

Bioinformatics Databases of Interest

Bioinformatics DataSources

- Database interfaces
- Genbank/EMBL/DDB), Medline, Swiss Prot, PDB,
- Sequence alignment
- BLAST, FASTA
- Multiple sequence alignment
- Clustal, MultAlin, DiAlign
- Gene finding
- Genscan, GenomeScan, GeneMark, GRAIL
- Protein Domain analysis and identification
- pam, BLOCKS, ProDom,
- Pattern Identification/
- Characterization
- Gibbs Sampler, AlignACE, MEME
\diamond Protein Folding prediction
- PredictProtein, Swiss Modeler

Five Important Websites

.

NCBI (The National Center for Biotechnology Information;
$\underline{h t t p: / / w w w . n c b i . n / m . n i h . g o v / ~}$
EBI (The European Bioinformatics Institute)
= http://www.ebi.ac.uk/
The Canadian Bioinformatics Resource
= $\underline{h t t p: / / w w w . c b r . n r c . c a / ~}$
SwissProt/ExPASy (Swiss Bioinformatics Resource)
= $\underline{\text { http://expasy.cbr.nrc.ca/sprot/ }}$
PDB (The Protein Databank)
= http://www.rcsb.org/PDB/
$\begin{array}{ll}10 / 30 / 2005 & \text { Bud Mishra, } 2005\end{array}$

- Entrez interface to databases
- Medline/OMIM
- Genbank/Genpept/Structures
- BLAST server(s)
- Five-plus flavors of blast
- Draft Human Genome
- Much, much more...

- SRS database interface
- EMBL, SwissProt, and many more
- Many server-based tools
- ClustalW, DALI, ...

- Curation...
- Error rate in the information is greatly reduced in comparison to most other databases.
- Extensive cross-linking to other data sources
- SwissProt is the 'gold-standard' by which other databases can be measured, and is the best place to start if you have a specific protein to investigate

A few more resources

Example 1:

\checkmark Searching a new genome for a specific protein

- Specific problem:
- We want to find the closest match in C. elegans of D. melanogaster protein NTF1, a transcription factor
- First- understanding the different forms of blast

The different versions of BLAST

10/30/2005

Some possible methods

- If the domain is a known domain:
- SwissProt
- text search capabilities
- good annotation of known domains
- crosslinks to other databases (domains)
- Databases of known domains:
- BLOCKS (http://blocks.fherc.org/)
- Pfam (http://pfam.wustl.edu/)
- Others (ProDom, ProSite, DOMO,...)

Nature of conservation in a domain

- For new domains, multiple alignment is your best option
- Global: clustalw
- Local: DiAlign
- Hidden Markov Model: HMMER
- For known domains, this work has largely been done for you
- BLOCKS
- Pfam

Protein Tools

- Search/Analysis tools
- Pfam
- BLOCKS
- PredictProtein
(http://cubic.bioc.columbia.edu/predictprotein/pred ictprotein.html)

Different representations of conserved domains

- BLOCKS
- Gapless regions
- Often multiple blocks for one domain
- PFAM
- Statistical model, based on HMM
- Since gaps are allowed, most domains have only one pram model

Bayesian Probabilities

Probabilities Overview

$\stackrel{\text { Ensemle: }}{ }$

- ' X ' is a random variable x with a set possible outcomes $A_{x}=\left\{a_{1}, a_{2}, \ldots a_{i}, \ldots, a_{1}\right\}$, having probabilities $\left\{p_{1}, p_{2}, \ldots p_{i}, \ldots, p_{1}\right\}, p_{i}, O$ and $\sum_{x} 2 A_{x}$ $P(x)=1$.
- Joint Ensemble
- ' $X Y^{\prime}$ ' is an ensemble with ordered outcomes x and y.
- $\times 2 A_{x}=\left\{a_{1}, a_{2}, \ldots a_{i}, \ldots, a_{1}\right\}$, and
- y $2 A_{y}=\left\{b_{1}, b_{2}, \ldots b \dot{,}, \ldots, b_{f}\right\}$.

Marginal \& Conditional Probabilities

- Product Rule:
- $P(x, y \mid H)=P(x \mid y, H) P(y \mid H)$
- Sum Rule:
- $P(x \mid H)=\sum_{y} P(x, y \mid H)=\sum_{y} P(x \mid y, H) P(y \mid H)$
- Bayes' Rule:
- $P(y \mid x, H)=P(x \mid y, H) P(y \mid H) / P(x \mid H)$
- $P(y \mid x, H)$
$=P(x \mid y, H) P(y \mid H) / \sum_{y^{\prime}} P\left(x \mid y^{\prime}, H\right) P\left(y^{\prime} \mid H\right)$

Bayesian Interpretation

- Probability P(e)
- \mapsto our uncertainty about whether e is true or false in the real world
- (given whatever information we have avialable)
- "Degree of Belief"
- More rigorously, we shoul write
- conditional probability $\mathrm{P}(\mathrm{e} \mid \mathrm{L}) \mapsto$ represents degree of belief, where L is the background information on which our belief is based

Probability as a Dynamic Entity

- "degree of belief"
- Update the "degree of belief" as more data arrives:
\diamond Bayes Theorem: P(e|D)=P(D|e)P(e)/P(D)
- Posterior is proportional to the prior.

Probability as a Dynamic Entity

\diamond Bayes Theorem: $P(e \mid D)=P(D \mid e) P(e) / P(D)$

- Prior Probability:
- $P(e)$ is your belief in the event e before you see any data at all
- Posterior.
- $P(e \mid D)$ is the updated posterior belief in e given the observed data.
- Likelihood:
- $P(D \mid e) \mapsto$ probability of the data under the assumption e.

Dynamics

- $P\left(e \mid D_{1}, D_{2}\right)=P\left(D_{2} \mid e, D_{1}\right) P\left(e \mid D_{1}\right) / P\left(D_{2} \mid D_{1}\right)$
- Important Observation:
- The effects of prior diminish as the number of data points increases.
- The Law of Large Number:
- With large number of data points, Bayesian and frequentist viewpoints become indistinguishable.

Parameter Estimation

- Functional form for a model M
- Depends on parameters Θ
- Best estimation for Θ ?
- Typically our parameters Θ are a set of real-valued numbers
- Both prior $P(\Theta)$ and the posterior $P(\Theta \mid D)$ are defining probability density functions

Maximum A Posteriori (MAP)

\checkmark Find the set of parameters Θ

- maximizing the posterior $P(\Theta \mid D)$ or minimizing a score $-\log P(\Theta \mid D)$
- $E^{\prime}(\Theta)=-\log P(\Theta \mid D)$ $=-\log P(D \mid \Theta)-\log P(\Theta)+\log P(D)$
- Same as minimizing $E(\Theta)=-\log P(D \mid \Theta)-\log$ $P(\Theta)$
- If the prior $P(\Theta)$ is uniform over the entire parameter space (uninformative):

Minimize $E_{L}(\Theta)=-\log P(D \mid \Theta)$

- Maximum likelihood solution

Information Theory

Entropy

- $X=$ r.v.; Entropy of X
- $H(X)=\sum_{x} P(x) \log (1 / P(x))=E_{x}[-\log P(x)]$
- Entropy measures the information content or "uncertainty" of x
- $O \cdot H(X) \cdot \log (|X|)$.
- $H(X)=0$, if $9 x, P(x)=1$; It's minimal if the probability is concentrated at one value (no uncertainty)
- $H(X)=\log (|X|)$, if $8 x, P(x)=1 /|X|$; It's maximal if the probability is distributed uniformly (complete uncertainty)

Joint Entropy

\checkmark Joint entropy of X, Y :

- $H(X, Y)=\sum_{x, y 2 A_{x}, A_{y}} P(x, y) \log (1 / P(x, y))$
- Entropy is additive for independent r.v.'s.
- $H(X, Y)=H(X)+H(Y)$ iff $P(x, y)=P(x) P(y)$.
\diamond Conditional Entropy of X given Y :
- $H(X \mid y)=\sum_{x 2 A_{x}} P(x \mid y) \log (1 / P(x \mid y))$
- $H(X \mid Y)=E_{y} H(X \mid y)$
$=\sum_{y} P(y) \sum_{x} P(x \mid y) \log (1 / P(x \mid y))$
$=\sum_{x, y} P(x, y) \log (1 / P(x \mid y))$

Chain Rule

\checkmark Chain Rule for Entropy

- $H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)$
- Mutual Information
- It measures the average reduction in uncertainty about x that results from learning y or vice versa.
- $I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)$
$=H(X)+H(Y)-H(X, Y)$
- $I(X ; Y)=\sum_{x, y} P(x, y) \log [P(x, y) / P(x) P(y)]$
\checkmark Properties:
- $I(X ; Y)=I(Y ; X) ; I(X ; Y), O$

Distance

- Distance between two r.v.'s:
- $D(X, Y)=H(X, Y)-I(X ; Y)$
$=2 H(X, Y)-H(X)-H(Y)$
- $D(X, Y), O$.
- Idempotent:
- $D(X, X)=0$.
- Symmetry:
- $D(X, Y)=D(Y, X)$
- Triangle Inequality:
- $D(X, Z) \cdot D(X, Y)+D(Y, Z)$

Data Processing Inequality

- Markov Chain
- X!Y!Z
- $P(z \mid x, y)=P(z \mid y)$
- $O R P(x, y, z)=P(x, y) P(z \mid x, y)=P(x) P(x \mid y) P(z \mid y)$
- Then $I(X ; Y), I(X ; Z)$
- Corollary:
- I(X; Y), I(X; $g(Y))$

KL Distance

- Kullback-Leibler (KL) Distance (Relative Entropy):
- Given two probability distributions $p(x)$ and $q(x)$ [defined over the same $\times 2 A_{x}$]
- $D_{\text {KL }}(p \| q)=E_{x} \log p(x) / q(x)$
$=\sum_{x} p(x) \log p(x) / q(x)$
- Properties:
- Gibb's Inequality: $D_{k L}(p \| q), 0$
- $D_{\text {KL }}(p \| q) \neq D_{\text {KL }}(q \| p)$

10/30/2005
${ }^{\circledR}$ Bud Mishra, 2005

What Good is Information Theory

- Family of genes:
- Can genes be grouped to explain how they work together? Information Compression.
- Relation between groups of genes and their effect on the traits:
- How does a group of genes code the information about a complex trait?
- Which gene affects the trait more directly than another gene?

Rate Distortion Theories Kolmogorov-Shannon Theorem
(Also called "information bottleneck.")

Strangeness of RDT

- An intriguing aspect of Rate Distortion Theory:
- Joint descriptions are more efficient than individual descriptions.
- This is true even for independent random variables.
- It is simpler to describe an elephant and a penguin with one description than to describe each alone.

Rate Distortion Theorem

\diamond Due to Kolmogorov \& Shannon:

- $X=$ Dictionary (think of all the genes)
- X = Codebook
(think of families of coregulated genes)
- Rate $=I(X ; X)=H(X)-H(X, X)$
$=s_{x, x} p\left(x, x^{\prime}\right) \log \left[p\left(x, x^{\prime}\right) / p(x) p\left(x^{\prime}\right)\right] d x d x^{\prime}$
- Distortion $=\mathrm{h} \delta(\mathrm{X}, \mathrm{X}) \mathrm{i}$

$$
=s_{x, x} p\left(x, x^{\prime}\right) \delta\left(x, x^{\prime}\right) d x d x^{\prime}
$$

Succinct Theory

- We want highest rate (maximum compression) with least amount of distortion:
- Optimization Problem:
- $\operatorname{Min} I(X ; X)$
- Subject to $\mathbf{h} \delta(X, X) \mathbf{i} \cdot D$
- Lagrangian of a Constrained Optimization Problem

$$
F\left[p\left(x \mid x^{\prime}\right), \beta\right]=I(X ; X)+\beta h \delta(X, X) i
$$

Solution to Lagrangian

- The variational problem is solved at:

$$
p\left(x \mid x^{\prime}\right)=[1 / Z(x, \beta)] p\left(x^{\prime}\right) \operatorname{Exp}\left[-\beta \delta\left(x, x^{\prime}\right)\right]
$$

- In other words:

$$
p\left(x, x^{\prime}\right) / p(x) p\left(x^{\prime}\right) / \operatorname{Exp}\left[-\beta \delta\left(x, x^{\prime}\right)\right]
$$

- Thus,

$$
I(X, X)=s_{X, x} p\left(x, x^{\prime}\right)\left[-\beta \delta\left(x, x^{\prime}\right)\right] d x d x^{\prime}=-\beta \mathbf{h} \delta(X, X) i
$$

$$
F\left[p\left(x \mid x^{\prime}\right), \beta\right]=I(X ; X)+\beta h \delta(X, X) i=0
$$

10/30/2005
${ }^{\bullet}$ Bud Mishra, 2005

Blahut-Arimoto Algorithm

\checkmark Fixed point:

- $p\left(x^{\prime}\right)=\sum_{x} p\left(x, x^{\prime}\right)=\sum_{x} p(x) p\left(x^{\prime} \mid x\right)$
- $p\left(x^{\prime} \mid x\right)=p\left(x^{\prime}\right) \operatorname{Exp}\left[-\beta \delta\left(x, x^{\prime}\right)\right] / Z(x, \beta)$
- $w\left(x, x^{\prime}\right)=p\left(x, x^{\prime}\right) / p(x) p\left(x^{\prime}\right)=\operatorname{Exp}\left[-\beta \delta\left(x, x^{\prime}\right)\right] / Z(x, \beta)$
- Computation:
- Start with some K randomly chosen code words $\mapsto X$; $8_{x^{\prime} 2 x} p_{0}\left(x^{\prime}\right)=1 / K$
- $p_{t+1}\left(x^{\prime} \mid x\right)=p_{t}\left(x^{\prime}\right) \operatorname{Exp}\left[-\beta \delta\left(x, x^{\prime}\right)\right] / Z_{t}(X, \beta)$
- Choose new code words: $\sum_{x} x p_{t+1}\left(x^{\prime} \mid x\right)$
- Thus, $p_{t+1}\left(x^{\prime}\right)=\sum_{x} p(x) p_{t+1}\left(x^{\prime} \mid x\right)$

A "Harder" Version

- Choose K "centroid" positions
- $b_{1}, b_{2}, \ldots b_{k}$
\diamond Using b_{1} 's partition the green points $g_{1}, g_{2}, \ldots g_{n}$ into K classes:
- $G_{i}=\left\{g_{i}\right.$ closer to b_{i} than any other $\left.b\right\}$
- Update K centroid positions:
- $\operatorname{New}\left(b_{i}\right)=$ Centroid of G_{i}

Information Bottleneck

- Markov Chain: X!X! Y
- Measure Distortion by KL (Kullback-Leibler) distance:
- $D_{K L}\left(p(y \mid x) \| p\left(y \mid x^{\prime}\right)\right)=\delta_{y}\left(x, x^{\prime}\right)$
* Minimize rate without "much" KL-distortion:
- Optimization Problem
- $\operatorname{Min} I(X ; X)$
- Subject to $\mathbf{h} \delta_{y}\left(x, x^{\prime}\right) \mathbf{i} \cdot \mathrm{D}$
- Lagrangian
$F\left(p\left(x \mid x^{\prime}\right) p\left(y \mid x^{\prime}\right)\right)=I(X ; X)+\beta h D_{K L}\left(p(y \mid x) \|\left(y \mid x^{\prime}\right)\right) i$

Fixed Point Solution

$\diamond p\left(x, x^{\prime}\right) / p(x) p\left(x^{\prime}\right)=\operatorname{Exp}\left[-\beta \delta_{y}\left(x, x^{\prime}\right)\right] / Z(x, \beta)$
$\Leftrightarrow \delta_{y}\left(x, x^{\prime}\right)=D_{K L}\left(p(y \mid x) \| p\left(y \mid x^{\prime}\right)\right)$

- $p\left(x^{\prime} \mid x\right)=p\left(x^{\prime}\right) \operatorname{Exp}\left[-\beta \delta_{y}\left(x, x^{\prime}\right)\right] / Z(x, \beta)$
- $p\left(x^{\prime}\right)=\sum_{x} p\left(x^{\prime} \mid x\right) p(x)$
- $p\left(x \mid x^{\prime}\right)=p\left(x^{\prime} \mid x\right) p(x) / p\left(x^{\prime}\right)$
- $p\left(y \mid x^{\prime}\right)=\sum_{y, x} p\left(y \mid x, x^{\prime}\right) p\left(x \mid x^{\prime}\right)$
$=\sum_{y, x} p(y \mid x) p\left(x \mid x^{\prime}\right)$
- $\delta_{y}\left(x, x^{\prime}\right)=D_{k L}\left(p(y \mid x) \| p\left(y \mid x^{\prime}\right)\right)$

Blahut-Arimoto Algorithm

- $p_{t+1}\left(x^{\prime} \mid x\right)=p_{t}\left(x^{\prime}\right) \operatorname{Exp}\left[-\beta \delta_{y}\left(x, x^{\prime}\right)\right] / Z(x, \beta)$
- $p_{t+1}\left(x^{\prime}\right)=\sum_{x} p_{t+1}\left(x^{\prime} \mid x\right) p(x)$
- $p_{t+1}\left(x \mid x^{\prime}\right)=p_{t+1}\left(x^{\prime} \mid x\right) p(x) / p_{t+1}\left(x^{\prime}\right)$
- $p_{t+1}\left(y \mid x^{\prime}\right)=\sum_{y, x} p(y \mid x) p_{t+1}\left(x \mid x^{\prime}\right)$
- $\delta_{y, t+1}\left(x, x^{\prime}\right)=D_{K L}\left(p(y \mid x) \| p_{t+1}\left(y \mid x^{\prime}\right)\right)$

How Can this Help Us:

- Think of the Markov Chain: $X!X!Y$ as
- GeneFamilies! GeneExpressions! Pathophysiology
- In other words, we wish to cluster the genes so that they explain various aspects of the pathophysiology...
- You may take other metadata into account in this picture...
- HOMEWORK: Try to make these ideas less abstract!!!
- Translate the algorithm directly to our "CFS problem."

10/30/2005
${ }^{\text {© }}$ Bud Mishra, 2005
L7-44

GRAPHICAL MODELS

Bayesian Network: Example
\qquad

10/30/2005
${ }^{\bullet}$ Bud Mishra, 2005
L7-46

Bayesian networks (BN) in brief

- Graphs in which nodes represent random variables
- (Lack of) Arcs represent conditional independence assumptions
- Present \& absent arcs provide compact representation of joint probability distributions
- BNs have complicated notion of independence, which takes into account the directionality
 of the arcs

Bayesian network example

- P(hear your dog bark as you get home) $=P(h b)=$?

10/30/2005
Bud Mishra, 2005
L7-48

Belief Propagation

- Need prior P for root nodes and conditional Ps, that consider all possible values of parent nodes, for nonroot nodes

L7-49

Applications to Diverse Problems

Pang et al: COMPUTERIZED TONGUE diagnosis based on bayesian networks

Fig. The outine of the computerized tongue diagnosis system.
"Computerized tongue diagnosis based on Bayesian networks": devising expert system for Chinese medical method (supplementary reference 3)

Bayesian Networks

- Bayesian Network Model M consists of a set of random variables:
- $X_{1}, X_{2}, \ldots, X_{n}$
\diamond and an underlying directed acyclic graph (DAG)
- $G=(V, E)$
- such that each random variable is uniquely associated with a vertex of DAG

Parameters

- The parameters Θ of the model are the numbers that specify the local conditional probability distributions
- $P\left(X_{i} \mid X_{p a l i]}\right), 1 \cdot I \cdot n$
- where $X_{p a l i]}$ denotes the parent of node in the graph
- Global probability distribution must equal the local conditional probability distributions:
- $P\left(X_{1}, \ldots X_{n}\right)=\prod_{i} P\left(X_{i} \mid X_{p a[i]}\right)$.
\diamond Learning Bayesian network
- Belief Propagation:
- In general, NP-complete.

Markov Model

- Bayesian network structure for both
- Hidden Markov Model
- Kalman Filter Model
- Important Independence Assumptions:
- Current state X_{t} depends only on the past state X_{t-1}
- Current output Y_{t} only depends on the state X_{t}

10/30/2005
© Bud Mishra, 2005
L7-54

Undirected Graphs

- Provided $p(x)>0$ then joint distribution is product of non-negative functions over the cliques of the graph
- $P(x)=(1 / Z) \prod_{C} \psi_{C}\left(x_{C}\right)$
- Where $\psi_{C}\left(x_{C}\right)$ are the clique potentials, and Z is a normalization constant

$$
p(w, x, y, z)=(1 / Z) \psi_{A}(w, x, y) \psi_{B}(x, y, z)
$$

$$
\text { © Bud Mishra, } 2005
$$

L7-57

Conditioning on Evidence

- Variables may be
 hidden (latent) or visible (observed)
- Latent variables may have a specific interpretation, or may be introduced to permit a richer class of distribution
- Recall HMM

10/30/2005
${ }^{\bullet}$ Bud Mishra, 2005

Message Passing

- Example

- Find marginal for a particular node

$$
p\left(x_{i}\right)=\sum_{x_{1}} \cdots \sum_{x_{i-1}} \sum_{x_{l+1}} \cdots \sum_{x_{L}} p\left(x_{1}, \ldots, x_{L}\right)
$$

- for M-state nodes, cost is $O\left(M^{\wedge} L\right)$
*exponential in length of chain
* but, we can exploit the graphical structure (conditional independences)

Message Passing

- Joint distribution

$$
p\left(x_{1}, \ldots, x_{L}\right)=(1 / Z) \psi\left(x_{1}, x_{2}\right) \ldots \psi\left(x_{L-1}, x_{L}\right)
$$

- Exchange sums and products

$$
\mathrm{m}_{\alpha}\left(\mathrm{x}_{\mathrm{i}}\right)
$$

$$
p\left(x_{i}\right)=(1 / Z) \ldots \Sigma_{x_{2}} \psi\left(x_{2}, x_{3}\right)\left[\sum_{x_{1}} \psi\left(x_{1}, x_{2}\right)\right]
$$

$$
\ldots \sum_{x_{L-1}} \psi\left(x_{\mathrm{L}-2}, x_{\mathrm{L}-1}\right)\left[\sum_{x_{\mathrm{L}}} \psi\left(x_{\mathrm{L}-1}, x_{\mathrm{L}}\right)\right]
$$ $\mathrm{m}_{\beta}\left(\mathrm{x}_{\mathrm{i}}\right)$

Message Passing

- Express as product of messages

$p\left(x_{i}\right)=(1 / Z) m_{\alpha}\left(x_{i}\right) m_{\beta}\left(x_{i}\right)$
- Recursive evaluation of messages
$m_{\alpha}\left(x_{i}\right)=\sum_{x_{i-1}} \psi\left(x_{i-1}, x_{i}\right) m_{\alpha}\left(x_{i-1}\right)$
$m_{\beta}\left(x_{i}\right)=\sum_{x_{\mid+1}} \boldsymbol{\psi}\left(x_{l+1}, x_{i}\right) m_{\beta}\left(x_{i-1}\right)$
\checkmark Find Z by normalizing $p\left(x_{i}\right)$

Belief Propagation

- Extension to general treestructured graphs
- At each node:
- form product of incoming messages and local evidence
- marginalize to give outgoing message
- one message in each direction across every link
- Fails if there are loops

10/30/2005
©
Bud Mishra, 2005
L7-63

Junction Tree Algorithm

- An efficient exact algorithm for a general graph
- applies to both directed and undirected graphs
- compile original graph into a tree of cliques
- then perform message passing on this tree
- Problem:
- cost is exponential in size of largest clique
- many vision models have intractably large cliques

10/30/2005
${ }^{\bullet}$ Bud Mishra, 2005
L7-64

Junction Tree

- Marry parents:
- Add undirected edges to all co-parents which are not currently joined
- Moralize
- Drop all directions in the graph. a moral graph
- Triangulate the Moral Graph
- Add additional links so that there is no cycle of length 4 or more
- Identify and Join Cliques to from the Junction Tree
\diamond Perform Message passing on the Junction Tree
${ }^{\bullet}$ Bud Mishra, 2005
L7-65

Loopy Belief Propagation

- Apply belief propagation directly to general graph
- need to keep iterating
- might not converge
- State-of-the-art performance in error-correcting codes

Graphical Models for Biology

- Rich modeling language for biological systems
- Based on probabilistic graphical models
- Classes of objects:
- Genes, experiments, tissues, patients
- Properties
- Observed: gene sequence, experiment conditions
- Hidden: gene function
- Interactions
- Expression level is function of gene and experiment properties

P(Level ${ }_{g a} /$ Properties $_{g}$ Properties $_{a}$)
Segal et al. (ISMB 2001)

Gene Regulation Model

REDESCRIPTION

What is redescription?

- Shift of vocabulary
- from one language (descriptor family) to another to describe the same entity
- Descriptor is any meaningful way of defining a subset within a universal set of entities
- Set theoretic operations used on basic descriptors to define derived descriptors
- Evaluated on the basis of Jaccard's coefficient
- $(A, B)=(A \AA B) /(A[B)$

10/30/2005
${ }^{\circledR}$ Bud Mishra, 2005
L7-76

Examples of redescription

- Universal set: Countries of the world
- Countries with > 200 Nobel prize winners \{USA\}
, Countries with > 150 billionaires \{USA\}
(Jaccard's = 1.0)
Universal set: Words in English language
- Words with 6 letters AND NOT Words with vowels \{Rhythm, Syzygy\}
, Words with 6 letters AND Words with 3 y's \{Syzygy\} (Jaccard's = 0.5)

Why Redescribe?

- Advantages
- Allows feature construction
- Can handle any kind of data in terms of descriptors no data specific mining required
- Can find commonalities and differences between various descriptors/descriptor families at the same time
- Can look for stories using a series of inexact redescriptions

10/30/2005
${ }^{\bullet}$ Bud Mishra, 2005
L7-78

CARTwheels algorithm for redescription

Figure 1: Example data for illustrating operation of CARTwheels algorithm.

object	Y_{1}	Y_{2}	Y_{3}	Y_{4}	class
o_{1}	$\sqrt{ }$	\times	\times	$\sqrt{ }$	X_{4}
\boldsymbol{o}_{2}	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	X_{1}
\boldsymbol{o}_{3}	\times	$\sqrt{ }$	$\sqrt{ }$	\times	X_{1}
\boldsymbol{o}_{4}	\times	$\sqrt{ }$	\times	\times	X_{2}
\boldsymbol{o}_{5}	\times	\times	$\sqrt{ }$	$\sqrt{ }$	X_{4}

Figure 2: (left) Dataset to initialize CARTwheels algorithm. (right) induced classifi cation tree.

CARTwheels algorithm for redescription (contd.)

obj.	X_{1}	X_{2}	X_{3}	X_{4}	class	obj.	Y_{1}	Y_{2}	Y_{3}	Y_{4}	class
or_{1}	\times	\times	\times	$\sqrt{ }$	$\left(Y_{3}-Y_{2}\right) \cup\left(Y_{1}-Y_{3}\right)$	O_{1}	$\sqrt{ }$	\times	\times	$\sqrt{ }$	$\left(X_{3} \cap X_{1}\right) \cup\left(X_{4}-X_{3}\right)$
0_{2}	\checkmark	\times	$\sqrt{ }$	\times	$\left(Y_{3}-Y_{2}\right) \cup\left(Y_{1}-Y_{3}\right)$	O_{2}	$\sqrt{ }$	\checkmark	\times	$\sqrt{ }$	$\left(X_{3} \cap X_{1}\right) \cup\left(X_{4}-X_{3}\right)$
∞_{3}	$\sqrt{ }$	$\sqrt{ }$	\times	\times	$Y_{3} \cap Y_{2}$	0_{3}	\times	$\sqrt{ }$	$\sqrt{ }$	\times	$\left(O-X_{3}-X_{4}\right)$
O_{4}	\times	$\sqrt{ }$	$\sqrt{ }$	\times	$O-Y_{3}-Y_{1}$	0_{4}	\times	$\sqrt{ }$	\times	\times	$\left(X_{3}-X_{1}\right)$
os	\times	\times	\times	\checkmark	$\left(Y_{3}-Y_{2}\right) \cup\left(Y_{1}-Y_{3}\right)$	os	\times	\times	\checkmark	\checkmark	$\left(X_{3} \cap X_{1}\right) \cup\left(X_{4}-X_{3}\right)$

Figure 3: (left) Dataset for second iteration of CARTwheels algorithm. Notice that class labels are now set-theoretic expressions involving \boldsymbol{Y}_{i} 's. (right) Dataset for third iteration of CARTwheels algorithm.

10/30/2005
Bud Mishra, 2005

Implementation details descriptors used

- Experimental (microarray) data
- for yeast from Gasch et al. Descriptors constructed of the form ${ }^{\prime}$.
- 9 different stress used from Gasch et al. data
- GO category assignments for genes (biological process, cellular component, molecular function)

Design of System

