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RMA Background Approach

» Convolution Model

Observed Signal
0 S
Exp(a)

o P(S=s) = a exp(-a s), fors, O
¢ P(O=0lS=s)=¢,(0-5-p)
¢ The posterior is computed by
¢ P(S=5/0=0)

= P(S=s) P(O=0lS=s)/s,! ds P(S=s) P(O=0lS=s)
Numerator = o exp(-a s) (0 -5 - p)

= a/(p{2 } o)

£ exp(-((s - (0 -w))?+2 0% as)/20?)}
Denominator = st ds Numerator

<

<
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£
A

o Thus, P(S=s1 0 =0)
= 0,(s - 3)/D,(3)
=0-u-06%a
+6 ¢((s - u -2 a) /6)/®((s - p-62 a)/c)

=5 -*BG(u,0)
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Correction is given by

E(S|0=o)=a+bm

(IJ[E +

2
a=o0—-u—-oca,b=c




Non-linear normalization
needed

A Non-linear

Unnormalized Scaled i
Normalization

Quantile Normalization

» Normalize so that the quantiles of each chip are
equal. Simple and fast algorithm. Goal is to
give same distribution to each chip.

| w=F*-1(G(x))

Original ‘ \ e /K‘- o Target

Distribution [ ' ! SO Distribution

/ ./
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Sort columns of original
matrix
Take averages across rows

Set average as value for
All elements in the row

w N

4.5

e O O N a2 ON U

»

Unsort columns of
matrix to original order

It Reduces Variability

Expression Values Fold change

Fald- g of non-sgpin-ins

Also no serious bias effects. For more see Bolstad et al (2003)
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General Probe Level Model
v, =f(X)+¢,

» Where f(X) is function of factor (and possibly
covariate) variables (our interest will be in
linear functions)

), is a pre-processed probe intensity
(usually log scale)

- Assume that E[s, |=0
Var[ed =o’

The Three Steps of RMA

. Convolution Background
. Quantile Normalization

. Linear model on the log2 scale fit
robustly.

Software for implementing RMA is in
the Bioconductor affy package

17



RMA mostly does well in
practice

Detecting Differential Expression Not noisy in low intensities

Fold change (Affymetrix)

— g —— B i

The RMA model

y,=m+a;+f, +&,

where 3, =log, N(B(PM, )
«, is a probe-effect i=1,...,1
g, is chip-effect (m+5; is log2 gene
expression on array j) j=1,...,J
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Median Polish Algorithm

Sweep_ Columns

Iterate

Imposes median ¢; = median £, =0

Constraints median, & = median_:. g =0

Median Polish

» Advantages
— Fast
— Very robust
» Disadvantages

— No algorithmic flexibility to fit alternative
models

— No standard error estimates

19



Within-slide Normalizations

11/28/2005 © _
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Dye Bias
N
|
¢ Dye Bias
» Two-channel microarrays
CONTRO SAMPLE * Intensity in one channel is higher

L H than other

* Dye swapping experiments
> Additionally, can be normalized
“—' » Take sum intensities for each
signal

* Normalize sums: Assumes most
genes requlated at same level

11/28/2005 L7-40
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r) Spatial Normalization

¢ Signal varies according to spot location
= Particularly, corners
*Less hybridization solution
“*Susceptible to desiccation

= Chip design
DO NOT cluster genes with similar expression
profiles

11/28/2005 —
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Spatial Bias

..,__'“2'.’.‘1{5. Source: http://www.csc.fi/oppaat/siru/sirupartll.pdf
11/28/2005 L7-42
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Intensity Dependent Bigses
Q y Lep

¢ Low intensities have much greater variation
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Rl Plots

¢ Ratio-Intensity
¢ R:log,(R/G)
o I: login(R*G)

log., (R/G}

log,  (R*G}

?%t})é/é\yyg&jcl.ac.uk/oncology/MécroCore/HTM L_resource/ L7-46
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MA Plots

¢ M: log,(R/G)
¢ A: log,SQRT(R*G) = /2 log,(R*G)

log,, (RAG)

172 log .(RG)

mtpz'%\yﬁ%végcl.ac.uk/oncology/MécroCore/HTM L_resource/MA_pIots_popup.rlltm_47
Bud Mishra, 2005

Lowess (Loess)
o Normalization

o Locally Weighted Linear Regression

¢ Linegrises Datg

11/28/2005 © _
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Bl plot raw data

L]

Figures from Quackenbush, 2002
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C
Cross—-slide Normalizations

» Comparisons between chips needed
¢ Slides normalized so comparisons can be made

11/28/2005 L7-50
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2 Per-Chip Normalization

¢ Mean/Median centering — mean/median intensity of
every chip brought to same level

 Total intensity normalization - scaling factor
determined by summing intensities

o Spiked-control, housekeeping normalization

o *Bud Mishra, 2005 L7-51
= Differential Expression
TN

o Crude filter

= Genes over/underexpressed by a factor of two
= |og, values of 1and -1
= Plus: Calculation very easy
= Minus: Does not consider reliability of data
11/28/2005 17-52
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Localized Z-Scores

Intensity-dependent Z-scores for identifying differential expression

10g:(RIG)

logy(R*G)

Figures from Quackenbush, 2002
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Two sample t-test

o Calculates probability values sampled from same
distribution

» Considers mean, variagnce

11/28/2005 ©
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Analysis Tools

<

R, Bioconductor
S+, ArrayAnalyzer
Affymetrix Tools
GeneSpring

<

<

<
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MIAME Data

¢ MIAME: “Minimum Information About a Microarray
Experiment”

= Specifies content, not format
= Specifies type of data to be published
o MIAME Checklist
= Experiment design
= Samples used; extract preparation and labeling
» Hybridization procedures and parameters
= Measurement data and specifications
= Array design

11/28/2005 L7-56

©
Bud Mishra, 2005

28



MAGE-ML

¢ MicroArray Gene Expression Markup Lanquage
¢ XML based

= Object model

= Document exchange format

= Software toolkits

11/28/2005 © _
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— Repositories

<

ArrayExpress (EBI)
Gene Expression Omnibus (NCBI)
Stanford Microarray Database (SMD)

<

<

<

Microarray databases

* AMAD: Another Microarray Database
* LONGHORN:

= MIDAS:

= BASE:

11/28/2005 . )
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11/28/2005

Proteomics

©
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Beyond Genomics

¢ Human Genome

» 30,000 to 60,000 genes
¢ Human Proteome

= 300,000 to 1,200,000 protein variants
¢ Human Metabalome

= Metabolic products of the organism
(lipids,carbohydrates, amino acids, peptides,
prostaglandins, etc)

11/28/2005
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Proteome

¢ Proteome: The entire protein complement in a given
cell, tissue or organism.

» Protein Activities

= 3D Structure

= Modifications and Localization

= Protein-Protein Interaction:Proteins in Complexes

= Protein Profile: Global patterns of protein content
and activity (particularly in response to 3 disease
state.)

= Understanding system-level cellular behavior

11/28/2005 L7-61
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. Technoloay & Databases
Q gy

o Identify proteins and protein complexes in biological
samples comprehensively and quantitatively with both
high sensitivity and fidelity.

= Develop new diagnostic markers
= Identification of new drug-target
¢ HUPO (Human Proteome Organization)
= Coordinating proteomics projects worldwide.

11/28/2005 L7-62
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Integration

¢ Complementary to other functional genomic
approaches:
= Micro-array based expression profiles

= Systematic phenotypic profiles at the cell and
organism level

» Systematic genetics
= Small-molecule-based arrays

11/28/2005 17-63
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=
Applications of Proteomics
&; Pp

¢ Protein Mining
*» Catalog all the proteins present in a tissue, cell, organelle, etc.
o Differential Expression Profiling
= Identification of proteins in a sample as a function of a
particular state: differentiation, stage of development, disease
state, response to drug or stimulus
> Network Mapping
= Identification of proteins in functional networks: biosynthetic
pathways, signal transduction pathways, multiprotein complexes
¢ Mapping Protein Modifications
= Characterization of posttranslational modifications:
phosphorylation, glycosylation, oxidation, etc.

11/28/2005 L7-64
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2 Challenges of Proteomics

o Limited and Variable Sample Material
¢ Sample Degradation
¢ Vast Dynamic Range

= (more than 105-fold for protein abundance)
Post-translational Modifications
Unlimited tissue, developmental and temporal specificty
Disease and druq perturbation.

<

<

<

11/28/2005 L7-65
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2  Proteomics Technologies

¢ Development of genome and protein sequence databases
= Bioinformatics and Data mining software

o Development of mass spectrometry instrumentation
suitable to analyze biomolecules

= Protein mass, Peptide mass, Peptide sequence
o Development of analytical protein separation

technology
= IEF, 2D-SDS-PAGE, HPLC, Capillary Electrophoess,
Affinity Chromatography
11/28/2005 L7-66
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=
~—= Components of Proteomics

Protein Separation Mass Spectroscopy

Bioinformatics

11/28/2005 L7-67

©
Bud Mishra, 2005

Sy 2 D Electrophoresis

o Property of proteins
» Some amino acids are acidic / basic (donate / accept H+)
= Collection of amino acids in protein determines its pl value
<pl = pH at which molecular charge = zero
o 2D electrophoresis
= Separate proteins according to both pl & molecular weight

[T coo €00~
HaH-C-H HgH-C-H HaH-CH
H-x; -G 3H-¢

Hy ik {Hy

Gy CHy He=¢ |

CHy CHy HH__HH

CHy HH &

HH3 ey

SHH HH
Lysine Arginine Histidine
K R H

11/28/2005 L7-68
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2 D Electrophoresis

¢ Method
1. Extract & prepare protein sample in solution
o 2. Separate proteins (in each dimension)
= |. Based on pH
% Using isoelectric focusing (1EF)
< Using immobilized pH gradient (IPG) strips
= |I. Based on molecular weight (size)
< Using gel electrophoresis

11/28/2005 © _
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(1) IEF or IPG (2) SDS-PAGE
17-72 hr 6 hr

11/28/2005 . )
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Proteomic Technology
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2-D SDS PAGE
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2D SDS PAGE

from Thee Art 4 M0 11 995

. atabase searct

Integrating with Mass-Spec

| Identify a protein with mass spectrometry |




Mass Spectrometry

¢ Method
= 1. Excise individual dots from 2D electrophoresis
= 2. Digest protein into fragments with enzyme (e.q.,
trypsin)
= 3. lonize protein fragments (without breaking)

“*Matrix Assisted Laser Desorption lonization
(MALDI)

s Electrospray lonization (ESI)
= 4. Accelerate through mass spectrometer
= 5. Produces peptide mass fingerprint

11/28/2005 . )
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Fingerprint

- L)
N
+ Peptide mass fingerprint

3000

1000- |||||| Wi e . h som
:_mlhtu . | ‘
B e e e T T T T T

600 1200 1800 2400 2800 miz
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— |dentifying peptide mass fingerprint

> Compare with Fingerprint for actual protein in database
= Predicted fingerprint for predicted / hypothetical
protein (Precompute for efficiency)
= May fail to distinguish Post-translation modifications
to protein
¢ Protein databases / web servers (e.g., SWIS5-2D PAGE)
= For each protein, record its
= (1) Protein pl, molecular weight, peptide mass
fingerprint. ..
= (2) Experimentally determined location in 2D gel

11/28/2005 L7-78
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Peptide Chips

¢ Protein-protein interaction,

Unravel signal transduction pathways,

Perform multi-parameter diagnosis,

Study individual immunological repertoires
* e.d. autoimmune reactions.

<

<

<

11/28/2005 L7-79
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Peptide Chips

¢ Goal
= High-throughput analysis of protein expression / interaction
* Adapt approach similar to DNA microarrays
* Improves on speed vs. 2D electrophoresis
o Approach
* No equivalent of hybridization for proteins
* Exploit other biochemical binding reactions
% Antibody-antigen
< Receptor-ligand
“DNA-protein. ..

11/28/2005 L7-80
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Ciphergen

o L
Ciphergen Antibody Capture Protein Chip
(P Proteins
T,
W &
Antibody |
1) Protein with  2) Rerainder of 3} Wash  4) SELDI laser
antigen bound to protein digested away ionizes & desorbs
antibody probe  enzyme, leaving protein epitope binding
peptide antigen  fragments peptide, sends to
mass spectrometer
11/28/2005
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hinding
domain

Protein-Protein Interaction

Bail protein

. Yeast two hybrid system

Transcription OFF

LexA Repariar genes

aperators (LacZ and HIS3) Trangcription O
m Activation
Ty domain

Transoription OFF

—0

Laxd Reporier genes
operalors (Lacg and HISI)
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— Basic Proteomic Analysis Scheme

Separation
— P = | |ndividual Proteins

Protein Mixture
2D-SDS-PAGE
\ Spot Cutting

Digestion
Mass Spectroscopy Trypsin
. .
Peptide Mass = 1\ pqoF Peptides

Database
Search ; 1
caren Protein Identification

L7-83
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=
2 2D-SDS-PAGE of 2 Types of Cells
okt e

hi ¥
B -
- N
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- . 4 - .
~ g -
Cell Type A Cell Type B
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— Differential Expression

Cell Type A Proteome Cell Type B Proteome

Proteins unique to Proteins unique t
Type A Type B
11/28/2005
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Clinical Diagnostics Proteomics:
& Protein Profiling
ool

Serum Protein Pattern Diagnostics

imae regggﬁirtﬂ)n
Eriti
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Protein Profiles of
Sy (3 patients)

Intensity

3573.9-
75 +H ) PCA #1
<«— Candidate
5 Biomarker,
25
0

I I . I PCA#1

I I | I I PCA#2

|. Il PCA#3

I I I I NPR #1

I | NPR #2

I I I I NPR #3

3000 4000 5000 6000 7000
T Molecular Weight (Da)
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To be continued...
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