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Interrupted Genes



2

11/14/2005 ©Bud Mishra, 2005 L7-3

Interrupted Genes:

• An open reading frame (containing a gene) consists of
INTRONS: Intervening sequences a Noncoding 
regions
EXONS: Protein coding regions

• Introns are abundant in eukaryotes and certain animal 
viruses.
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Interrupted Genes:

Intron1 Intron2
Intron3

Exon1 Exon2

Transcription

Splicing

DNA

RNA
Primary transcript

mRNA
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Some Genes…

51551263French BeanPhaseolin

970118,000Silk WormFibroin

00600Humanα-interferon

100,000= 408500HumanThyroglobulin

15624582HumanErythropoietin

29,0002814,000HumanApolipoprotein B

30,000111500HumanAdenoshine deaminase

Intron 
Length

#IntronsExon
Length

OrganismGene Product
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Organization of Genetic 
Information

• Bacterial Genome:
Genes are closely spaced along the DNA.
The sequences of genes may overlap.
Related genes (encoding enzymes whose functions 
are part of the same pathway or whose activities are 
related) are linked as a single transcription unit.
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Organization of Genetic 
Information

• Eukaryotic Genome:
Genes are separated by long stretches of noncoding 
DNA sequences.
Multiple genes in a single transcription unit is 
extremely rare.
Multiple chromosomes a Linear
Chloroplasts and mitochondria a Circular
Genes appearing on the same chromosome are 
syntenic.
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Location of Some Genes on 
Human Chromosome.

17Thymidine kinase

17Growth Hormone gene 
cluster

9,32,15,18Pseudogenes

14Heavy Chain

22λ (light chain)

2κ (light chain)

Immunoglobulin

11β-globin cluster

16α-globin cluster

chromosomesGenes

11C-Ha-Ras-1

12γ

9α & β cluster

Interferons

6C-myb

8C-mos

22C-sis

Viral oncogene homologues

11Galactokinase

11Insulin

chromosomesGenes



5

11/14/2005 ©Bud Mishra, 2005 L7-9

Eukaryotic Genome

• Multiple copies of the same gene
Solve “supply problem”
There are several hundred ribosomal RNA genes I 
mammals

• Pseudogenes
Nonfunctional copies of genes…(Deletions or 
alterations in the DNA sequence)
Number of pseudo genes for a particular gene varies 
greatly…Different from one organism to another.
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Gene Expression

DNA

Nucleus

mRNA

mRNA

Gene mRNA 
copying 
DNA

Growing 
Protein 
Chains

CYTOPLASM

amino 
acids

tRNA bringing 
amino acids to 
riboseom

Ribosome incorprating
amino acids into the 
growing protein chain

free amino acids
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Transcription 

• A gene consists of a coding region and a regulatory 
region.

The coding region is the part that is transcribed into 
an mRNA and translated into a finished protein.
The regulatory region is the part of the DNA that 
contributes to the control of the gene.

• The regulatory region contains
Binding sites for transcription factors (TF), which act 
by binding to the DNA (directly or with other 
transcription factors in a small complex);
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Regulatory Regions 

• In prokaryotes, 
The regulatory region is short (10-100 bases) and 
contains binding sites for small number of TFs.

• In eukaryotes
The regulatory regions can be very long (up to 
10,000 or 100,000 bases), and contains binding 
sites for multiple TFs.
TFs may act positively or negatively.
Another input mechanism is phosphorylation or 
dephosphorylation of a bound TF by other proteins.
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Terminology

• TFs are sometimes called trans-regulatory elements, and 
DNA sites where TFs bind are called cis-regulatory 
elements.

The collection of cis-regulatory elements upstream 
of the coding region is called the promoter.
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Transcription Initiation

• Typically, TFs do not bind singly, but in 
complexes:

• Once bound to the DNA, TF complex 
allows RNA polymerase (RNAP) to bind 
to the DNA upstream of the coding 
region.

• RNAP forms a transcriptional complex 
that separates the two strands of DNA, 
thus forming an open complex, then 
moves along one strand of the DNA, step 
by step and transcribes the coding region 
into mRNA.

regulatory 
region

coding 
region

(In)activating 
transcription factors 

form complexes 

RNAP copies DNA to mRNA

1

2

3
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Regulation of Gene 
Expression

• Motifs (short DNA sequences) that regulate 
transcription:

Promoter & Terminator
The rate of transcription varies according to 
experimental conditions

• Motifs that modulate transcription
Repressor, Activator, Antiterminator

Promoter

GeneTranscriptional
Initiation

Transcriptional
Termination

Terminator

10-35bp
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Model of transcription

ν = Cooperativity coefficient
κ = Concentration of a at which transcription of m is 

“half-maximally” activated.
• dp/dt = Φ(a, κ, ν) = V aν/[κν + aν]
• A graph of function Φ = Sigmoid Function
• If ν =1 then, the transcription activation function resembles 

the classical Michaelis-Menten!

transcription
{X,κ, ν}

a = concentration of a TF p = concentration of an mRNA
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Regulatory Networks
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Regulatory Networks

• Variations among Cells:
All cells in an organism have the same genomic data, 
but the proteins synthesized in each vary according to 
cell type, time and environmental factors
There are network of interactions among various 
biochemical entities in a cell (DNA RNA, protein, 
small molecules)
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Gene Regulation

DNA

mRNA

Nonphosphorylated
protein

Nonphosphorylated
protein

transcription

Post-translational modifications

Nonphosphorylated
protein

Transport to 
cytosol

Transport to 
nucleus
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Transcriptional Regulation:
Example: The lac Operon

Regions coding for proteins

Regulatory Regions

Diffusable regulatory proteins

RNA
polymerase

PP O lacZlacI lacY lacA

I Z Y A

mRNA + 
ribosomes

mRNA + 
ribosomes
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The lac Operon

• Regulates utilization of lactose by the bacterium E. coli.
Lactose is not generally available to E. coli as a food 
substrate, so the bacterium does not usually 
synthesize the enzymes necessary for its metabolic 
use.

• There is an operon, called the lac operaon, normally 
turned off, that codes for three enzymes:

b-galactoside permease, b-galactosidase and b-
thiogalactoside acetyl transferase.
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Activation of the lac operon

• An autoctalyitic reaction..
If the bacterium is exposed to lactose, these enzymes 
work together to (1) transport lactose into the cell 
and (2) isomerizes lactose into allolactose (an 
allosteric isomer of lactose.

The allolactose binds with a repressor molecule to 
keep it from repressing the production of mRNA.
Production of allolactose turns on the production 
of mRNA, which then leads to production of 
more enzyme, enabling production of more 
lactose to allolactose…



12

11/14/2005 ©Bud Mishra, 2005 L7-23

Transcriptional Regulation:
Example: The lac Operon

Regions coding for proteins

Regulatory Regions

Diffusable regulatory proteins
RNA

polymerase

PP O lacZlacI lacY lacA

I

No mRNAmRNA + 
ribosomes

I

Binds but
cannot move to 

transcribe

When lactose is absent, the protein encoded 
by lacI represses transcription of the lac 
operon
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Transcriptional Regulation:
Example: The lac Operon

Regions coding for proteins

Regulatory Regions

Diffusable regulatory proteins
RNA

polymerase

PP O lacZlacI lacY lacA

I Z Y A

mRNA + 
ribosomes

mRNA + 
ribosomes

Lactose

Confirmational 
change

Blocked
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Mathematical Model

G + mP Àk-1
k1 X

• Production of enzyme is turned on by m molecules of 
the product allolactose P…

G=Inactive state of the gene
X=Active state of the gene
In a large population of genes, the percentage of 
active genes is given by the chemical equilibrium:

p = [P]m/(keq
m + [P]m)
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Production of mRNA

• The differential equation governing the (average) 
production of mRNA

dM/dt =M0 + k1 [P]m/(keq
m + [P]m) – k2 M,

• where M is the concentration of mRNA that codes for 
the enzyme.

Production of the enzymes (responsible for 
transforming into allolactose substrate):

dE1/dt = c1 M – d1 E1; 
dE2/dt = c2 M – d2 E2.
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Lactose states

S0 = Concentration of the lactose, exterior to the cell.
S = Concentration of the lactose interior to the cell.

• [P] = Concentration of allolactose.
dS0/dt = -σ0 E1 S0/(k0 + S0)

dS/dt = σ0 E1 S0/(k0 + S0) - σ1 E2 S/(ks + S)
d[P]/dt = σ1 E2 S/(ks + S) - σ2 E2 [P]/(kp + [P])
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Simplification

• Assume:
mRNA is in quasi-steady state:

M = (k1/k2)[P]m/(keq
m+[P]m) + M0/k2;

d1 = d2. Degradation is slow compared to cell growth. 
Also, E1 = E2.

dE1/dt = c1M0/k2 + (c1k1/k2)[P]m/(keq
m+[P]m) – d1 E1;

No delay in conversion from lactose to allolactose:
d[P]/dt = σ0 E1 S0/(k0+S0) - σ2 E1 [P]/(kp + [P]).
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Dimensionless Form

• Dimensionless variables:
S0 = k0 s, [P] = kp p, E1 = e0 e, and t = t0 τ…

de/dτ = m0 + pm/(κm + pm) - ε e,
dp/dτ = µ e[s/(s+1) - λ p/(p+1)],

ds/dτ = -e s/(s+1),
where e0

2 = c1k0k1/(σ0k2), t0 = k+0/(e0σ0),
λ = σ2/σ0, µ = k0/kp, κ = k/kp, m0 = M0/k1, 
and ε = t0 d1…
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The lac operon

• If the amount of lactose is too small, then 
the lactose is gradually depleted, although 
there is no increase in enzyme 
concentration.

• However, if the lactose dose is sufficiently 
large, then there is an autocatalytic response, 
as the lac operon is turned on and enzyme is 
produced.

• The production of enzyme shuts down when 
the lactose stimuls is consumed, and the 
enzyme concentration gradually declines…
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Example of Competition

• The mutant Lac repressor X186:
This mutant represses transcription of the lac genes in 
the presence of lactose…
The mutant binds DNA so tightly that, in the absence 
of inducer (allolactose), it is sequestered on non-
operator DNA sites.
The inducer weakens the binding of the mutant 
repressor; thus, allowing it bind to the lac operon.
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Lac repressor X 186

Regions coding for proteins

Regulatory Regions

Diffusable regulatory proteins
RNA

polymerase

PP O lacZlacI lacY lacA

I

No mRNAmRNA + 
ribosomes

I

Binds 
somewhere 

else

When lactose is absent, the protein encoded 
by mutant lacI binds to some other site.
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Lac repressor X 186

Regions coding for proteins

Regulatory Regions

Diffusable regulatory proteins
RNA

polymerase

PP O lacZlacI lacY lacA

I

mRNA + 
ribosomes

Lactose

Confirmational 
change

I

When lactose is present, the protein encoded 
by mutant lacI no longer binds to the other 
site, and blocks the lac operator!!
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S-Systems
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Graphical Representation

X1 X2 Reversible Reaction

Divergence Branch Point: 
Degradation processes of 

X1 into X2 and X3 are 
independent

X1

X2

X3

Convergence Branch Point: 
Degradation processes of 

X1 into X2 and X3 are 
independent

X1

X2

X3

X1

X2 Single splitting reaction
generating two products 

X2 and X3, in 
stoichiometric proportion.X3

X1

X2

Single synthetic reaction
involving two source 

components X1 and X2, in
stoichiometric proportion.

X3
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Graphical Representation

The reaction between X1 and X2
requires coenzyme X3 which is 

converted to X4
X1 X2

X3 X4

X1 X2

X3

The conversion of X1 into X2 is 
modulated by X3

X1 X2

X3

- The conversion of X1 into X2 is 
modulated by an inhibitor X3
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Glycolysis
Glycogen

Glucose-1-PGlucose

Glucose-6-P

Fructose-6-P

P_i

Phosphorylase a

PhosphoglucomutaseGlucokinase

Phosphoglucose isomerase

Phosphofructokinase
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S-Systems

• Dependent Variables: Xi(t), i=1,…,n, 0 5 t.
• System is described in terms of the temporal changes in dependent 

variables:
E.g., Instantaneous product formation in response to changes in 
the exogenous substrate, inhibitor or enzyme concentration…
Kinetic Laws: Relate a reaction rate to concentrations.
Reaction Rate = Instantaneous temporal rate of change in 
concentration of substrate or product.

• Is this information sufficient to deduce the dynamics of 
a biochemical system? Yes.
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Systems of Differential 
Equations

dXi/dt = (instantaneous) rate of change in Xi at 
time t = Function of substrate concentrations, 
enzymes, factors and products:

dXi/dt = f(S1, S2, …, E1, E2, …, F1, F2,…, P1, P2,…)
E.g. Michaelis-Menten for substrate S & product P:

1. dS/dt = - Vmax S/(KM + S)
2. dP/dt =  Vmax S/(KM + S)
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Cell Informatics
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The dynamics of cell:

• The cell cycle ) the set of events that occur within a cell 
between its birth by mitosis and its division into 
daughter cells again by mitosis

interphase period when DNA is synthesized and
mitotic phase

The cell division by mitosis (into 2 daughter 
cells) and meiosis (into 4 gametes from germ-line 
cells);
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The Cell Cycle:

•In growing cells, the four phases proceed 
successively, taking from 10-20 hrs.

•Interphase: comprises the G1, S, and G2
phases. DNA is synthesized in S and other 
cellular macromolecules are synthesized 
throughout interphase, roughly doubling 
cell’s mass.

•During G2 the cell is prepared for mitotic 
(M) phase when the genetic material is 
evenly proportioned and the cell divides.

•Nondividing cells exit the normal cycle, 
entering the quiesecent G0 state.

M
G1

G0

G2
S
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Differentiation 

• Cellular dynamics controls how a cell changes (or 
differentiates) to carry out a specialized functions

Structural or morphological changes (muscles, 
neural, skin..)
Immune systems: Many cell types come together in 
organized tissues designed to let the body distinguish 
self from non-self.
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Suicide

• Programmed Cell Death/Apoptosis:
Condensation of the nucleus.
Fragmentation of the DNA.
Morphological changes followed by consumption by 
macrophages.
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Cell Talk

• Cell Surface Receptors
Extracellular domain for binding 
ligands (e.g., growth factors, 
adhesion molecules, etc.)
Transmembrane domain
Intracellular cytoplasmic domain

• Receptor driven cellular behavior are 
extremely important

E.g., Growth, Secretion, 
Contraction, Motility and 
Adhesion

Ligand

Receptor

Lipid
Layer

Binding

Trafficking SignallingCoupling with
Membrane 

associated
molecules

extracellular
domain

transmembrane
domain

cytoplasmic
domain
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Receptors and Gene Regulation

• Ligands bind to receptors at the cell 
surface.

• Bound receptors activate various 
intracellular enzymes and initiate 
entire cascades of intracellular 
reactions

Some of these regions trigger 
short term (of the order of 
milliseconds to minutes) 
responses.
Some eventually trigger long-
term responses..e.g., requiring 
protein synthesis and additional 
molecular interactions

gene
regulation

signal
cascade Short term

response

Long term
response
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A Complex Picture

binding

signaling

coupling

recycling

signaling
degradation

synthesis
internalization

Surface
binding
events

Intracellular
trafficking
events
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A Complex Picture

• Trafficking
Receptor population undergoes many complex 
events of coupling with other cell surface molecules
Internalization (RME: receptor-mediated 
endocytosis)
Recycling
Degradation
Synthesis
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Gene Expression Data

• Microarrays enable one
To simultaneously measure the activity of up 
to 30,000 (» 104—105) genes.
In particular, the amount of mRNA for each 
gene in a given sample (or a pair of samples) 
can be measured.
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Gene Expression Data

• Microarrays provide a tool for answering a wide variety 
of questions:

In which cells is each gene active?
Under what environmental conditions is each gene 
active?
How does the activity level of a gene change under 
different conditions?

Stage of a cell cycle? Environmental conditions? 
Diseases?
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Gene Expression Data

• Functional genomics with microarrays:
What genes can be inferred to be regulated together?
What happens to the expression level of every gene 
when a (candidate) gene is mutated?
What can be inferred about the regulatory structure?
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The Computational Tasks

• Clustering Genes:
Genes co-regulated together

• Classifying Genes:
Functional class a particular gene fall into?

• Classifying Gene Expressions:
Disease classification from the set of all mRNA 
expressed in a cell

• Inferring Regulatory Networks:
The “circuitry” of the cell
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Microarrays

• Two general types currently popular…
Spotted Arrays (Pat Brown, Stanford)
Oligonucleotide Arrays (Affymetrix)
Other variations (Agilent, Incyte, NGS, …)

• The key idea is to query a genome for a particular 
pattern by complementary hybridization.
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Complementary 
Hybridization

Due to Watson-
Crick base pairing, 
an mRNA molecule 
will hybridize to a 
omplementary
DNA molecule.

AGCGTTCGAATACC

ATCGGTACGTTAACG

CCGAAAATAGCCAG

UCGCAAGCUUAUGG

mRNA only 
hybridizes 

here



28

11/14/2005 ©Bud Mishra, 2005 L7-55

Complementary 
Hybridization

• Practical 
implementation:

Put the actual gene 
sequence on array
Convert mRNA to 
cDNA using 
reverse 
transcriptase
Hybridize cDNA to 
the sequence on 
the array

AGCGTTCGAATACC
TCGCAAGCTTATGG

cDNA 
hybridizes to 

a gene

UCGCAAGCUUAUGG

Reverse Transcriptase
mRNA, first 
converted to 

cDNA
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Spotted Array

• Robots array 
microscopic sized 
spots of DNA on glass 
slides

Each spot is DNA 
analog (cDNA) of 
one of the 
mRNA’s we wish 
to measure…

cDNA 
array
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Spotted Arrays

Two samples (reference 
and test) of mRNA are 
converted to cDNA, 
labeled with 
fluorochrome dyes and 
allowed to hybridize to 
the array.

Reference

Test
cDNA
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Spotted Arrays

• Lasers applied to the arrays yield an emission for each 
fluorescent dye.
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Oligonucleotide Arrays

• “Gene Chips”
Instead of putting entire genes on array, put sets of 
DNA 25-mers (synthesized oligonucleotides)
Produced using a photolithography process similar to 
the ones used to create semiconductor chips
mRNA samples are processed separately instead of in 
pairs (of reference/control and test)
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Oligonucleotide Arrays

• Given a gene to be queried/measured, select a large number (»
20) 25-mers for that gene.

• Selection criteria
Specificity
Hybridization properties
Ease of manufacturing

gene
25-mers
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Oligonucleotide Arrays

• Each of these probes is put on the chip
Additionally a slight variant (that differs only at the 
13th base) of each oligo is put next to it.
This helps factor out false hybridization (pm[perfect 
match] vs. mm[mismatch])

• The measurement for a gene is derived from these 40 
separate measurements.
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Genome-wide Cluster 
Analysis

• Put all genes (» 6200) of S. cerevisae (yeast) on a single 
microarray

• Measure experiment across m independent experiments
• Group together genes that have similar expression 

profiles.
Eisen et al. PNAS 1998
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Genome-wide Cluster 
Analysis

• Each measurement Gi represents
log (redi/greeni)

Where red is the test expression level and green is the 
reference expression level for gene G in the ith
experiment.

• The expression profile of a gene is the vector of 
measurements across all experiments:

h G1, …, Gm i.
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The Data

• 79 measurements for each of 2467 genes
• Data collected at various times during

Diauxic shift (shutting down genes for metabolizing 
sugar, activating genes for metabolizing ethanol)
Mitotic cell division cycle
Sporulation
Temperature shock
Reducing Shock
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The Data

• n genes measured in m experiments:

G1,1 L G1,n
G2,1 L G2,n
M O M

Gm,1 L Gm,n

Vector 
for a 
gene
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The Task

• Given
Expression profiles for a set of genes.

• Compute
An organization of genes into clusters such that 
genes within a cluster have similar profiles.
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The Task

log 
(redi/greeni)

Experiments
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Approaches

• Eisen et al.: Hierarchical clustering.
• Other clustering methods have been applied to this gene 

expression data:
EM with Gaussian Clusters [Mjolsness et al. ’99]
Self Organizing Maps [Tamayo et al. ’99]
Graph Theory Algorithms [Ben-Dor & Yakhini ’98, 
Hartuv et al. ’99]
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Hierarchical Clustering

genes

Degrees of
dissimilarity
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Hierarchical Clustering

• P = set of genes
• While more than one subtree in P

Pick the most similar pair i, j in P
Define a new subtree k joining i and j
Remove i and j from P and insert k
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Gene Similarity Metric

• Similarity between two genes: X and Y
S(X, Y) = 

(1/N) ∑i=1
N (Xi – Xoffset/ ΦX) (Yi – Yoffset/ΦY)

where

ΦG = [ ∑i=1
N (Gi – Goffset)2/N]1/2
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Gene Similarity Metric

Since there is an assumed reference state (the gene’s 
expression level did not change), Goffset is set to 0 for 
all genes

• S(X, Y)
= (1/N) ∑i=1

N [Xi/ {∑i=1
N Xi

2/N}1/2 ] [Yi/ {∑i=1
N Yi

2/N}1/2 ]
= (1/N) {∑i=1

N Xi Yi}/{SD(X) SD(Y)}
= (1/N) {X ¢ Y}/{SD(X) SD(Y)}
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Results

• Redundant representations of genes cluster together.
But individual genes can be distinguished from 
related genes by subtle differences in expression.

11/14/2005 ©Bud Mishra, 2005 L7-74

Results

• Genes of similar function cluster together.
E.g., 126 genes were found strongly down-regulated 
in response to stress.

112 of these genes encode ribosomal and other 
proteins related to translation
The result agrees with previously known result 
that yeast responds to favorable growth 
conditions by increasing the production of
ribosomes.
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Molecular Classification of 
Cancer

• Measure activity of 6817 genes in 38 leukemia patients
• Two tasks:

Class Prediction
Class Discovery

Golub et al., Science ’99.
Slonim et al. ’99.

11/14/2005 ©Bud Mishra, 2005 L7-76

Cancer Class Prediction

• Learning Task
Given: Expression profiles of leukemia patients
Compute: A model distinguishing disease classes 
(e.g., AML vs. ALL patients) from expression data.

• Classification Task
Given: Expression profile of a new patient + A learned 
model (e.g., one computed in a learning task)
Determine: The disease class of the patient (e.g., 
whether the patient has AML or ALL)
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Cancer Class Prediction

• n genes measured in  m patients

g1,1 L g1,n Ã class1
g2,1  L g2,n Ã class2
M O M

gm,1 L gm,n Ã classm

Vector for 
a patient
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Cancer Class Prediction 
Approach

Rank genes by their correlation with class variable 
(AML/ALL)
Select subset of “informative” genes
Have these genes do a weighted vote to classify a 
previously unclassified patient.
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Ranking Genes

• Rank genes by how predictive they are (individually) of 
the class…

g1,1 L g1,n Ã class1
g2,1  L g2,n Ã class2
M O M

gm,1 L gm,n Ã classm
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Ranking Genes

Split the expression values for a given gene g into two 
pools – one for each class (AML vs. ALL)
Determine their mean µ and standard deviation σ of 
each pool

• Rank genes by
P(g, class) = (µALL - µAML)/(σALL + σAML)
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Selecting Genes

Select the kALL top ranked genes (highly expressed in 
ALL) and the kAML bottom ranked genes (highly 
expressed in AML)

P(g, class) = (mALL - mAML)/(sALL + sAML)
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Weighted Voting

• Given a new patient to classify,
Each of the selected genes casts a weighted vote for 
only one class.
The class that gets the most vote is the prediction.
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Weighted Voting

• Suppose that x is the expression level measured for gene 
g in the patient

V = P(g,class) £ (x – [µALL + µAML]/2)

Weight for 
gene g

Distance from the 
measurement to the 

class boundary
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Prediction Strength

• Can assess the “strength” of a prediction as follows:
PS = (Vwinner – Vloser)/(Vwinner+ Vloser)

where Vwinner is the summed vote from the winning class, 
and Vloser is the summed vote for the losing class 
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Prediction Strength

• When classifying new cases, the algorithm ignores those 
cases where the strength of the prediction is below a 
threshold…

• Prediction =
[ALL,   if VALL > VAML Æ PS > θ
[AML,  if VAML > VALL Æ PS > θ
[No-call,  otherwise.
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Experiments

• Cross validation with the original set of patients
For i = 1 to 38

Hold the ith gene aside
Use the other 37 genes to determine weights
With this set of weights, make prediction on the 
ith gene

• Testing with another set of 34 patients…
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Results

• Cross-validation experiments
All trials that used at least 3 genes had 0 prediction 
error, with 1—4 no-calls.

• Using the 50 gene model on a test set of 34 additional 
patients

29 correct predictions
5 no-calls.
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Comments on Molecular 
Classification of Cancer

• Gene expression profiling appears to be a promising tool 
for molecular medicine

Screening
Diagnosis
Prognosis
Highly targeted genome-based therapy
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Cancer Class Discovery

• Given
Expression profiles of leukemia patients

• Do
Cluster the profiles, leading to discovery of the 
subclasses of leukemia represented by the set of 
patients

11/14/2005 ©Bud Mishra, 2005 L7-90

Cancer Class Discovery 
Experiment

• Cluster the expression profiles of 38 patients in the 
training set

Using self-organizing maps with a predefined number 
of clusters (say, k)

• Run with k = 2
Cluster 1 contained 1 AML, 24 ALL
Cluster 2 contained 10 AML, 3 ALL
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Cancer Class Discovery 
Experiment

• Run with k = 4
Cluster 1 contained mostly AML
Cluster 2 contained mostly T-cell ALL
Cluster 3 contained mostly B-cell ALL
Cluster 4 contained mostly B-cell ALL

• It is unlikely that the clustering algorithm was able to 
discover the distinction between T-cell and B-cell ALL 
cases
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Comments on Cancer Class 
Discovery

• Potential to discover unknown but clinically significant 
classes

One may still be able to take advantage of class labels 
to guide subclass discovery
Room for novel statistical algorithms…
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To be continued…

…
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Hidden Markov Models

HMM
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Hidden Markov Model

• Bayesian network structure for both
Hidden Markov Model

• Important Independence Assumptions:
Current state Xt depends only on the past state Xt-1

Current output Yt only depends on the state Xt

Xt-1Xt-2 Xt+1Xt

Yt-1Yt-2 Yt+1Yt
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Hidden Markov Models 
(HMM)

• Defined by an alphabet S,
A set of (hidden) states Q,
A matrix of state transition probabilities A,
and a matrix of emission probabilities E.
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States

S = An alphabet of symbols
Q = A set of states that emit symbols from the 
alphabet S
A = (akl) = |Q| £ |Q| matrix of state transition 
probabilities
E = (eK(B)) = |Q| £ |S| matrix of emission probabilities

11/14/2005 ©Bud Mishra, 2005 L7-98

A Path in the HMM

• π = π1 π2 L πn

= a sequence of states 2 Q* in the hidden Markov model 
M
x 2 Σ* = sequence generated by the path π, 
determined by the model M
P(x| π) = P(π1)[ ∏i=1

n P(xi | πi) P(πi | πi+1) ]



50

11/14/2005 ©Bud Mishra, 2005 L7-99

A Path in the HMM

P(x| π) = [∏i=1
n P(xi | πi) P(πi | πi+1) ] P(π1)

P(xi | πi) = eπi(xi)
P(πi | πi+1) = aπi, πi+1 

π0 = Initial state “begin”
πn+1 = Final state “end”

• P(x| π)
= aπ0, π1 eπ1(x1) aπ1, π2 eπ2(x2)L eπn(xn) aπn, πn+1

= aπ0, π1 ∏i=1
n eπi(xi) aπi, πi+1
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Decoding Problem

• For a given sequence x, and a given path π,
The model (Markovian) defines the probability
P(x | π)
The dealer knows π and x
The player knows x but not π

“The path of x is hidden.”
• Decoding Problem: Find an optimal path π* for x such 

that P(x|π) is maximized.

π* = arg maxπ P(x|π)π* = arg maxπ P(x|π)
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Dynamic Programming Approach

• Principle of Optimality:
• Optimal path for the (i+1)-prefix of x

x1 L xi+1

uses a path for an i-prefix of x that is optimal among 
the paths ending in an (unknown) state πi = k 2 Q
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Dynamic Programming Approach

• sk(i) = 
The probability of the most probable path for the i-
prefix ending in state k.

8k 2 Q 81 5 i 5 n

sl(i+1) = el(xi+1). maxk2 Q [sk(i) . akl]
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Dynamic Programming

• i=0
sbegin(0) = 1, sk(0) =0, 8k ≠ begin

• 0 < i 5 n
sl(i+1) = el(xi+1) ¢maxk2 Q [ sk(i) ¢ akl ]

• i= n+1
P(x | π*) = maxk2 Q sk(n) ak, end
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Viterbi Algorithm

• Dynamic Programming
with log-score function

Sl(i) = log sl(i)
Space complexity = O(n |Q|)
Time complexity = O(n |Q|)
Sl(i+1) = log el(xi+1)+ maxk2 Q [ Sk(i) + log akl ]
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Estimating the ith State

• P(πi = k | x) = 
Given a sequence x 2 Σ*, the probability that the 
HMM was in state k at instant i.
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Forward Estimate:

• fk(i) = P(x1 L xi, πi = k) =
Probability of emitting the prefix x1 L xi and 
reaching the state πi = k

• fk(i) = ek(xi) ¢ ∑l 2 Q fl(i-1) alk
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Backward Estimate:

• bk(i) = P(xi+1 L xn, πi = k) =
Probability of being at the state πi = k and emitting 
the suffix xi+1 L xn .

• bk(i) = ∑l 2 Q ek(xi+1) ¢ bl(i+1) akl
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Applying Bayes’ Rule

• P(πi = k | x) = (1/P(x))
£ P(x1 … xi, πi = k)
£ P(xi+1…xn, πi = k)

= [fk(i) bk(i)] / P(x)
• P(x) = ∑π P(x | π)
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Sequence Motifs

• A Sequence of patterns of biological significance.
• Examples:

DNA: Protein binding sites
(e.g. promoters, regulatory sequences)

Protein: sequences corresponding to conserved pieces 
of structure

(e.g. Local features, At various scales: blocks, 
domains & families)
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MEME Algorithm

Uses EM (Expectation Minimization) 
algorithm to find multiple motifs in a set of 
sequences.

• Description of a motif:
W = (Fixed) width of a motif
P = (plc)l2 Σ, c 2 1..W

= Matrix of probabilities that letter l occurs 
at position c

= |Σ| £ W matrix
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Example

• DNA motif of width
W = 3, 
Σ = { A, T, C, G}

• ρ = motif ) Wρ = 3, 
• Pρ = 4 £ 3 stochastic matrix

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

6.01.03.0
1.02.04.0
1.02.02.0
2.05.01.0

321

G
C
T
A

Pρ =
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Computational Problem

• Given:
A set of sequences, G
A width parameter W

• Find:
Motifs of width W common to sequences G and 
present their probabilistic descriptions.
Note that motif start sites in each sequence are 
unknown (hidden).
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Basic EM Approach

• Γ = 
Training sequences.

• |Γ| = 
Total number of sequences = m; 
Minimum length of a sequence 
in Γ = l.

• Z = m £ l matrix of probabilities
zij = Probability that the motif 
starts in position j in sequence i.

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

3.01.05.01.0
1.05.01.03.0
3.01.02.04.0
6.02.01.01.0

4
3
2
1

]4[]3[]2[]1[

seq
seq
seq
seq

Z
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EM Algorithm

• Set initial values for P
• do

Re-estimate Z from P
Re-estimate P from Z

• until change in P < ε
• return P
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EM Algorithm

• Maximize the likelihood of a motif in the training sequence:
si 2 Γ ith sequence
Iij= {1, if motif starts at posn. j in seq. i

{0, otherwise. 
lk = the char. at posn. j+k-1 in seq. Si

• Pr (Si | Iij = 1, ρ) = ∏k=1
W ρl{k, k}.

11/14/2005 ©Bud Mishra, 2005 L7-116

Example

Si = AGGCTGTAGACAC

• Pr(Si = TGT | Ii5 =1, ρ)
= ρT,1 £ ρG,2 £ ρT,3

= 0.2 £ 0.1 £ 0.1
= 2 £ 10-3

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

6.01.03.0
1.02.04.0
1.02.02.0
2.05.01.0
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G
C
T
A

Pρ =
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Estimating Z

• zij = Pr(Iij = 1 | ρ, Si)
= Estimates the starting position in Si 2 Γ.

• zij = Pr ( Iij =1 | ρ, Si)
= Pr( Si, Iij = 1 | ρ)/ Pr(Si | ρ)
= Pr( Si | Iij = 1, ρ) Pr(Iij = 1)/ ∑k Pr( Si | Iik = 1, ρ) Pr(Iik = 1)
= Pr( Si | Iij = 1, ρ) / ∑k Pr( Si | Iik = 1, ρ)

• Follows from an application of the Bayes’ rule and the assumption that 
“it is equally likely that the motif will start in any position.” 

8jk Pr(Iij = 1) = Pr(Iik=1)
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Example

Si = AGGCTGTAGACAC

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
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⎧

6.01.03.0
1.02.04.0
1.02.02.0
2.05.01.0
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0.1 £ 0.1 £ 0.6

0.3 £ 0.1 £ 0.1

0.3 £ 0.2 £ 0.1

z’i1 = 6 £ 10-3

z’i2 = 3 £ 10-3

z’i3 = 6 £ 10-3

…
NORMALIZE
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Estimating Pρ

• Given Z, estimate the probability that the character c 
occurs at the kth position of a motif.

• nck = ∑s(i) 2 Γ;{j | s(i, j+k-1) = c} zij

• Expected number of occurrences of the character c at 
the kth position of a motif ρ (assuming that the motif 
“start position” is known.)

• pck = (nck + 1)/ ∑d (ndk + 1)
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Example

• s1 : A C A G C A

• s2 : A G G C A G

• s3 : T C A G T C

z1,1

z1,3

z2,1

z3,3

pA,1 = (z11 +z13+ z21 + z33 +1)/
(z11 + z12 + L+ z33 + z34 +4)
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Meme

• Uses the basic EM approach
Try many starting points.
Allow multiple occurrences of a motif per sequence
Allows multiple motifs to be learned simultaneously.
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Meme

• Initial set of possible motifs:

Take every distinct subsequences of length W in the 
training set
Derive an initial matrix P
pck = { α if c occurs in position k in 

the subsequence
{(1-α)/ (|Σ| - 1)

Otherwise
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Example

• W = 3,
ρ = T A T, 
α = 0.5

Choose the motif model 
with the highest likelihood.
Run EM to convergence

⎪
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