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Probes & ProbeSets in Affymetrix Chips
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The big picture

• Summarize 20 PM,MM pairs (probe level data) into one 
number for each probe set (gene)

We call this number an expression measure
Affymetrix GeneChip Software has defaults.

• Does it work? Can it be improved?
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Where is the evidence that it 
works?

Lockhart et. al. Nature 

Biotechnology 14 (1996)
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Comments

The chips used in Lockhart et. al. contained around 
1000 probes per gene
Current chips contain 11-20 probes per gene
These are quite different situations

• We haven’t seen a plot like the previous one for current 
chips
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Data Processing

• The original GeneChip®  software used AvDiff

where A is a suitable set of pairs chosen by the 
software.  Here 30%-40-% could be <0, which was    a 
major irritant. 
Log PMj  / MMj  was also used in the above.

AvDiff  =  |A|-1 ∑{j∈A} (PMj - MMj)
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Data Processing

• Li and Wong (dChip) fit the following model to sets of 
chips

where   εij ~ N(0, σ2).  They consider θi to be 
expression in chip i. Their model is also fitted to PM 
only, or to both PM and MM. Note that by taking 
logs, assuming the LHS is ¸ 0, this is close to an 
additive model.

• Efron et al  consider log PMj -0.5 log MMj.  It is much 
less frequently <0.

• Another summary is the second largest PM, PM(2).

PMij - MMij =  θiϕj +  εij  
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Data Processing 

• The latest version of GeneChip® uses something else, 
namely

with MMj* a version of MMj  that is never bigger than 
PMj. 

• Here TukeyBiweight can be regarded as a kind of 
robust/resistant mean.

Log{Signal Intensity} = TukeyBiweight{log(PMj - MMj*)}
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Tukey Biweight
A robust mean

• Tukey Biweight mean of the dataset 
Calculate the median (MED) of the data and the 
mean absolute deviation (MAD)
MED +- 5.0 * MAD comprise the limits outside which 
we consider the data to be outlier. (5.0 is a 
parameter)
X - MED is used to compute a weight that decays to 
zero outside the limits of outlier using the bi-square 
function.
Compute the weighted mean to eliminate the 
outliers.
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Data Processing …

• RMA (Robust Multi-Array Averaging)
• 3 Step

Background removal
Normalization
Summarization
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Data Processing …

• For example, dChip Background Removal was PM –
MM, MAS-5 was somewhat similar

• RMA bg.correct uses a signal + plus noise model and 
uses the posterior mean to detect the signal.

• Works only on the PM values. The MM values serve in 
parameter estimation for this and normalization steps
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RMA bg.correct …

• Signal: exponentially distributed
• Observed PM probe value: X = Y + Noise
• Noise: independent, mean µ, std dev = σ
• µ, σ, α (for the exponential distribution) are the three 

parameters to be estimated.
• Different methods for this.

All PM’s
All MM’s
Alpha from PM’s mu and sigma from MM’s
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RMA bg.correct

• The last might be problematic
The MM’s have a strong signal components and lead 
to mis-estimation of µ and σ
Result sensitive to mis-estimation of σ.
α is usually very small 0.001 – 0.002
We are looking at an improper flat prior being 
approximated by a slowly decaying exponential
We can take α = 0.0 in the final formula and 
formulate the estimation problem as estimating from 
an improper prior by taking limits.
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Normalization

• Goal: 
Remove unwanted variability between 
chips/experiments
Combined with scaling to get the values between 
certain pre-fixed limits (MAS-5)
RMA: quantile normalization. Tries to achieve a 
linear relation between gene expression rank and 
response.
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Summarization

• Combining the responses of the probes in the probeset 
to generate one value for the probeset.

• A form of mean.
Usually robustified

• RMA: median polish on the logged expression values
• MAS-5: Tukey Biweight (as explained earlier)
• dChip: Model based (see earlier)
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Probe level data exhibiting parallel 
behaviour on the log scale
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RMA in summary

• We background correct PM on original scale
• We carry out quantile normalization
• We take log2
•
• Under the additive model
• log2 n(PMij -*BG) = m + ai + bj + εij

• We estimate chip effects ai  and probe effects bj using a 
robust/resistant method.
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Performance (AvDiff)
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MAS-5
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dChip (Li & Wong)
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RMA (no median polish)
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RMA (median Polish)
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RMA background correction

• It assumes a model  O = S + N,                                  
• where S is an exponentially distributed (parameter α) 

signal, and N is a Gaussian noise with mean µ and 
standard deviation σ. 

• Various truncation possibilities have also been suggested. 
• The estimator used in all these papers is                       
• E [S | O=o].
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• P(S=s) = α exp(-α s), for s ¸ 0
• P(O = o | S = s) = φσ(o - s - µ) 
• The posterior is computed by
• P(S = s | O = o)

= P(S=s) P(O=o|S=s)/s0
1 ds P(S=s) P(O=o|S=s)

• Numerator = α exp(-α s) φσ(o - s - µ) 
= α/(p{2 π} σ) 
£ exp(-((s - (o - µ))2 + 2 σ2 α s)/2σ2 )}

• Denominator = s0
1 ds Numerator
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• Thus, P(S = s | O = o)
= φσ(s - a)/Φσ(a)
= o - µ -σ2 α
+ σ φ((s - µ -σ2 α) /σ)/Φ((s - µ -σ2 α)/σ)

= s -*BG(µ,σ)
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Within-slide Normalizations
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Dye Bias

• Dye Bias
Two-channel microarrays
Intensity in one channel is higher 
than other
Dye swapping experiments

• Additionally, can be normalized
Take sum intensities for each 
signal
Normalize sums: Assumes most 
genes regulated at same level

CONTRO
L

SAMPLE
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Spatial Normalization

• Signal varies according to spot location
Particularly, corners

Less hybridization solution
Susceptible to desiccation

Chip design
DO NOT cluster genes with similar expression 
profiles
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Spatial Bias
Source: http://www.csc.fi/oppaat/siru/sirupartII.pdf
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11/28/2005 ©Bud Mishra, 2005 L7-44Source: http://www.cse.ucsc.edu/classes/bme210/Winter04/lectures/Bio210w04-Lect06b-ComputationalNormalization.pdf
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Intensity Dependent Biases

• Low intensities have much greater variation
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RI Plots

• Ratio-Intensity
• R: log2(R/G)
• I: log10(R*G)

http://www.ucl.ac.uk/oncology/MicroCore/HTML_resource/
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MA Plots

• M: log2(R/G)
• A: log2SQRT(R*G) = ½ log2(R*G)

http://www.ucl.ac.uk/oncology/MicroCore/HTML_resource/MA_plots_popup.htm
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Lowess (Loess) 
Normalization

• Locally Weighted Linear Regression

• Linearises Data
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Loess Normalization

Figures from Quackenbush, 2002
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Cross-slide Normalizations

• Comparisons between chips needed
• Slides normalized so comparisons can be made
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Per-Chip Normalization

• Mean/Median centering – mean/median intensity of 
every chip brought to same level

• Total intensity normalization – scaling factor 
determined by summing intensities

• Spiked-control, housekeeping normalization
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Differential Expression

• Crude filter
Genes over/underexpressed by a factor of two
Log2 values of 1 and -1

Plus: Calculation very easy
Minus: Does not consider reliability of data
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Localized Z-Scores

Figures from Quackenbush, 2002
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Two sample t-test

• Calculates probability values sampled from same 
distribution

Considers mean, variance
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Analysis Tools

• R, Bioconductor
• S+, ArrayAnalyzer
• Affymetrix Tools
• GeneSpring

11/28/2005 ©Bud Mishra, 2005 L7-56

MIAME Data

• MIAME: “Minimum Information About a Microarray 
Experiment”

Specifies content, not format
Specifies type of data to be published

• MIAME Checklist
Experiment design
Samples used; extract preparation and labeling
Hybridization procedures and parameters
Measurement data and specifications
Array design



29

11/28/2005 ©Bud Mishra, 2005 L7-57

MAGE-ML

• MicroArray Gene Expression Markup Language
• XML based

Object model
Document exchange format
Software toolkits
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Repositories

• ArrayExpress (EBI)
• Gene Expression Omnibus (NCBI)
• Stanford Microarray Database (SMD)

• Microarray databases
AMAD: Another Microarray Database
LONGHORN: 
MIDAS:
BASE: 
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Proteomics
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Beyond Genomics

• Human Genome 
30,000 to 60,000 genes

• Human Proteome
300,000 to 1,200,000 protein variants

• Human Metabalome
Metabolic products of the organism 
(lipids,carbohydrates, amino acids, peptides, 
prostaglandins, etc)
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Proteome

• Proteome: The entire protein complement in a given 
cell, tissue or organism.

Protein Activities
3D Structure
Modifications and Localization
Protein-Protein Interaction:Proteins in Complexes
Protein Profile: Global patterns of protein content 
and activity (particularly in response to a disease 
state.)
Understanding system-level cellular behavior
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Technology & Databases

• Identify proteins and protein complexes in biological 
samples comprehensively and quantitatively with both 
high sensitivity and fidelity.

Develop new diagnostic markers
Identification of new drug-target

• HUPO (Human Proteome Organization)
Coordinating proteomics projects worldwide.
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Integration

• Complementary to other functional genomic 
approaches:

Micro-array based expression profiles
Systematic phenotypic profiles at the cell and 
organism level
Systematic genetics
Small-molecule-based arrays
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Applications of Proteomics

• Protein Mining 
Catalog all the proteins present in a tissue, cell, organelle, etc.

• Differential Expression Profiling 
Identification of proteins in a sample as a function of a 
particular state: differentiation, stage of development, disease
state, response to drug or stimulus

• Network Mapping 
Identification of proteins in functional networks: biosynthetic 
pathways, signal transduction pathways, multiprotein complexes

• Mapping Protein Modifications
Characterization of posttranslational modifications: 
phosphorylation, glycosylation, oxidation, etc. 
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Challenges of Proteomics

• Limited and Variable Sample Material
• Sample Degradation
• Vast Dynamic Range

(more than 106-fold for protein abundance)
• Post-translational Modifications
• Unlimited tissue, developmental and temporal specificty
• Disease and drug perturbation.
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Proteomics Technologies

• Development of genome and protein sequence databases
Bioinformatics and Data mining software

• Development of mass spectrometry instrumentation 
suitable to analyze biomolecules

Protein mass, Peptide mass, Peptide sequence
• Development of analytical protein separation 

technology
IEF, 2D-SDS-PAGE, HPLC, Capillary Electrophoesis, 
Affinity Chromatography
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Components of Proteomics

Protein SeparationProtein Separation

Bioinformatics

Mass SpectroscopyMass Spectroscopy
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2 D Electrophoresis

• Property of proteins
Some amino acids are acidic / basic (donate / accept H+)
Collection of amino acids in protein determines its pI value

pI = pH at which molecular charge = zero
• 2D electrophoresis

Separate proteins according to both pI & molecular weight
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2 D Electrophoresis

• Method
• 1. Extract & prepare protein sample in solution
• 2. Separate proteins (in each dimension)

I. Based on pH
Using isoelectric focusing (IEF)
Using immobilized pH gradient (IPG) strips

II. Based on molecular weight (size)
Using gel electrophoresis
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2 D Electrophoresis
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Proteomic Technology
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2-D SDS PAGE
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2D SDS PAGE
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Integrating with Mass-Spec
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Mass Spectrometry

• Method
1. Excise individual dots from 2D electrophoresis
2. Digest protein into fragments with enzyme (e.g., 
trypsin)
3. Ionize protein fragments (without breaking)

Matrix Assisted Laser Desorption Ionization 
(MALDI)
Electrospray Ionization (ESI)

4. Accelerate through mass spectrometer
5. Produces peptide mass fingerprint
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Principles of MALDI-TOF Mass Spectroscopy
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Fingerprint
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Identifying peptide mass fingerprint

• Compare with Fingerprint for actual protein in database
Predicted fingerprint for predicted / hypothetical 
protein (Precompute for efficiency)
May fail to distinguish Post-translation modifications 
to protein

• Protein databases / web servers (e.g., SWISS-2D PAGE)
For each protein, record its 
(1) Protein pI, molecular weight, peptide mass 
fingerprint…
(2) Experimentally determined location in 2D gel
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Peptide Chips

• Protein-protein interaction,
• Unravel signal transduction pathways,
• Perform multi-parameter diagnosis,
• Study individual immunological repertoires

e.g. autoimmune reactions.
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Peptide Chips

• Goal
High-throughput analysis of protein expression / interaction
Adapt approach similar to DNA microarrays
Improves on speed vs. 2D electrophoresis

• Approach
No equivalent of hybridization for proteins
Exploit other biochemical binding reactions

Antibody–antigen
Receptor–ligand
DNA–protein…
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Ciphergen
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Protein-Protein Interaction
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Basic Proteomic Analysis Scheme

Protein Mixture Individual Proteins

PeptidesPeptide Mass

Protein Identification

Separation

2D-SDS-PAGE

Digestion
TrypsinMass Spectroscopy

MALDI-TOF

Database 
Search

Spot Cutting
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2D-SDS-PAGE of 2 Types of Cells

Cell Type A Cell Type B
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Differential Expression

Cell Type A Proteome

Common proteins

Proteins unique to 
Type A

Proteins unique to
Type B

Cell Type B Proteome
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Clinical Diagnostics Proteomics:
Protein Profiling

Serum Protein Pattern Diagnostics

Proteins

Patient

mass 
spectroscopy

Proteomic 
image Pattern 

recognition
Learning 
algorithm

Early 
diagnosis 
of disease

Early 
warning of 

toxicity
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To be continued…

…


