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Blocky Genome
- Picture Daly et al.
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Blocky Genome

• Daly et al.(2001) Study on haplotypes
A genomic region on chromosome 5 
Found that the region can be partitioned into 11 
blocks of size up to 100 kb such that in each block 
there is very little variation. 
In each block only a few haplotypes (2-4) account 
for over 90% of the haplotypes in the sample.
Inside the blocks there is no or very little evidence for 
recombination, whereas between blocks there are 
hot-spots of recombination.
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Blocky Genome

• Reducing the complexity of the genome.
Having such an extended LD is important because it 
means that only few sites encode the information 
present in the entire region. (Knowing the 
information at these sites gives you the entire 
haplotype).
So no need to genotype all sites.

• Motivated by these findings, several deterministic and 
Bayesian algorithms analyze data specifically specifically 
exploiting these blocks of limited diversity.
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THE HAPLOTYPING 
PROBLEM

• Single Individual:
Given genomic data of one individual, determine 2 
haplotypes (one per chromosome)

• Population :
Given genomic data of k individuals, determine (at 
most) 2k haplotypes (one per chromosome/indiv.)

• Under different objective functions
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HAPLOTYPING

For the individual problem, input is erroneous 
haplotype data, from sequencing & mapping.
For the population problem, data is ambiguous 
genotype data, from screening

• Objective Function is gverened by Occam’s razor:find 
minimum explanation of observed data  under given 
hypothesis (Parsimony Principle, Maximum Likelihood)
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Theory and Results

• Single individual
Polynomial Algorithms for gapless haplotyping  (Lancia, Bafna, 
Istrail, Lippert, Schwartz 01)
Polynomial Algorithms for bounded-length gapped 

haplotyping  (Bafna, Lancia, Istrail, Rizzi 02)
NP-hardness for general gapped haplotyping (Lancia, Bafna, 
Istrail, Lippert, Schwartz  01)

• Population
Parsimony (Gusfield 03, Lancia, Rizzi, Pinotti 02)
Clark’s rule: APX-hardness and I.P. approach (Gusfield 00 & 01)
Polynomial algorithm for perfect phylogeny (Bafna, Gusfield, 
Lancia, Yooseph 02)
Formulations for  Disease Detection (Lancia, Pesole 02) 
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Shotgun Assembly of a 
Chromosome

TGAGCCTAG    GATTT   GCCTAG     CTATCTT

ATAGATA      GAGATTTCTAGAAATC   ACTGA

TAGAGATTTC   TCCTAAAGAT         CGCATAGATA

fragmentation

sequencing

assembly
ACTGCAGCCTAGAGATTCTCAGATATTTCTAGGCGTATCTATCTT
ACTGCAGCCTAGAGATTCTCAGATATTTCTAGGCGTATCTATCTT
ACTGCAGCCTAGAGATTCTCAGATATTTCTAGGCGTATCTATCTT

ACTGCAGCCTAGAGATTCTCAGATATTTCTAGGCGTATCTATCTT

•[ Webber and Myers, 1997]   
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ERROR SOURCES

Sequencing errors:

ACTGCCTGGCCAATGGAACGGACAAG
CTGGCCAAT

CATTGGAAC
AATGGAACGGA

Paralogous regions:

ACAAACCCTTTGGGACT … CTAGTAAACCCTATGGGGA
AAACCCTT              TAAACCCT

CTATGGGA              CCTATGG
CTTTGGGACT          ACCCTATGGG
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Individual Haplotyping

Given errors (sequencing errors, and/or paralogous) 
the data may be inconsistent with exactly 2 
haplotypes
Hence, assembler is unable to build 2 chromosomes

• PROBLEM: 
• Find and remove the errors so that the data becomes 

consistent with exactly 2 haplotypes
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The data: a SNP matrix
ACTGAAAGCGA       ACTAGAGACAGCATG
ACTGATAGC          GTAGAGTCA
ACTG           TCGACTAGA     CATG
ACTGA   CGATCCATCG       TCAGC
ACTGAAA   ATCGATC          AGCATG

ACTGAAAGCGA ACTAGAGACAGCATG
ACTGATAGC GTAGAGTCA
ACTG TCGACTAGA CATG
ACTGA CGATCCATCG TCAGC
ACTGAAA ATCGATC AGCATG

X X O
O O X

X
X X

X       O    
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Resolving a SNP matrix

Snips 1,..,n

1 2 3 4 5 6 7 8 9
1 - - - O X X O O -
2 - O - O X - - - X
3 X X O X X - - - -
4 O O X - - - - O -
5 - - - - - - - X O
6 - - - - O O O X -

Fragments 1,..,m
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Fragment Conflict Graph

• Fragment conflict:
Cannot be on same haplotype
Summearized by a Fragment 
Conflict Graph GF(M)

• Theorem:
We have 2 haplotypes iff GF is 
BIPARTITE

• PROBLEM (Fragment Removal): 
Make GF Bipartite

Snips 1,..,n

1 2 3 4 5 6 7 8 9
1 - - - O X X O O -
2 - O - O X - - - X
3 X X O X X - - - -
4 O O X - - - - O -
5 - - - - - - - X O
6 - - - - O O O X -

1

6
2

3

4
5

Fragments 1,..,m
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Removing Fragments

1

6
2

3

4
5

1 2 3 4 5 6 7 8 9
1 - - - O X X O O -
2 - O - O X - - - X
4 O O X - - - - O -

3 X X O X X - - - -
5 - - - - - - - X O

O O X O X X O O X

X X O X X - - X O 

Snips 1,..,n

1 2 3 4 5 6 7 8 9
1 - - - O X X O O -
2 - O - O X - - - X
3 X X O X X - - - -
4 O O X - - - - O -
5 - - - - - - - X O
6 - - - - O O O X -

1

6
2

3

4
5

Fragments 1,..,m
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Complexity

• Removing fewest fragments is equivalent 
to maximum induced bipartite subgraph
NP-complete [Yannakakis, 1978a, 1978b; Lewis, 1978] 
O(|V|(log log |V|/log |V|)2)-approximable
[Halldórsson, 1999] 
not O(|V|ε)-approximable for some ε [Lund and
Yannakakis, 1993]

• THEOREM
For a gapless M, the Min Fragment Removal Problem 
is Polynomial
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Population Haplotypes

• Clark’s Algorithm
• Perfect Phylogeny Solutions
• Statistical Solutions 
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Clark’s Algorithm -1990

• This is a parsimony approach
It tries to solve the genotypes in the data set with as 
few haplotypes as possible.
It starts with the list of haplotypes that can by 
unambiguously inferred from the genotype data, i.e. 
the ones coming from homozygous or single-site 
heterozygous individuals.
It then tries to solve the phase ambiguous individuals 
by using these already determined haplotypes.
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Example

For the data set that we have, we know that the 
following haplotypes are present in the population: 
{AGT, ACT, AGA, TGA}
Now, for each known haplotype we traverse the list 
of ambiguous individuals and ask whether each 
individual can be solved by that haplotype: e.g. {A,T} 
{G, C} {T, T}, can be solved as AGT and TCT. 
By doing this we also acquired a new haplotype (TCT) 
that we add to the end of the list. We do this process 
until either all individuals are resolved or we can’t 
find any more solutions.
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Problems

• There are a few problems with this algorithm.
It might not get started
It might not resolve all individuals
It depends on the order in which one examines the 
genotypes
It performs poorly compared to other existing 
algorithms when too few homozygotes are in the data.

• Simple and Popular.
No limit on the number of SNPs it can handle
Other variations (e.g. The Consensus Solution)
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Perfect Phylogeny

• Gusfield (2002)
• Bafna et al. (2002)
• Eskin et al. (2002)
• New Results (2005) Gusfield et al.
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Perfect Phylogeny 2001

• The Perfect Phylogeny model of haplotype evolution
It assumes that there is no recombination and the 
usual infinite-site mutation model of population 
genetics applies.
Given the existence of these blocks, the PP model 
seems a reasonable model when working with SNP 
data.
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Perfect Phylogeny

• The first paper assuming this model [Gusfield (2002)]. 
The solution presented is a reduction of the 
haplotype inference problem to a problem in graph 
theory called the “graph realization problem.” This 
problem has an optimal solution - almost linear time. 
But it is very difficult to implement.
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Perfect Phylogeny

• A simpler solution[Bafna et al. (2002) and by Eskin et 
al. (2002)]

Uses no complex tools and is very easy to implement.
• Relatively Fast:

The time complexity of these algorithms is O(ns2) 
where n is the number of individuals and s the 
number of sites.

• Limited Applicability 
They can only be applied on haplotype blocks with 
no recombination.
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Genotypes and Haplotypes

• Each individual has two “copies” of each chromosome. 
At each site, each chromosome has one of two alleles 
(states) denoted by 0 and 1 (Biallelic SNPs)
Diploid individuals
Merged haplotypes gives genotypes:

0+0 = 0
1+1 = 1
0+1=2

0  1  1  1  0  0  1  1  0

1  1  0  1  0  0  1  0  0

2  1  2  1  0  0  1  2  0
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Haplotyping Problem

• Biological Problem: 
For disease association studies, haplotype data is more 
valuable than genotype data, but haplotype data is 
hard to collect. Genotype data is easy to collect.

• Computational Problem: 
Given a set of n genotypes, determine the original set 
of n haplotype pairs that generated the n genotypes.  
This is hopeless without a genetic model.
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The Perfect Phylogeny Model of 
Haplotype Evolution
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The Perfect Phylogeny Model

• We assume that 
the evolution of extant haplotypes can be displayed 
on a rooted, directed tree, with the all-0 haplotype at 
the root, where each site
changes from 0 to 1 on exactly one edge, and each 
extant haplotype is created by accumulating the 
changes on a path from the root to a leaf, where that 
haplotype is displayed. 

• In other words,  the extant haplotypes evolved along a 
perfect phylogeny with all-0 root.
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Justification for Perfect Phylogeny Model

• Recent strong evidence for long regions of DNA with 
no recombination. 

Key to the NIH haplotype mapping project. (See NYT 
October 30, 2002)

• Mutations are rare at selected sites, so are assumed non-
recurrent.

• Connection with coalescent models.
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Perfect Phylogeny Haplotype (PPH)

1 2

a 2 2

b 0 2

c 1 0

sites

Genotype matrix

S

• Given a set of genotypes S, find an 
explaining set of haplotypes that fits a 
perfect phylogeny. A haplotype pair 
explains a genotype if the merge of the 
haplotypes creates the genotype. 

Example: The merge of 0 1 & 1 0 
explains 2 2.
Solutions: 0 1, 1 0 & 0 0.

• 3-Gamete Rule: 
not all four possible values are 
admissible…(1 1 is missing)
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The PPH Problem

1 2

a 1 0

a 0 1

b 0 0

b 0 1

c 1 0

c 1 0

Given a set of 
genotypes, find an 
explaining set of 
haplotypes that fits a 
perfect phylogeny

1 2

a 2 2

b 0 2

c 1 0
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The Haplotype Phylogeny 
Problem

1 2

a 1 0

a 0 1

b 0 0

b 0 1

c 1 0

c 1 0

1

c c a a

b

b

2
1 2

a 2 2

b 0 2

c 1 0

10 10 10 01 01

00

00
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The Alternative Explanation

1 2

a 1 1

a 0 0

b 0 0

b 0 1

c 1 0

c 1 0

1 2

a 2 2

b 0 2

c 1 0

No tree
possible
for this
explanation
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Efficient Solutions to the PPH 
problem - n genotypes, m sites

• Reduction to a graph realization problem (GPPH)
Build on Bixby-Wagner or Fushishige solution to 
graph realization O(nm α(nm)) time.

• Reduction to graph realization –
Build on Tutte’s graph realization method O(nm2) 
time.
Specialize the Tutte solution to the PPH problem -
O(nm2) time. Eskin et al.

• Direct, from scratch combinatorial approach
O(nm2) Bafna et al. 
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Recognizing graphic
Matroids

• The graph realization problem
It is the same problem as determining if a binary 
matroid is graphic
The fastest algorithm is due to Bixby and  Wagner
Representation methods due to Cunningham et al.



10/24/2005 ©Bud Mishra, 2005 L4-35

The DPPH Method

• Bafna et al. O(nm2) time
Based on deeper combinatorial observations about 
the PPH problem.

• A matrix-centric approach (rather than tree-centric), 
although a graph is used in the algorithm.

• Key Intuition:
We need to understand why some sets of haplotypes
have a perfect phylogeny, and some do not.
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When does a set of haplotypes fit a 
perfect phylogeny?

• Classic NASC: 
Arrange the haplotypes in a matrix, two haplotypes 
for each individual. Then (with no duplicate 
columns), the haplotypes fit a unique perfect 
phylogeny if and only if no two columns contain all 
three pairs: 

• 0,1 and 1,0 and 1,1

• This is the 3-Gamete Test
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The Alternative Explanation

1 2

a 1 1

a 0 0

b 0 0

b 0 1

c 1 0

c 1 0

1 2

a 2 2

b 0 2

c 1 0

No tree
possible
for this
explanation
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The Haplotype Phylogeny 
Problem

1 2

a 1 0

a 0 1

b 0 0

b 0 1

c 1 0

c 1 0

1

c c a a
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b
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1 2

a 2 2
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10 10 10 01 01

00
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PPH: The Combinatorial 
Problem

• Input: 
A ternary matrix (0,1,2) M with 2N rows partitioned 
into N pairs of rows, where the two rows in each pair 
are identical. 

• Def: 
If a pair of rows (r,r’) in the partition have  entry 
values of 2 in a column j then positions  (r,j) and 
(r’,j) are called  Mates.
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PPH: The Combinatorial Problem

• Output: 
A binary matrix M’ created from M by replacing each 
2 in M with either 0 or 1, such that

• A position is assigned 0 iff its Mate is assigned 1.
• M’ passes the 3-Gamete Test, i.e.,  does not contain a 

3x2 submatrix (after row and column permutations) 
with all three combinations 0,1; 1,0; and 1,1
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Initial Observations 

If two columns of M contain  the following rows
2 0 
2 0   mates
0 2
0 2   mates

then M’ will contain a row with  1 0  and a row with  
0 1  in those columns.

• This is a forced expansion.
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Initial Observations 

Similarly, if two columns of M contain  the mates
2 1 
2 1  

then M’ will contain a row with  1 1 in those columns. 

• This is a forced expansion.
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Further Observations

If a forced expansion of two columns creates 
0 1 in those columns, then any   2 2 
1 0                                                2 2          
in those columns must be set to be
0 1
1 0
• We say that two columns are forced out-of-phase. 
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Further Observations

If a forced expansion of two columns creates 1 1 in 
those columns, then any

2 2 in those columns must be set to be 1 1
2 2                                                          0 0
• We say that two columns are forced in-phase.
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Example

1 2 2

1 2 2

2         0 2

2 0 2

1 2 2

1 2 2

1 2 2

1 2 2

2 2 0

2 2 0

1      2     3 Columns 1 and 2, and 1 
and 3 are forced in-phase.
Columns 2 and 3 are 
forced out-of-phase.

a

a
b
b
c
c

d
d
e
e
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Immediate Failure

It can happen that the forced 
expansion of cells creates a 3x2
submatrix that fails the 3-Gamete 
Test. In that case, there is no PPH 
solution for M.

Example:

20 
20
11
11
02
02
Will fail the 3-Gamete Test
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An O(nm2)-time Algorithm

Find all the forced phase relationships by considering 
columns in pairs.
Find all the inferred, invariant, phase relationships.
Find a set of column pairs whose phase relationship 
can be arbitrarily set, so that all the remaining phase 
relationships can be inferred.

• Result: 
An implicit representation of all solutions to the PPH 
problem.
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An Example

1 2 3 4   5  6        7

1 2 2 2 0 0 0

0 0

2

2

0

0

0

0

0

0

0

0

2

2

0

0

2

2

0

0

0

0

0  

2

2

0

0

2

0

0

2

2

0

0

0

0

1 2 2

2         0 2

2 0 2

1 2 2

1 2 2

1 2 2

1 2 2

2 2 0

2 2 0

a

a

b

b

c

c

d

d

e

e
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Overview of Bafna et al. 
algorithm

• First, represent the forced phase relationships, and the 
needed decisions, in a graph G. 

Each node represents a column in M, and each edge 
indicates that the pair of columns has a row with 2’s 
in both columns.
The algorithm builds this graph, and then checks 
whether any pair of nodes is forced in or out of 
phase.
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PPH

• Color the edges to create Gc:
Each Red edge indicates that the columns are forced  
in-phase.
Each Blue edge indicates that the columns are forced  
out-of-phase.

• Let Gf be the subgraph of Gc defined by the red and blue 
edges.
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PPH

There is a solution to the PPH problem for M if and 
only if there is a coloring of the dashed edges of Gc
with the following property:

• For any triangle (i,j,k) in Gc, where there is one row 
containing 2’s in all three columns i,j and k  (any 
triangle containing at least one dashed edge will be of 
this type), the coloring makes either 0 or 2 of the edges 
blue (out-of-phase).
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Triangle Rule

• Theorem 1:
If there are any dashed edges whose ends are  in the 
same connected component of G_f, at least one edge 
is in a triangle where the other edges are not dashed, 
and in every PPH solution,  it must be colored so 
that the triangle has an even number of Blue (out of 
Phase) edges. 

• This is an “inferred” coloring.
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71
Graph G
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3

4
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5
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71
Graph Gc
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3

4
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71
Graph Gf has three
connected components.

4

6

3

2

5
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71 Triangle Rule

4

6

Graph Gf

3

2

5
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71
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3
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Statistical Methods

• Maximum Likelihood Estimation
• Bayesian Estimation
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Maximum Likelihood 
Estimation 1995

• Excoffier and Slatkin 1995
Their method tries to estimate the haplotype 
frequencies by maximizing the likelihood of the data.
They do this using the EM algorithm. Intuitively, you 
start with some initial haplotype frequencies guess, 
and then by an iterative method you update these 
haplotype frequencies until convergence is attained.
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MLE

• In the E-step you compute for each genotype the probability of 
resolving it into each possible haplotype pair: P(h1, h2 | g), where h1, 
h2 are two haplotypes and g is a genotype.

• In the M-step you update the haplotype frequencies using the 
estimates obtained in the E-step. (similar to gene counting)

Ph = (1/2n) Σj=1
m nj ΣI=1

cj δih P(hi1, hi2 | gj) 
• Where nj is the number of genotypes of type j, cj is the number of 

possible haplotype explanations for genotype gj (exponential in the 
number of heterozygous sites) and δih is an indicator equal to the 
number of times haplotype h is present in the pair hi1, hi2
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MLE

This algorithm has been shown to be accurate, 
especially in large sample sizes. The result is an 
estimation of the haplotype frequencies. From these 
one can reconstruct the haplotype themselves by 
taking the most probable assignment.
The main drawback of this algorithm is that it is 
exponential in the number of heterozygous loci.  
Consequently, the maximum number of loci it can 
handle is around 15.
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Bayesian Estimation

• The Bayesian methods
They treat the unknown haplotypes as random 
quantities from an unknown distribution that they 
try to estimate using the known genotype data.

• There are two ingredients in each Bayesian algorithm:
Prior beliefs about the haplotypes in the population
The Computational part
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Bayesian Estimation

• Posteriori
What you really want is the most probable a 
posteriori solution given the genotype data. 
Unfortunately the posterior distribution cannot be 
calculated exactly and one has to apply MCMC 
methods to obtain samples from this distribution.

• The choice of prior or computational algorithm
affect the estimation process and the existing 
algorithms differ in either one or both components.
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Bayesian Estimation

• Stephens et al. 
Two Bayesian algorithms were proposed by Stephens 

et al. Both use a Gibbs sampler, but different priors. 
The Gibbs sampler is an MCMC algorithm that 
constructs a MC whose stationary distribution is 
P(H|G).
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Bayesian Estimation

• It starts with an initial guess of haplotypes H0 and then 
repeatedly chooses an individual at random from the 
ambiguous individuals and estimates its haplotypes given 
the haplotypes of the other individuals:

Sample (hi1, hi2) from P((h1, h2) | G, H-i) where  H-i
are the estimated haplotypes for the other individuals.
Repeat this process until convergence.

• These conditional distributions are influenced by the 
priors assumed. The first one assumes a Dirichlet prior on 
the haplotype frequencies, while the second one assumes 
a better prior based on the coalescent
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Bayesian Estimation

• The Bayesian methods
.. are very promising for this challenging problem 
because of their ability to provide accurate solutions, 
to incorporate prior information, missing genotype 
data, and genotyping error.
Another good feature of all statistical methods is that 
it gives an estimation of the uncertainty in the 
estimation and hence for those individuals for which 
the algorithms are not that sure, subsequent 
molecular techniques can further be used to find the 
haplotypes.
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Bayesian Estimation

• Blockiness:
Designing statistical methods that take into account 
the blocky structure of the genome.

• Time efficiency is important,
… but only secondary to the other issues. After all it 
takes such a long time just to gather the data and do 
the genotyping experiments, and so if one can predict 
the haplotypes accurately in a reasonable time, this is 
what is important. 
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Genetic Diseases
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Genetic Diseases

• Classified into three types:
Single Gene disorder

Mutations in autosomes, sex chromosomes or 
mitochondrial DNA

Chromosomal Abnormalities
Excess, Deficiency or Translocation of part or all 
of a chromosome

Polygenic Diseases
• Pedigree patterns

Dominant or Recessive
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Polygenic Disorders

• Do not show characteristic pedigree patterns
• Severity is influenced by lifestyle factors

They often were not recognized as genetic diseases.
• They are result of small variations in a number of genes.

Not due to a single mutation in any single dominant 
gene.
Together they predispose an individual to a serious 
defect.

• Affect about 5% in children & > 60% in the total 
population.
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Treatment

• Therapeutic intervention for patients with single gene 
defect:

Therapeutic proteins
Antisense technology
Gene therapy
Gene repair
RNAi

• Personalized Medicine
Dosage and choice of medication, based on genome-
wide SNP profile.
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Single Gene Disorder

Genetic Change Example
Point Mutation
Missense mutation (Substituted Protein) Sickle Cell Anemia (β globin gene)

Nonsense mutation (Premature Stop Codon) β0-Thalassemia (β globin gene)

RNA processing mutation (Abnormal Splicing) β-Thalassemia (RNA splicing mutant)

Regulatory Mutation (Affect TFs) Hereditary Persistenc of Fetal hemoglobin (Y-
globin gene promoter mutation)

INDEL Mutation
3-base Mutation (no frameshift) Cystic Fibrosis (removes phenylalanine residue)

Small indel causing frameshift Tay-Sachs Disease (4 base insertio in 
hexosaminidase A gene)

Line or Alu insertion

Expansion of trinucleotide repeat Huntington disease
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Bioinformatics Databases of 
Interest
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Bioinformatics DataSources

• Protein Domain analysis and 
identification

pfam, BLOCKS, ProDom,  
• Pattern Identification/
• Characterization

Gibbs Sampler, AlignACE, 
MEME

• Protein Folding prediction
PredictProtein,
SwissModeler

• Database interfaces
Genbank/EMBL/DDBJ, 
Medline, SwissProt, PDB, 
…

• Sequence alignment
BLAST, FASTA

• Multiple sequence alignment
Clustal, MultAlin, DiAlign

• Gene finding
Genscan, GenomeScan, 
GeneMark, GRAIL
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Five Important Websites

• NCBI (The National Center for Biotechnology Information;
http://www.ncbi.nlm.nih.gov/

• EBI (The European Bioinformatics Institute)
http://www.ebi.ac.uk/

• The Canadian Bioinformatics Resource
http://www.cbr.nrc.ca/

• SwissProt/ExPASy (Swiss Bioinformatics Resource)
http://expasy.cbr.nrc.ca/sprot/

• PDB (The Protein Databank)
http://www.rcsb.org/PDB/

http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/
http://www.cbr.nrc.ca/
http://expasy.cbr.nrc.ca/sprot/
http://www.rcsb.org/PDB/
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NCBI 
(http://www.ncbi.nlm.nih.gov/)

• Entrez interface to databases
Medline/OMIM
Genbank/Genpept/Structures

• BLAST server(s)
Five-plus flavors of blast

• Draft Human Genome
• Much, much more…

http://www.ncbi.nlm.nih.gov/
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EBI (http://www.ebi.ac.uk/)

• SRS database interface
EMBL, SwissProt, and many more

• Many server-based tools
ClustalW, DALI, …

http://www.ebi.ac.uk/
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SwissProt 
(http://expasy.cbr.nrc.ca/sprot/)

• Curation…
Error rate in the information is greatly reduced in 
comparison to most other databases.

• Extensive cross-linking to other data sources
• SwissProt is the ‘gold-standard’ by which other databases 

can be measured, and is the best place to start if you 
have a specific protein to investigate

http://expasy.cbr.nrc.ca/sprot/
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A few more resources

• Human Genome Working Draft
http://genome.ucsc.edu/

• TIGR (The Institute for Genomics Research)
http://www.tigr.org/

• Celera
http://www.celera.com/

• (Model) Organism specific information:
Yeast: http://genome-www.stanford.edu/Saccharomyces/
Arabidopis: http://www.tair.org/
Mouse: http://www.jax.org/
Fruitfly: http://www.fruitfly.org/
Nematode: http://www.wormbase.org/

• Nucleic Acids Research Database Issue
http://nar.oupjournals.org/ (First issue every year)

http://genome.ucsc.edu/
http://www.tigr.org/
http://www.celera.com/
http://genome-www.stanford.edu/Saccharomyces/
http://www.tair.org/
http://www.jax.org/
http://www.fruitfly.org/
http://www.wormbase.org/
http://nar.oupjournals.org/
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Example 1:

• Searching a new genome for a specific protein 
• Specific problem:

We want to find the closest match in C. elegans of D. 
melanogaster protein NTF1, a transcription factor

• First- understanding the different forms of blast
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The different versions of 
BLAST
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Some possible methods

• If the domain is a known domain: 
• SwissProt 

text search capabilities
good annotation of known domains
crosslinks to other databases (domains)

• Databases of known domains:
BLOCKS (http://blocks.fhcrc.org/)
Pfam (http://pfam.wustl.edu/)
Others (ProDom, ProSite, DOMO,…)

http://blocks.fhcrc.org/
http://pfam.wustl.edu/
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Nature of conservation in a 
domain

• For new domains, multiple alignment is your best 
option

Global: clustalw
Local: DiAlign
Hidden Markov Model: HMMER

• For known domains, this work has largely been done for 
you

BLOCKS
Pfam
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Protein Tools

• Search/Analysis tools
Pfam
BLOCKS
PredictProtein 
(http://cubic.bioc.columbia.edu/predictprotein/pred
ictprotein.html)

http://cubic.bioc.columbia.edu/predictprotein/predictprotein.html
http://cubic.bioc.columbia.edu/predictprotein/predictprotein.html
http://cubic.bioc.columbia.edu/predictprotein/predictprotein.html
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Different representations of 
conserved domains 

• BLOCKS
Gapless regions
Often multiple blocks for one domain

• PFAM
Statistical model, based on HMM
Since gaps are allowed, most domains have only one 
pfam model
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To be continued…

…
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