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Bioinformatics Databases of 
Interest
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Bioinformatics DataSources

• Database interfaces
Genbank/EMBL/DDBJ, 
Medline, SwissProt, PDB, 
…

• Sequence alignment
BLAST, FASTA

• Multiple sequence alignment
Clustal, MultAlin, DiAlign

• Gene finding
Genscan, GenomeScan, 
GeneMark, GRAIL

• Protein Domain analysis and 
identification

pfam, BLOCKS, ProDom,  
• Pattern Identification/
• Characterization

Gibbs Sampler, AlignACE, 
MEME

• Protein Folding prediction
PredictProtein,
SwissModeler
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Five Important Websites

• NCBI (The National Center for Biotechnology Information;
http://www.ncbi.nlm.nih.gov/

• EBI (The European Bioinformatics Institute)
http://www.ebi.ac.uk/

• The Canadian Bioinformatics Resource
http://www.cbr.nrc.ca/

• SwissProt/ExPASy (Swiss Bioinformatics Resource)
http://expasy.cbr.nrc.ca/sprot/

• PDB (The Protein Databank)
http://www.rcsb.org/PDB/
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NCBI 
(http://www.ncbi.nlm.nih.gov/)

• Entrez interface to databases
Medline/OMIM
Genbank/Genpept/Structures

• BLAST server(s)
Five-plus flavors of blast

• Draft Human Genome
• Much, much more…
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EBI (http://www.ebi.ac.uk/)

• SRS database interface
EMBL, SwissProt, and many more

• Many server-based tools
ClustalW, DALI, …
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SwissProt 
(http://expasy.cbr.nrc.ca/sprot/)

• Curation…
Error rate in the information is greatly reduced in 
comparison to most other databases.

• Extensive cross-linking to other data sources
• SwissProt is the ‘gold-standard’ by which other databases 

can be measured, and is the best place to start if you 
have a specific protein to investigate
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A few more resources

• Human Genome Working Draft
http://genome.ucsc.edu/

• TIGR (The Institute for Genomics Research)
http://www.tigr.org/

• Celera
http://www.celera.com/

• (Model) Organism specific information:
Yeast: http://genome-www.stanford.edu/Saccharomyces/
Arabidopis: http://www.tair.org/
Mouse: http://www.jax.org/
Fruitfly: http://www.fruitfly.org/
Nematode: http://www.wormbase.org/

• Nucleic Acids Research Database Issue
http://nar.oupjournals.org/ (First issue every year)
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Example 1:

• Searching a new genome for a specific protein 
• Specific problem:

We want to find the closest match in C. elegans of D. 
melanogaster protein NTF1, a transcription factor

• First- understanding the different forms of blast
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The different versions of 
BLAST
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Some possible methods

• If the domain is a known domain: 
• SwissProt 

text search capabilities
good annotation of known domains
crosslinks to other databases (domains)

• Databases of known domains:
BLOCKS (http://blocks.fhcrc.org/)
Pfam (http://pfam.wustl.edu/)
Others (ProDom, ProSite, DOMO,…)
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Nature of conservation in a 
domain

• For new domains, multiple alignment is your best 
option

Global: clustalw
Local: DiAlign
Hidden Markov Model: HMMER

• For known domains, this work has largely been done for 
you

BLOCKS
Pfam
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Protein Tools

• Search/Analysis tools
Pfam
BLOCKS
PredictProtein 
(http://cubic.bioc.columbia.edu/predictprotein/pred
ictprotein.html)
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Different representations of 
conserved domains 

• BLOCKS
Gapless regions
Often multiple blocks for one domain

• PFAM
Statistical model, based on HMM
Since gaps are allowed, most domains have only one 
pfam model
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Bayesian Probabilities
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Probabilities Overview

• Ensemle:
‘X’ is a random variable x with a set possible 
outcomes Ax = {a1, a2, … ai,…, aI}, having 
probabilities {p1, p2, … pi,…, pI}. pi ¸ 0 and ∑x 2 Ax
P(x) = 1. 

• Joint Ensemble
‘XY’ is an ensemble with ordered outcomes x and y.
x 2 Ax = {a1, a2, … ai,…, aI}, and
y 2 Ay = {b1, b2, … bj,…, bJ}.
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Marginal & Conditional 
Probabilities

• Product Rule:
P(x,y | H) = P(x | y, H) P(y | H)

• Sum Rule:
P(x | H) = ∑y P(x,y| H) = ∑y P(x | y, H) P(y | H)

• Bayes’ Rule:
P(y|x, H) = P(x | y, H) P(y | H)/P(x | H)
P(y| x, H) 

= P(x | y, H) P(y | H)/∑y’ P(x | y’, H) P(y’ | H)
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Bayesian Interpretation

• Probability P(e)
a our uncertainty about whether e is true or false in 
the real world
(given whatever information we have avialable)

• “Degree of Belief”
• More rigorously, we shoul write

conditional probability P(e | L) a represents degree 
of belief, where L is the background information on 
which our belief is based
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Probability as a Dynamic Entity

• “degree of belief” 
Update the “degree of belief” as more data arrives:

• Bayes Theorem: P(e | D) = P(D | e) P(e)/P(D)
• Posterior is proportional to the prior.
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Probability as a Dynamic Entity

• Bayes Theorem: P(e | D) = P(D | e) P(e)/P(D)
• Prior Probability:

P(e) is your belief in the event e before you see any 
data at all

• Posterior:  
P(e | D) is the updated posterior belief in e given the 
observed data.

• Likelihood: 
P(D | e) a probability of the data under the 
assumption e.
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Dynamics

P(e | D1, D2) = P(D2 | e, D1) P(e | D1)/ P(D2 | D1)

• Important Observation:
The effects of prior diminish as the number of data 
points increases.

• The Law of Large Number:
With large number of data points, Bayesian and 
frequentist viewpoints become indistinguishable.
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Parameter Estimation

• Functional form for a model M
Depends on parameters Θ
Best estimation for Θ?

• Typically our parameters Θ are a set of real-valued 
numbers

Both prior P(Θ) and the posterior P(Θ | D) are 
defining probability density functions
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Maximum A Posteriori 
(MAP)

• Find the set of parameters Θ
maximizing the posterior P(Θ | D) or minimizing a 
score -log P(Θ | D)
E’(Θ) = -log P(Θ | D) 
= -log P(D | Θ) – log P(Θ) + logP(D)

Same as minimizing E(Θ) =  -log P(D | Θ) – log 
P(Θ)
If the prior P(Θ) is uniform over the entire parameter 
space (uninformative):

Minimize EL(Θ) = -log P(D | Θ) 
Maximum likelihood solution
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Information Theory
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Entropy

• X = r.v.; Entropy of X
H(X) = ∑x P(x) log (1/P(x)) =Ex [–log P(x)]

• Entropy measures the information content or 
“uncertainty” of x

0 · H(X) · log(|X|). 
H(X) = 0, if 9 x, P(x) = 1; It’s minimal if the 
probability is concentrated at one value (no 
uncertainty)
H(X) = log(|X|), if 8 x, P(x) = 1/|X|; It’s maximal if the 
probability is distributed uniformly (complete 
uncertainty)
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Joint Entropy

• Joint entropy of X, Y:
H(X,Y) = ∑x,y2 Ax, Ay

P(x,y) log(1/P(x,y))
Entropy is additive for independent r.v.’s.
H(X,Y) = H(X) + H(Y) iff P(x,y) = P(x) P(y).

• Conditional Entropy of X given Y:
H(X| y) = ∑x 2 Ax

P(x | y) log(1/P(x|y))
H(X|Y) = Ey H(X|y)
= ∑y P(y) ∑x P(x | y) log(1/P(x|y))
= ∑x,y P(x,y) log (1/P(x| y))



14

10/30/2005 ©Bud Mishra, 2005 L7-27

Chain Rule

• Chain Rule for Entropy
H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) 

• Mutual Information
• It measures the average reduction in uncertainty about x 

that results from learning y or vice versa.
I(X; Y) = H(X) – H(X|Y) = H(Y) – H(Y|X) 
= H(X) + H(Y) - H(X,Y)
I(X;Y) = ∑x,y P(x,y) log [P(x,y)/P(x)P(y)]

• Properties:
I(X;Y) = I(Y;X); I(X;Y) ¸ 0
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Distance

• Distance between two r.v.’s:
D(X, Y) = H(X,Y) – I(X;Y) 

= 2 H(X,Y) – H(X) – H(Y)
D(X,Y) ¸ 0.

• Idempotent: 
D(X,X) = 0.

• Symmetry:
D(X,Y) = D(Y,X)

• Triangle Inequality: 
D(X,Z) · D(X,Y) + D(Y, Z)
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Data Processing Inequality

• Markov Chain 
X ! Y ! Z 
P(z | x, y) = P(z | y) 
OR P(x, y, z) = P(x,y) P(z| x, y)= P(x) P(x| y) P(z | y)

• Then I(X; Y) ¸ I(X; Z)
• Corollary:

I(X; Y) ¸ I(X; g(Y))
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KL Distance

• Kullback-Leibler (KL) Distance (Relative Entropy):
Given two probability distributions p(x) and q(x) 
[defined over the same x 2 Ax]
DKL(p||q) = Ex log p(x)/q(x)

= ∑x p(x) log p(x)/q(x)
• Properties:

Gibb’s Inequality: DKL(p||q) ¸ 0
DKL(p||q) ≠ DKL(q||p) 
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What Good is Information 
Theory

• Family of genes:
Can genes be grouped to explain how they work 
together? Information Compression.

• Relation between groups of genes and their effect on the 
traits:

How does a group of genes code the information 
about a complex trait?
Which gene affects the trait more directly than 
another gene?
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Rate Distortion Theories
Kolmogorov-Shannon Theorem

(Also called “information bottleneck.”)
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Strangeness of RDT

• An intriguing aspect of Rate Distortion Theory:
Joint descriptions are more efficient than individual 
descriptions.
This is true even for independent random variables.
It is simpler to describe an elephant and a penguin 
with one description than to describe each alone.
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Rate Distortion Theorem

• Due to Kolmogorov & Shannon:
X = Dictionary (think of all the genes)
X = Codebook 
(think of families of coregulated genes)

Rate = I(X; X) = H(X) – H(X, X)
= sX, X p(x, x’) log[ p(x,x’)/p(x) p(x’)] dx dx’

Distortion = h δ(X, X) i
= sX, X p(x, x’) δ(x, x’) dx dx’
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Succinct Theory

We want highest rate (maximum compression) with 
least amount of distortion:

• Optimization Problem:
Min I(X; X)
Subject to h δ(X, X) i · D

• Lagrangian of a Constrained Optimization Problem
F[p(x | x’), β] = I(X; X) + β h δ(X, X) i
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Solution to Lagrangian

• The variational problem is solved at:
p(x | x’) = [1/Z(x, β)] p(x’) Exp[-β δ(x, x’)]

• In other words:
p(x, x’)/p(x) p(x’) / Exp[-β δ(x, x’)]

• Thus,
I(X, X) = sX, X p(x,x’) [-β δ(x, x’)] dx dx’ = -β hδ(X, X)i

F[p(x | x’), β] = I(X; X) + β h δ(X, X) i= 0
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Blahut-Arimoto Algorithm

• Fixed point:
p(x’) = ∑x p(x, x’) = ∑x p(x) p(x’ | x)
p(x’|x) = p(x’) Exp[-β δ(x, x’)]/Z(x, β)
w(x,x’)= p(x,x’)/p(x) p(x’) = Exp[-β δ(x, x’)]/Z(x, β)

• Computation:
Start with some K randomly chosen code words a X; 
8x’ 2 X p0(x’) = 1/K
pt+1(x’|x) = pt(x’) Exp[-β δ(x, x’)]/Zt(X, β)
Choose new code words: ∑x x pt+1(x’ |x)
Thus, pt+1(x’) =∑x p(x) pt+1(x’ | x)
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Clustering

• Set of green points on the 
plane…g1, g2, …, g9. We wish 
to encode them succinctly 
with three brown points… b1, 
b2, b3

• Choose three brown points at 
random.

• For each brown point, 
compute p(bi | gj) depending 
on the current distance 
between bi& gj
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Clustering

Recompute the new 
positions of b1, b2, b3:

• New (bi) = ∑ gj p(Old(bi) | gj)
Weighted Centroids of 
green points gj’s

• REPEAT
• UNTIL the brown points do 

not move:

• Soft_k_means Clustering
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A “Harder” Version

• Choose K “centroid” positions
b1, b2,… bK

• Using bI’s partition the green points g1, g2, .. gn into K 
classes:

Gi = { gj closer to bi than any other b}
• Update K centroid positions:

New(bi) = Centroid of Gi
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Information Bottleneck

• Markov Chain: X ! X ! Y
• Measure Distortion by KL (Kullback-Leibler) distance:

DKL(p(y|x)|| p(y|x’)) = δy(x,x’)
• Minimize rate without “much” KL-distortion:
• Optimization Problem

Min I(X; X)
Subject to h δy(x,x’) i · D

• Lagrangian 
F(p(x|x’) p(y|x’)) = I(X; X) +β h DKL(p(y|x)||(y|x’)) i
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Fixed Point Solution

• p(x,x’)/p(x)p(x’) = Exp[-β δy(x,x’)]/Z(x, β)
• δy(x,x’) = DKL(p(y|x) || p(y|x’))

p(x’| x)= p(x’)Exp[-β δy(x,x’)]/Z(x, β)
p(x’) = ∑x p(x’|x)p(x)
p(x | x’) =p(x’|x)p(x)/ p(x’) 
p(y | x’) = ∑y,x p(y | x, x’) p(x | x’)

= ∑y,x p(y | x) p(x | x’)
δy(x,x’) = DKL(p(y|x) || p(y|x’))
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Blahut-Arimoto Algorithm

pt+1(x’| x)= pt(x’)Exp[-β δy(x,x’)]/Z(x, β)

pt+1(x’) = ∑x pt+1(x’|x)p(x)
pt+1(x | x’) =pt+1(x’|x)p(x)/ pt+1(x’) 
pt+1(y | x’) = ∑y,x p(y | x) pt+1(x | x’)
δy,t+1(x,x’) = DKL(p(y|x) || pt+1(y|x’))
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How Can this Help Us:

• Think of the Markov Chain: X ! X ! Y as 
• GeneFamilies ! GeneExpressions ! Pathophysiology

In other words, we wish to cluster the genes so that 
they explain various aspects of the pathophysiology…
You may take other metadata into account in this 
picture…
HOMEWORK: Try to make these ideas less abstract!!!
Translate the algorithm directly to our “CFS 
problem.”
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GRAPHICAL MODELS
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Bayesian Network: Example

E A

DB

C

E  A   Pr[B|E,A]  Pr[: B|E,A]

0  0  0.3           0.7
0  1       0.4            0.6
1   0  0.7            0.3
1    1  0.1             0.9

Nodes 
represent gene 
activities

Edges 
represent 
dependencies
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Bayesian networks (BN) in brief

• Graphs in which nodes 
represent random variables

• (Lack of) Arcs represent 
conditional independence 
assumptions

• Present & absent arcs provide 
compact representation of 
joint probability distributions

• BNs have complicated notion 
of independence, which takes 
into account the directionality 
of the arcs
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Bayesian network example

• P(hear your dog bark as you 
get home) = P(hb) = ?
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Belief Propagation

• Need prior P for root nodes 
and conditional Ps, that 
consider all possible values of 
parent nodes, for nonroot
nodes
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Major benefit of BN

• We can know P(hb) based 
only on the conditional 
probabilities of hb and its 
parent node. 

• We don’t need to 
know/include all the ancestor 
probabilities between hb and 
the root nodes.
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Applications to Diverse Problems

“Computerized tongue diagnosis 
based on Bayesian networks”: 
devising expert system for Chinese 
medical method (supplementary 
reference 3)
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Bayesian Networks

• Bayesian Network Model M consists of a set of random 
variables:

X1, X2, …, Xn

• and an underlying directed acyclic graph (DAG)
G = (V, E)

• such that each random variable is uniquely associated 
with a vertex of DAG



27

10/30/2005 ©Bud Mishra, 2005 L7-53

Parameters

• The parameters Θ of the model are the numbers that 
specify the local conditional probability distributions

P(Xi | Xpa[i]), 1 · I · n
where Xpa[i] denotes the parent of node i in the graph

• Global probability distribution must equal the local 
conditional probability distributions:

P(X1, … Xn) = ∏i P(Xi | Xpa[i]).
• Learning Bayesian network

Belief Propagation:
In general, NP-complete.
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Markov Model

• Bayesian network structure for both
Hidden Markov Model
Kalman Filter Model

• Important Independence Assumptions:
Current state Xt depends only on the past state Xt-1

Current output Yt only depends on the state Xt

Xt-1Xt-2 Xt+1Xt

Yt-1Yt-2 Yt+1Yt
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Decomposition

• Consider an arbitrary joint 
distribution

p(x,y,z)

• By successive application of the 
product rule

P(x,y,z) = p(x) p(y,z | x)
=p(x) p(y|x) p(z |x, y)

x

z

y
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Directed Acyclic Graphs

• Joint distribution
P(x1, …, xD) = ∏i=1

D p(xi | pai) 
where pai denotes the parents 
of i. 

• p(x1, …x7) = p(x1) p(x2) p(x3)
p(x4 | x1, x2, x3) p(x5 | x1, x3) 
p(x6 | x4) p(x7 | x4, x5)

No directed cycles

x2x2

x1x1

x4x4
x5x5

x6x6

x7x7

x3x3
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Undirected Graphs

Provided p(x) > 0 then joint distribution is product of 
non-negative functions over the cliques of the graph
P(x) = (1/Z) ∏C ψC(xC)
Where ψC(xC) are the clique potentials, and Z is a 
normalization constant

p(w,x,y,z) = (1/Z) ψA(w,x,y) ψB(x,y,z)
w

zy

x
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Conditioning on Evidence

Variables may be 
hidden (latent) or 
visible (observed)
Latent variables may 
have a specific 
interpretation, or may 
be introduced to 
permit a richer class of 
distribution
Recall HMM

hidden

visible
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Conditional Independences

• x independent of y given z if, 
for all values of z,

(x | z) q (y|z)
P(x,y|z) = p(x|z) p(y|z) 

• For undirected graphs this is 
given by graph separation!
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Message Passing

• Example

• Find marginal for a particular node

p(xi) = ∑x1
L ∑xi-1

∑xI+1
L ∑xL

p(x1, …, xL)
for M-state nodes, cost is  O(M^L)

exponential in length of chain
but, we can exploit the graphical structure
(conditional independences)

x1x1 x2x2 xL-1xL-1 xLxL
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Message Passing

• Joint distribution

p(x1, …, xL) = (1/Z) ψ(x1, x2)…ψ(xL-1, xL)

• Exchange sums and products

p(xi) = (1/Z)…∑x2
ψ(x2, x3) [∑x1

ψ(x1, x2)]
…∑xL-1

ψ(xL-2, xL-1)[∑xL
ψ(xL-1, xL)]

mα(xi)

mβ(xi)
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Message Passing

• Express as product of messages
p(xi) = (1/Z) mα(xi) mβ(xi)

• Recursive evaluation of messages
mα(xi) = ∑xi-1

ψ(xi-1, xi) mα(xi-1)
mβ(xi) = ∑xI+1

ψ(xI+1, xi) mβ(xi-1)

• Find Z by normalizing p(xi)

xi�1xi�1 xixi

m x�( )im x�( )i m x�( )im x�( )i

xi�1xi�1
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Belief Propagation

• Extension to general tree-
structured graphs

• At each node:
form product of incoming
messages and local evidence
marginalize to give outgoing
message
one message in each direction 
across every link

• Fails if there are loops

xixi
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Junction Tree Algorithm

• An efficient exact algorithm for a general graph
applies to both directed and undirected graphs
compile original graph into a tree of cliques
then perform message passing on this tree

• Problem: 
cost is exponential in size of largest clique
many vision models have intractably large cliques
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Junction Tree

• Marry parents:
Add undirected edges to all co-parents which are not 
currently joined

• Moralize
Drop all directions in the graph. a moral graph

• Triangulate the Moral Graph
Add additional links so that there is no cycle of 
length 4 or more

• Identify and Join Cliques to from the Junction Tree
• Perform Message passing on the Junction Tree
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Example

Dyspnoea (shortness of breath) may 
be due to Tuberculosis, Lung cancer 
or Bronchitis, or none of them or 
more than one of them. A recent 
visit to Asia increases the chance of 
Tuberculosis, while Smoking is 
known to be a risk factor for both 
Lung cancer and Bronchitis. The 
results of a single X-ray do not 
discriminate between Lung cancer 
and Tuberculosis, as neither does the 
presence or absence of Dyspnoea.

A S

T L B

E

DX
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Example

• Marry parents
Connect T & L
Connect E & B

A S

T L B

E

DX
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Example

• Moralize

• Next
• Triangulate the Moral 

Graph
• Find Cliques
• Form the Junction Tree.

A S

T L B

E

DX
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Example

A S

T L B

E

DX

AT TLE BLE

SBL

DBEXE
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Loopy Belief Propagation

• Apply belief propagation directly to general graph
need to keep iterating
might not converge

• State-of-the-art performance in error-correcting codes
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Graphical Model for CFS

ge1 …ge2 gen-1 gen
snp1 …snp2 snpm-1 snpm

GeneExpMod(1) GeneExpMod(n’) SNPMod(1) SNPMod(m’)… …

PathoPhysMod(1) PathoPhysMod(k)
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Gene Interaction Maps
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Graphical Models for Biology
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Gene Regulation Model
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REDESCRIPTION
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What is redescription?

• Shift of vocabulary
from one language (descriptor family) to another to 
describe the same entity
Descriptor is any meaningful way of defining a subset 
within a universal set of entities
Set theoretic operations used on basic descriptors to 
define derived descriptors

• Evaluated on the basis of Jaccard’s coefficient
(A , B) = (A Å B) / (A [ B) 
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Examples of redescription

• Universal set: Countries of the world
Countries with > 200 Nobel prize winners {USA}

, Countries with > 150 billionaires {USA}
(Jaccard’s = 1.0)
Universal set: Words in English language

Words with 6 letters AND NOT Words with vowels 
{Rhythm, Syzygy} 

, Words with 6 letters AND Words with 3 y’s {Syzygy} 
(Jaccard’s = 0.5)
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Why Redescribe?

• Advantages
Allows feature construction
Can handle any kind of data in terms of descriptors –
no data specific mining required
Can find commonalities and differences between 
various descriptors/descriptor families at the same 
time
Can look for stories using a series of inexact 
redescriptions
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CARTwheels algorithm for 
redescription

10/30/2005 ©Bud Mishra, 2005 L7-80

CARTwheels algorithm for 
redescription (contd.)
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Implementation details –
descriptors used

• Experimental (microarray) data
for yeast from Gasch et al. Descriptors constructed of 
the form ¸, ·
9 different stress used from Gasch et al. data
GO category assignments for genes (biological 
process, cellular component, molecular function)
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Design of System
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To be continued…

…


