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Bioinformatics DataSources

o Database interfaces ¢ Protein Domain analysis and
= Genbank/EMBL/DDBJ, identification
Medline, SwissProt, PDB, = pfam, BLOCKS, ProDom,
o Pattern Identification/
°  Sequence alignment o Characterization
= BLAST, FASTA = Gibbs Sampler, AlignACE,
Multiple sequence alignment MEME
= Clustal, MultAlin, DiAlign ¢ Protein Folding prediction
> Gene finding = PredictProtein,
= Genscan, GenomeScan, SwissModeler
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GeneMark, GRAIL
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Five Important Websites

http.//www.ncbi.nlm.nih.qov/

http.//www.ebi.ac.uk/

http.//www.cbr.nrc.ca/

httr

http
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o Entrez interface to databases
» Medline/OMIM
= Genbank/Genpept/Structures
¢ BLAST server(s)
= Five-plus flavors of blast
o Draft Human Genome
¢ Much, much more...
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http://www.ebi.ac.uk/

o SRS database interface

= EMBL, SwissProt, and many more
¢ Many server-based tools

= Clustalw, DAL, ...
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¢ Curation...
= Error rate in the information is greatly reduced in
comparison to most other databases.
° Extensive cross-linking to other data sources
o SwissProt is the ‘gold-standard’ by which other databases
can be measured, and is the best place to start if you
have a specific protein to investigate
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= A few more resources

BaE—.

http://nar.oupjournals.org/
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Example 1:

o Searching a new genome for 3 specific protein
o Specific problem:
= We want to find the closest match in C elegans of D.
melanogaster protein NTF1, 3 transcription factor

o First- understanding the different forms of blast

(oo *Bud Mishra, 2005 L7-9
7 5 5 . .
The different versions of
B2 BLAST
' QUERY DATABASE
SEQUENCE o
Nuclsic Acid blastn - —
LS, =, |

= |
e translations

Proteins/Peptides

Peptide/Protein
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@J Some possible methods

o |f the domain is a known domain:
¢ SwissProt

= text search capabilities

= good annotation of known domains

= crosslinks to other databases (domains)
o Databases of known domains:

= BLOCKS ( )

= Pfam ( )

= Others (ProDom, ProSite, DOMO, ...)
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Nature of conservation in 3

DN domain

¢ For new domains, multiple alignment is your best
option
= Global: clustalw
= Local: DiAlign
* Hidden Markov Model: HMMER
> For known domains, this work has largely been done for
you
* BLOCKS
= Pfam
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Protein Tools

o Search/Analysis tools
= Pfam
= BLOCKS

» PredictProtein
(
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Different representations of
Sou conserved domains

¢ BLOCKS

= Gapless regions

= Often multiple blocks for one domain
¢ PFAM

= Statistical model, based on HMM

= Since gaps are allowed, most domains have only one
pfam model
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Bayesian Probabilities
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S Probabilities Overview

L

o Ensemle:
= ‘X" is 3 random variable x with 3 set possible
outcomes A, = {a;, a,, ... a,..., 3,}, having

probabilities {p;, pa, ... py-.., pi}. pi, O and oA,
P(x) =1.

¢ Joint Ensemble
= ‘XY’ is an ensemble with ordered outcomes x and y.
» x2A, =13, a3, ...3,...,3} and
"y2A = {b;, by, ... bj,..., b)}.
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{ Marginal & Conditional
B Probabilities

¢ Product Rule:

= P(x,y I H) =P(xly, H) P(y | H)
¢ Sum Rule:

= P(xIH) =% P(xylH) =X P(xly, H) Py |H)
o Bayes’ Rule:

= P(ylx, H) = P(x 'y, H) P(y | H)/P(x | H)

= P(ylx, H)

= PCxly, H) PCy |H)/E, PCx ]y, H) PGy’ | H)

10/30/2005 © _
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— Bayesian Interpretation

o AT

> Probability P(e)

= > our uncertainty about whether e is true or false in
the real world

= (given whatever information we have avialable)
¢ “Degree of Belief”
> More rigorously, we shoul write

= conditional probability P(e | L) - represents degree
of belief, where L is the background information on
which our belief is based

10/30/2005 L.7-18
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=
55 Probability as a Dynamic Entity
Py

o “degree of belief”
= Update the “degree of belief” as more data arrives:

¢ Bayes Theorem: P(e| D) = P(D | e) P(e)/P(D)
o Posterior is proportional to the prior.

10/30/2005 L7-19
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=
55 Probability as a Dynamic Entity
S

¢ Bayes Theorem: P(e| D) = P(D | e) P(e)/P(D)
Prior Probability:
= P(e) is your belief in the event e before you see any
data at all
Posterior.

= P(e|D) is the updated posterior belief in e given the
observed data.

Likelihood-

= P(Dle) > probability of the data under the
assumption e.

<

<

<
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Dynamics

» P(e|D, D,) = P(D, | e, D,) P(e|D,)/ P(D, | D)

o Important Observation:
= The effects of prior diminish as the number of data
points increases.
o The Law of Large Number:
= With large number of data points, Bayesian and
frequentist viewpoints become indistinquishable.
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Paragmeter Estimation

¢ Functional form for a model M
= Depends on parameters ©
= Best estimation for ®?
o Typically our parameters @ are a set of real-valued
numbers
= Both prior P(®) and the posterior P(® | D) are
defining probability density functions

10/30/2005 o )
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{ Maximum A Posteriori
BES (MAP)

¢ Find the set of parameters ®

= maximizing the posterior P(® | D) or minimizing a
score -log P(® | D)

- E(©) = -log P(®]D)
= -log P(D 1 ®) - log P(®) +logP(D)
= Same as minimizing E(®) = -log P(D 1 ®) - log
P(®)

= If the prior P(®) is uniform over the entire parameter
space (uninformative):
Minimize E (®) = -log P(D | ©)

= Maximum likelihood solution
10/30/2005 © L7-23
Bud Mishra, 2005

Information Theory
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. Entropy

¢ X =r.v,; Entropy of X
= H(X) =X, P(x) log (1/P(x)) =E, [-log P(x)]
¢ Entropy measures the information content or
“uncertainty” of x
= 0 - HX) - log(IX]).
= H(X) =0, if 9x, P(x) =1; It's minimal if the
probability is concentrated at one value (no
uncertainty)
= H(X) = log(IX]), if 8 x, P(x) = 1/IX]; It's maximal if the
probability is distributed uniformly (complete
uncertainty)
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Joint Entro
&; Py

¢ Joint entropy of X, Y:
= HXY) =X, 2, A, P(x,y) log(1/P(x,y))
= Entropy is additive for independent r.v.’s.
= H(X,Y) = H(X) + HCY) iff P(x,y) = P(x) P(y).
¢ Conditional Entropy of X given Y:
= HOXIy) = Xaa POxTy) log(1/P(xly))
= H(XIY) = E, H(Xly)
=2, P(y) 2, P(x1y) log(1/P(xly))
=2, Pxy) log (1/P(xl y))

10/30/2005 o )
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Chain Rule

¢ Chain Rule for Entropy
= H(X,Y) = HOX) + HCYIX) = HQY) + HXIY)
¢ Mutual Information

It measures the average reduction in uncertainty about x
that results from learning y or vice versa.

= 1(X;Y) = H(X) = HIXIY) = HCY) = H(YIX)
= H(X) + H(Y) - HCXY)
= 10GY) = X, POxy) log [P(x,y)/P(x)P(y)]
¢ Properties:
= [(X;Y) = 1CY;X); 10XY) L O

1075072005 ©Bud Mishra, 2005 L7-27
Distance
=
¢ Distance between two r.v.’s:
= D(X,Y) = HXY) = [(X;Y)
=2 H(X,Y) — H(X) = H(Y)
= D(X,Y) | O.
¢ Ildempotent:
= D(X,X) =0.
¢ Symmetry:
= D(X,Y) = D(Y,X)
¢ Triangle Inequality:
» D(X,Z) - DCXY) + DY, Z)
1073072005 “Bud Mishra, 2005 L7-28
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=
Data Processing Inequalit
&; g Inequality

¢ Markov Chain

= X1Y1Z

= P(zlx,y)=P(zly)

= OR P(x, vy, z) = P(x,y) P(z x, y)= P(x) P(xl'y) P(zly)
< Then I(X; Y) s I(X; Z)
o Corollary:

= 1(X; Y), 1CX; g(Y))

10/30/2005 © _
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KL Distance

o Kullback-Leibler (KL) Distance (Relative Entropy):

= Given two probability distributions p(x) and q(x)
[defined over the same x 2 A ]

= Dy, (pllg) = E, log p(x)/q(x)
=%, p(x) log p(x)/q(x)
¢ Properties:
= Gibb’s Inequality: Dy (pllq) , O
= D (pllg) = Dy (qlip)

10/30/2005 L7-30
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{ What Good is Information
s Theory

> Family of genes:
= Can genes be grouped to explain how they work
together? Information Compression.
¢ Relation between groups of genes and their effect on the
traits:
= How does a group of genes code the information
about 3 complex trait?
= Which gene affects the trait more directly than
another gene?

10/30/2005 1 7-31
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Rate Distortion Theories
Kolmogorov-Shannon Theorem

(Also called “information bottleneck.”)

10/30/2005 L7-32
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Strangeness of RDT

¢ An intriguing aspect of Rate Distortion Theory:
= Joint descriptions are more efficient than individual
descriptions.
= This is true even for independent random variables.

= It is simpler to describe an elephant and a penquin
with one description than to describe each alone.

10/30/2005 © _
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P Rate Distortion Theorem

L

¢ Due to Kolmogorov & Shannon:
= X = Dictionary (think of all the genes)
» X = Codebook
(think of families of corequlated genes)
» Rate = [(X; X) = H(X) = H(X, X)
= Sy x P(x, x) logl p(x,x')/p(x) p(x)1 dx dx’
» Distortion =h 6(X, X) i
=Sy x p(x, x) 8(x, x') dx dx’

10/30/2005 © _
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Succinct Theory

= We want highest rate (maximum compression) with
least amount of distortion:

¢ Optimization Problem:
= Min I(X; X)
= Subjecttoh 8(X, X)i-D
o Lagrangian of a Constrained Optimization Problem
Flp(x | x), B1 = 1(X; X) + B h (X, X) |

10/30/2005 17-35
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Solution to Ladrandian
Q grang

¢ The variational problem is solved at:
p(x | x) = [1/Z(x, P)] p(x') Exp[-B 8(x, x')]
¢ |n other words:
p(x, x')/p(x) p(x') | Exp[-B 8(x, x')]
¢ Thus,
I(X, X) = sy x p(x,x7) [-B 8(x, x)] dx dx" = B h&(X, X)i

Flp(x|x), Bl = 1(X; X) + Bh&(X, X) i=0O

10/30/2005 L7-36
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=
Blahut-Arimoto Alqorithm
) J

¢ Fixed point:

" p(x') =2, p(x, x') =%, p(x) p(x" | x)

» p(XIx) = p(x) Expl-B 8(x, x)1/Z(x, B)

= w(x,x)=p(x,x)/p(x) p(x') = Exp[-B 8(x, x)1/Z(x, B)
¢ Computation:

= Start with some K randomly chosen code words - X;

8, ox Po(x) =1/K
o pi(X1x) = p(x) Expl-B 8(x, x)1/Z,(X, B)
= Choose new code words: X, x p(x’ Ix)

* Thus, pu(X) =X, p(x) prg(x" | x)

10/30/2005 © _
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Clustering

| i B
=]

o Set of green points on the
plane...gy, g, ..., gg. We wish
to encode them succinctly

oo with three brown points... b,,

° b,, b

° ¢ Choose three brown points at
° random.
* For each brown point,
oo compute p(b; | g,) depending
. on the current distance
° between b& g,

10/30/2005 17-38
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Clustering

* Recompute the new
positions of by, b,, ba:
¢ New (b) =X g, p(Old(b) I g)
o = Weighted Centroids of
green points g;'s

7 > REPEAT
’ .. s UNTIL the brown points do
K not move:
o Soft_k_means Clustering
R “Bud Mishra, 2005 L7-39
i /4 .
A "Harder” Version
o Choose K “centroid” positions
= b, b, ... by
¢ Using b,'s partition the green points g, g, .. g, into K
classes:
" G, = { g, closer to b, than any other b}
¢ Update K centroid positions:
= New(b,) = Centroid of G,
10/30/2005 L7-40

©
Bud Mishra, 2005

20



ﬁ) Ihformation Bottleneck

¢ Markov Chain: X! X 1Y
¢ Measure Distortion by KL (Kullback-Leibler) distance:
= Dy (pCylb)ll plylx)) = 8, (x,x)
Minimize rate without “much” KL-distortion:
Optimization Problem

= Min I(X; X)

= Subjecttoh 8 (xx)i-D
Lagrangian

F(p(xlx') p(ylx')) = 1CX; X) +B h Dy (pCylx)IICyIx)) i

10/30/2005

<

<

<
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| Fixed Point Solution

o p(xx)/pOp(x’) = Exp[-B 8,(x,x)1/Z(x, B)
o 8, (xx) = Dy (plylx) I plylx'))

= p(x'1x)= p(x)Exp[- 8,(x,x)]/Z(x, B)

= p(x') =X, p(x'IX)p(x)

= p(x | x") =p(XIx)p(x)/ p(x)

= ply Ix) =X, ply Ix, x) p(x | x)
=2, xPCy Ix) p(x 1 x)

= 8,(xx) = Dy (pCylx) Il pCylx'))

10/30/2005 © _
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=
2 Blahut-Arimoto Algorithm

Aot

" Pra(x'1x)= p(xVExp[-B 8,(x,x)1/Z(x, B)

" pe(X') = 2, P (X 1X)p(x)

" DX 1 X) =P (X X)P(X)/ Prag(X)
" Py 1x) = 2, ply 1 %) prg(x [ x)
" 8, 01(x,X) = Dy (pCylx) Il prsCylx))

10/30/2005 L7-43
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How Can this Help Us:
= P

¢ Think of the Markov Chain: X! X 'Y as
¢ GeneFamilies ! GeneExpressions ! Pathophysiology

= In other words, we wish to cluster the genes so that
they explain various aspects of the pathophysiology...

* You may take other metadata into account in this

picture. ..

HOMEWORK: Try to make these ideas less abstract!!!

Translate the algorithm directly to our “CFS

problem.”

10/30/2005 | 7-44
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GRAPHICAL MODELS

10/30/2005
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Bayesian Network: Example

Edges
represent

dependencies

B L
Al
Nodes
represent gene
jctivities
E|A | PrIBIEAT |Prl: BIEAI
O|0| 03 07
O|1| 04 0.6
110 07 03
1]1] 01 0.9
10/30/2005
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= Bayesian nhetworks (BN) in brief

 Graphs in which nodes
represent random variables
¢ (Lack of) Arcs represent
conditional independence
assumptions SN S
¢ Present & absent arcs provide et
compact representation of e et
joint probability distributions I
¢ BNs have complicated notion
of independence, which takes
into account the directionality
of the arcs

10/30/2005 © _
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2 Bayesian network example

o P(hear your dog bark as you
get home) = P(hb) = ?

guest issue (i)

family out (fo)
Ny

lights on (lo) dog out (do)
hear hark (ih)

L7-48
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=
Mo Belief Propagation

¢ Need prior P for root nodes P(fo)= 0,15 Pisi)

o) =0.01

and conditional Ps, that
consider all possible values of

{ family out (fo) \> (guestis
parent nodes, for nonroot g

sie g) )

P(dofo gi)=0.99
P(doffo-gi) = 090
I
B

nOdes v o
" lioht £ dogout(do)
. QL) dolfo g) =07
P(loffo)=0.6 v

Plolo)=005

( hear hark (hh)

\*/1

doffo-gi) =03

(libldo) = 0.7
P(hbl-do) = 0.01
10/30/2005 —
’ ©Buci Mishra, 2005 L7-49
Major benefit of BN
DN
¢ We cah kl’)OW P(]’)b) based P(fo)=0.15 P(gl)=001
only on the conditional \
Pl’ObabilftieS Oﬂ’)b and its { family out (fo) vuestlssue (g)
parent node. /\_/\ \/
¢ We don't need to Pidoffo gi) =099
know/include all the ancestor ,w) ,m\) P(doffo-4) =00
probabilities between hb and NP2 / P(dolfo g =0.97
the root nodes. P(doffo-gi) =0.3

P(lofo) = 0.6
P(loHo) =003

}(

( hear hark (hh) )

(

P(hbjdo) =0.7
P(hb}-do) = 0.01

10/30/2005 ©
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.
Applications to Diverse Problems

PANG &1 af.: COMPUTERIZED TONGUE DIAGNOSIS BASED ON BAYESIAN NETWORKS

Fig. 1. The outline of the computerized tongue diagnosis system.

"Computerized tongue diagnosis
based on Bayesian networks”:
devising expert system for Chinese
medical method (supplementary
reference 3)

10/30/2005 ©
Bud Mishra, 2005

Bayesian Networks

> Bayesian Network Model M consists of a set of random
variables:
= X, Xo o X
 and an underlying directed acyclic graph (DAG)
= G=(V, E)
o such that each random variable is uniquely associated
with 3 vertex of DAG

10/30/2005 L7-52
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Parameters

o The parameters ® of the model are the numbers that
specify the local conditional probability distributions

= POX I Xy) 11
= where X denotes the parent of node i in the graph

o Global probability distribution must equal the local
conditional probability distributions:

= PCXy o X) = T1 PO X ).
¢ Learning Bayesian network

= Belief Propagation:

= In general, NP-complete.

10/30/2005 L7-53
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Markov Model

* Bayesian network structure for both
= Hidden Markov Model
= Kalman Filter Model
¢ Important Independence Assumptions:
= Current state X, depends only on the past state X,
= Current output Y, only depends on the state X,

Tt—z Tt-l ft THI
Xt~2 Xt~l Xt Xt+l

10/30/2005 L7-54
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Decomposition

- LE
=]
* Consider an arbitrary joint
distribution
" p(xy,z)

¢ By successive application of the
x product rule

= P(x,y,z) = p(x) p(y,z| x)
=p(x) p(ylx) p(zIx, y)

10/30/2005 17-55
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Directed Acyclic Graphs

¢ Joint distribution
" POx, o xp) = i pOx 1 pay)

x, where pa; denotes the parents
%2 of i.
© plxy, ..x7) = plxg) p(x;y) plxs)
Xs pOxg I xq, X5, %) plxs | xq, %5)

PCxs 1x4) pCxy 1 x4, x5)

No directed cycles
7

10/30/2005

©Bud Mishra, 2005 L7-56
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Undirected Graphs

= Provided p(x) > O then joint distribution is product of
non-negative functions over the cliques of the graph

« PO = (/D) T1e welxd)

= Where y(xc) are the clique potentials, and Z is a
normalization constant

w X

p(w,x,y,z) = (1/Z) ya(w,x,y) Wp(xy,z)

10/30/2005 © _
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=
= Conditioning on Evidence
=

= Varigbles may be
hidden (latent) or
visible (observed)

= Latent variables may
@ visive have a specific
interpretation, or may
() nidden be introduced to
permit a richer class of
distribution

» Recall HMM

10/30/2005 © )
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> 17-59

=
Conditional Independences
B2 P

¢ x independent of y given z if,
for all values of z,
» (x12)q(ylz)
» P(xylz) = p(xlz) p(ylz)
* For undirected graphs this is
given by graph separation!

10/30/2005 ©
Bud Mishra, 2005

Message Passing

> Find marginal for 3 particular node
P(xi) = Zx1 in_T me ZXL P(x‘l' s XL)
= for M-state nodes, cost is O(M ™ L)
*exponential in length of chain
“but, we can exploit the graphical structure
(conditional independences)

10/30/2005 © _
Bud Mishra, 2005 L7-60
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Messaqge Passin
Q g g

¢ Joint distribution

p(xq, o, X)) = (/Z) Wiy, Xo) o WX 4, X)

° Exchange sums and products

m, (Xi)

|
pOx) = (1/2).. E w(xy, x3) [Z, Wik, x))]

C -ZXL_1 WX X() [ZXL Yxq, x)]

mﬁ(xi)

10/30/2005 L7-61
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Message Passing

[ B
[
 Express as product of messages
) m) p(x) = (1/Z) my(x) my(x)
T B B Recursive evaluation of messages
M (%) = Xy WXiq, Xp) My(Xq)
mp(x) = 2y WXp, %) Mp(xi4)
> Find Z by normalizing p(x;)
10/30/2005 L7-62
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Belief Propagation

| i B
bdilet
¢ Extension to general tree-
structured graphs
o Ateach node:
= form product of incoming
/ messages and local evidence
» marginalize to give outgoing
< message
X; . . .
’ * one message in each direction
N across every link
o Fails if there are loops
10/30/2005 L7-63
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t) Junction Tree Algorithm

* An efficient exact algorithm for 3 general graph
= applies to both directed and undirected graphs
= compile original graph into a tree of cliques
= then perform message passing on this tree
¢ Problem:
= cost is exponential in size of largest clique
= many vision models have intractably large cliques

10/30/2005 L7-64
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Junction Tree

¢ Marry parents:

= Add undirected edges to all co-parents which are not
currently joined

Moralize
= Drop all directions in the graph. a moral graph
Trianqulate the Moral Graph

= Add additional links so that there is no cycle of
length 4 or more

Identify and Join Cliques to from the Junction Tree
Perform Message passing on the Junction Tree

<

<

<

<

10/30/2005 L7-65
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Example

= Dyspnoea (shortness of breath) may
9 be due to Tuberculosis, Lung cancer
or Bronchitis, or none of them or
/ \ more than one of them. A recent
visit to Asia increases the chance of
0 Tuberculosis, while Smoking is
known to be 3 risk factor for both
Lun? cancer and Bronchitis. The
results of 3 single X-ray do not
discriminate between Lung cancer
and Tuberculosis, as neither does the
presence or absence of Dyspnoea.

10/30/2005 L7-66
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Example

bt
¢ Marry parents
e = ConhnectT& L
/ \ = ConnectE & B
10/50/2005 ©Bud Mishra, 2005 L7-67
Example
I S Ll
bt
¢ Moralize
9 ¢ Next
/ \ o Triangulate the Moral
Graph
¢ Find Cliques
¢ Form the Junction Tree.
10/30/2005 L7-68
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Example

L7-69
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() Loopy Belief Propagation

> Apply belief propagation directly to general graph
= need to keep iterating
= might not converge
o State-of-the-art performance in error-correcting codes

10/30/2005 L7-70
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Graphical Model for CFS

?/° 2

SNPMod(l N SNPMod(m

PathoPhysMod(1)

PathoPhysMod (k) l
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Gene Interaction Maps
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SE Graphical Models for Biology

Aot

= Rich modeling language for biological systems
= Based on probabilistic graphical models

» Classes of objects:
« Genes, experiments, tissues, patients
= Properties

« Observed: gene sequence, | Gene Experiment

experiment conditions -
« Hidden: gene function Gene ST
. Properties Properties
= Interactions )

« Bxpression level is function
of gene and experiment properties

@e/w / Praperﬁe.s'fmper@‘

Seaqal et af. (ISMB 2001)
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2 Gene Regulation Model

o AT

Expression level of
Regulator, in experiment

Experiment

Regulator,
Regulator,

Module assignment
of gene “g”

Expression level in each
module is a function of

expression of regulators

10/30/2005 © _
Bud Mishra, 2005 L7-74

37



REDESCRIPTION
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S What is redescription?

o Shift of vocabulary
= from one lanquage (descriptor family) to another to
describe the same entity
= Descriptor is any meaningful way of defining a subset
within a universal set of entities
= Set theoretic operations used on basic descriptors to
define derived descriptors
o Evaluated on the basis of Jaccard’s coefficient
= (A,B)=(AAB)/(A[B)
10/30/2005
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~2  Examples of redescription

o Universal set: Countries of the world

= Countries with > 200 Nobel prize winners {USA}

, Countries with > 150 billionaires {USA}

(Jaccard’s = 1.0)

Universal set: Words in English language

= Words with 6 letters AND NOT Words with vowels
{Rhythm, Syzyqy}

, Words with 6 letters AND Words with 3 y's {Syzygy}
(Jaccard’s = 0.5)

10/30/2005 © _
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Why Redescribe!

¢ Advantages

= Allows feature construction

= Can handle any kind of data in terms of descriptors -
no data specific mining required

= Can find commonalities and differences between
various descriptors/descriptor families at the same
time

= Can look for stories using a series of inexact
redescriptions
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CARTwheels algorithm for
Loy redescription

X = | 03, 03 I W o= { o e }
X2 = { 03, 04 } Y = { o™, 03, 04 }
Xs = { 02, 04 } v o= { 03, o5 }
Xy = { o1 o5 } Yi = { o. o o5 }

object | ¥y [ Ya | Y3 | ¥y | class
o Vx| x|V ]| Xs
o |v|v|x|v|x
0 x | [+ ] x X
o4 X% | x| X2 )
% x |x |V [V ]|Xs X1 X4 X4 X2

Figure 2: (left) Dataset to initialize CARTwheels algorithm. (right) induced classifi cation tree.

10/30/2005 L7-79

©
Bud Mishra, 2005

CARTwheels algorithm for

&f{, redescription (contd.)

obj. | X3 | Xa | X3 | X4 | class obj. | ¥, | ¥a | ¥a | ¥4 | class

o = X |x |+ |(a=Y2)Uu(¥1—V3) o1 VXX [ ] (HEnX)uX = X)

o2 [ | % |V | x |(Y3-Y2)U(¥;—Y5) o2 |V |V | x|V [ (XanX)U(X—Xs)

o3 [V |V | % | = YanYz o3 ®olW R (O=X—XY)

oy » AN PV (o I N o4 ® |4 % x| (X—Xy)

ay * x | x | | (Ya—Y2)U(¥i—13) a5 X | % || | (XKnX)UiX; —X;)
Figure 3: (left) Dataset for second iteration of CARTwheels algorithm. Notice that class labels are now set-theoretic

expressions involving ¥3%s. (right) Dataset for third iteration of CARTwheels algorithm.

10/30/2005 L7-80

©
Bud Mishra, 2005

40



Implementation details -
Scu descriptors used

o Experimental (microarray) data

= for yeast from Gasch et al. Descriptors constructed of
the form , -

» 9 different stress used from Gasch et al. data

= GO category assignments for genes (biological
process, cellular component, molecular function)
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To be continue
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