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Polymorphisms in Population

• Why do we care about 
variations?

Underlie phenotypic 
differences
Cause inherited diseases
Allow tracking ancestral 
human history
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How do we find sequence 
variations?

• Look at multiple 
sequences from the same 
genome region

• Use base quality values to 
decide if mismatches are 
true polymorphisms or 
sequencing errors

• Distinguish variation 
derived from father vs. 
that from mother: 
Haplotypes
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Allelic association
• It is the non-random assortment between 

alleles
It measures how well knowledge of the allele 
state at one site permits prediction at 
another
Significant allelic association between a 
marker and a functional site permits 
localization (mapping) even without having 
the functional site in our collection

• Strength of allelic association
Pair-wise and multi-locus measures of 
association.

marker site functional site
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Outline 

• The Haplotype Inference Problem
in Diploid Individuals
Experimental Methods
Computational Methods 
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Motivation

• Disease association studies
identify genetic variation that contributes to a 
particular disease

• Drug Design
design drugs tailored to specific populations 

• Population Genetics Inference 
the extent of linkage disequilibrium can tell you 
about the patterns of recombination, or about  
demographic events (like recent bottlenecks). 
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Inferring Population 
Genetics

• The limited diversity in the European population as 
compared to the African population

It may be indicative of the founder effect.
It supports the out-of-Africa theory.

• IBM-National Geographic project:
GENOGRAPHIC

https://www9.nationalgeographic.com/genographic/index.html 
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Genographic Project

• What is expected:
• Public database of anthropological genetic information 
• Virtual museum of human history

Online at nationalgeographic.com/genographic, 
Information about genetics, migration, linguistics, 
indigenous populations and the threats facing them, 
anthropology, archaeology, and more. 
Public participation

• New information on genetic anthropology 
• Improved global awareness of indigenous populations
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The Haplotype Inference 
Problem in Diploid Individuals

• Diploid individuals have two copies of their genetic 
material. (Two homologous chromosomes). The genetic 
material on a single chromosome is called 
HAPLOTYPES.

Current high-throughput genotyping methods can 
only determine which two alleles are present at a 
locus, but lose information as to which of the two 
chromosomes each allele belongs to (ambiguous 
phase)
This causes problems if the individual is heterozygous 
for more than one locus.
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Example: SNP

• SNP: Single Nucleotide Polymorphisms:
One genomic location varies in its single base pair 
composition across a population.
One in about seven hundred base pairs.
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Haplotype Inference 
Problem

• Assume we have SNP data.
If the two haplotypes for an individual are: ACG and 
TCA then the result of the genotyping experiment is: 
{A,,T}, {C,C} and {G,A}. 
For the homozygous genotype: {A,A}  {T,T} we 
know for sure the two haplotypes, namely: AT and 
AT

10/18/2005 ©Bud Mishra, 2005
L4-12

Haplotype Inference 
Problem

• Again, assume we have SNP data.
For the single site heterozygous genotype: {A,A} 
{C,T} then again we know for sure the two
haplotypes, namely: AC and AT.
BUT for the double site heterozygous genotype: 
{A,T}, {C,T} then we can have two possible 
reconstructions, namely:  AC and TT or AT and TC.
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Haplotype Inference

• The problem that we try to solve is this: 
Given a pool of genotypes, we wish to estimate the
haplotypes of each individual in the pool and also 
their frequencies. 
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Haplotype diversity

• The most useful multi-marker measures 
of associations are related to haplotype 
diversity

• If a genotype is heterozygous for k 
positions then 2k-1 possible haplotype 
pairs exist, but we want the unique, true 
pair. 

Random assortment of alleles at 
different sites
Strong association: few common 
haplotypes (Reduced haplotype 
diversity)

k markers
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The determinants of allelic 
association

• Recombination: 
breaks down allelic association 
by “randomizing” allele 
combinations

• Demographic history of effective 
population size:

bottlenecks increase allelic 
association by non-uniform re-
sampling of allele combinations 
(haplotypes)

bottleneck
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Linkage disequilibrium

• LD measures the deviation from random 
assortment of the alleles at a pairpair of 
polymorphic sites

• Other measures of LD are derived from D, 
by e.g. normalizing according to allele 
frequencies (r2)

D=f(     ) – f(  ) x f(  )
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Strength of LD in the human 
genome

• LD is stronger, extends 
longer than previously 
thought
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Haplotype blocks

• Experimental 
evidence for 
reduced 
haplotype 
diversity 
(mainly in 
European 
samples): Daly 
et al, Nature 
Genetics 2001
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Medical Genetics

• Within blocks a small number of SNPs 
are sufficient to distinguish the few 
common haplotypes a significant 
marker reduction is possible

If the block structure is a general 
feature of human variation data, 
whole-genome association studies 
will be possible at a reduced 
genotyping cost. (Gibbs et al. 
Nature 2003)

• This motivated the HapMap project.

CACTACCGA
CACGACTAT
TTGGCGTAT
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The HapMap initiative

• Goal: 
to map out human allele 
and association structure 
of at the kilobase scale

• Deliverables:
a set of physical and 
informational reagents
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HapMap physical reagents 

• Reference samples: 
4 world populations, ~100 
independent chromosomes from each

• SNPs: 
computational candidates where both 
alleles were seen in multiple 
chromosomes

• Genotypes:
high-accuracy assays from various 
platforms; fast public data release
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Genotype Data
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Experimental Methods

The existing experimental methods are low-
throughput, expensive, and difficult to automate.

• Examples of such methods:
• Single Molecule Dilution
• Asymmetric PCR Amplification
• Isolation of Single Sperm Cells
• Typing additional relatives

this information may not be available. 
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Experimental Methods(2)

1. If we have the following triad,
• mother {A, A} {T, C} 
• father {T, T} {T, T}
• offspring {A, T}{T, C}
then the haplotypes for the offspring are unambiguously determined. The haplotype 

from the mother must be AC and the one from the father must be TT
2. BUT if we have the following triad,

mother {A, A} {T, C}
father {T, T} {T, C}
offspring {A, T} {T, C}

then the haplotypes for the offspring cannot be uniquely determined.
• May apply EM to estimate the phase in these ambiguous cases. Given these 

problems with the experimental methods, cheap and accurate 
computational methods are a good alternative.
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Informational reagents

• The problem:
the substrate for genotyping is 
diploid, genomic DNA; phasing 
of alleles at multiple loci is in 
general not possible with 
certainty

• Experimental methods are expensive
(single-chromosome isolation 
followed by whole-genome PCR 
amplification, radiation hybrids, 
somatic cell hybrids)

A
T

C
T

G
C

C
A
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Computational Methods

• Clark’s Algorithm
• Perfect Phylogeny Solutions
• Statistical Solutions 
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Clark’s Algorithm -1990

• This is a parsimony approach
It tries to solve the genotypes in the data set with as 
few haplotypes as possible.
It starts with the list of haplotypes that can by 
unambiguously inferred from the genotype data, i.e. 
the ones coming from homozygous or single-site 
heterozygous individuals.
It then tries to solve the phase ambiguous individuals 
by using these already determined haplotypes.
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Example

For the data set that we have, we know that the 
following haplotypes are present in the population: 
{AGT, ACT, AGA, TGA}
Now, for each known haplotype we traverse the list 
of ambiguous individuals and ask whether each 
individual can be solved by that haplotype: e.g. {A,T} 
{G, C} {T, T}, can be solved as AGT and TCT. 
By doing this we also acquired a new haplotype (TCT) 
that we add to the end of the list. We do this process 
until either all individuals are resolved or we can’t 
find any more solutions.
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Problems

• There are a few problems with this algorithm.
It might not get started
It might not resolve all individuals
It depends on the order in which one examines the 
genotypes
It performs poorly compared to other existing 
algorithms when too few homozygotes are in the 
data.

• Simple and Popular.
No limit on the number of SNPs it can handle
Other variations (e.g. The Consensus Solution)
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Blocky Genome

• Daly et al.(2001) Study on haplotypes
a genomic region on chromosome 5 
found that the region can be partitioned into 11 
blocks of size up to 100 kb such that in each block 
there is very little variation. 
In each block only a few haplotypes (2-4) account 
for over 90% of the haplotypes in the sample.
Inside the blocks there is no or very little evidence for 
recombination, whereas between blocks there are 
hot-spots of recombination.
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Blocky Genome

While more studies are necessary to confirm that this 
blocky structure of the genome is general across the 
genome, other studies ( e.g. Rioux et al.) agree with 
these findings.
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Blocky Genome

• Reducing the complexity of the genome.
Having such an extended LD is important because it 
means that only few sites encode the information 
present in the entire region. (Knowing the 
information at these sites gives you the entire 
haplotype).
So no need to genotype all sites.

• Motivated by these findings, several deterministic 
algorithms that work specifically on these blocks of 
limited diversity have been designed.
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Blocky Genome
- Picture Daly et al.
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Perfect Phylogeny 2001-03

• The Perfect Phylogeny model of haplotype evolution
It assumes that there is no recombination and the 
usual infinite-site mutation model of population 
genetics applies.
Given the existence of these blocks, the PP model 
seems a reasonable model when working with SNP 
data.
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Perfect Phylogeny

• The first paper assuming this model
See Gusfield (2002). 
The solution presented is a reduction of the 
haplotype inference problem to a problem in graph 
theory called the graph realization problem. This 
problem has an optimal solution - almost linear time. 
But it is very difficult to implement.
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Perfect Phylogeny

• A simpler solution
Given by Bafna et al. (2002) and by Eskin et al. 
(2002) that uses no heavy tools and is very easy to 
implement.
The complexity of these algorithms is O(ns2) where n 
is the number of individuals and s the number of 
sites.
These methods have the advantage of being very fast, 
but they are of limited applicability since they can 
only be applied on blocks with no recombination.
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Statistical Methods

• Maximum Likelihood Estimation
• Bayesian Estimation
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Maximum Likelihood 
Estimation 1995

• Excoffier and Slatkin 1995
Their method tries to estimate the haplotype 
frequencies by maximizing the likelihood of the data.
They do this using the EM algorithm. Intuitively, you 
start with some initial haplotype frequencies guess, 
and then by an iterative method you update these 
haplotype frequencies until convergence is attained.
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MLE

• In the E-step you compute for each genotype the probability of 
resolving it into each possible haplotype pair: P(h1, h2 | g), where h1, 
h2 are two haplotypes and g is a genotype.

• In the M-step you update the haplotype frequencies using the 
estimates obtained in the E-step. (similar to gene counting)

Ph = (1/2n) Σj=1
m nj ΣI=1

cj δih P(hi1, hi2 | gj) 
• Where nj is the number of genotypes of type j, cj is the number of 

possible haplotype explanations for genotype gj (exponential in the 
number of heterozygous sites) and δih is an indicator equal to the 
number of times haplotype h is present in the pair hi1, hi2
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MLE

This algorithm has been shown to be accurate, 
especially in large sample sizes. The result is an 
estimation of the haplotype frequencies. From these 
one can reconstruct the haplotype themselves by 
taking the most probable assignment.
The main drawback of this algorithm is that it is 
exponential in the number of heterozygous loci.  
Consequently, the maximum number of loci it can 
handle is around 15.
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Bayesian Estimation

• The Bayesian methods
They treat the unknown haplotypes as random 
quantities from an unknown distribution that they 
try to estimate using the known genotype data.

• There are two ingredients in each Bayesian algorithm:
Prior beliefs about the haplotypes in the population
The Computational part
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Bayesian Estimation

• Posteriori
What you really want is the most probable a 
posteriori solution given the genotype data. 
Unfortunately the posterior distribution cannot be 
calculated exactly and one has to apply MCMC 
methods to obtain samples from this distribution.

• The choice of prior or computational algorithm
affect the estimation process and the existing 
algorithms differ in either one or both components.
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Bayesian Estimation

• Stephens et al. 
Two Bayesian algorithms were proposed by Stephens 
et al. Both use a Gibbs sampler, but different priors. 
The Gibbs sampler is an MCMC algorithm that 
constructs a MC whose stationary distribution is 
P(H|G).
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Bayesian Estimation

• It starts with an initial guess of haplotypes H0 and then 
repeatedly chooses an individual at random from the 
ambiguous individuals and estimates its haplotypes given 
the haplotypes of the other individuals:

Sample (hi1, hi2) from P((h1, h2) | G, H-i) where  H-i
are the estimated haplotypes for the other individuals.
Repeat this process until convergence.

• These conditional distributions are influenced by the 
priors assumed. The first one assumes a Dirichlet prior on 
the haplotype frequencies, while the second one assumes 
a better prior based on the coalescent
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Bayesian Estimation

• The Bayesian methods
.. are very promising for this challenging problem 
because of their ability to provide accurate solutions, 
to incorporate prior information, missing genotype 
data, and genotyping error.
Another good feature of all statistical methods is that 
it gives an estimation of the uncertainty in the 
estimation and hence for those individuals for which 
the algorithms are not that sure, subsequent 
molecular techniques can further be used to find the 
haplotypes.
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Bayesian Estimation

• Blockiness:
Designing statistical methods that take into account 
the blocky structure of the genome.

• Time efficiency is important,
… but only secondary to the other issues. After all it 
takes such a long time just to gather the data and do 
the genotyping experiments, and so if one can predict 
the haplotypes accurately in a reasonable time, this is 
what is important. 
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Bioinformatics Databases of 
Interest
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Bioinformatics DataSources

• Database interfaces
Genbank/EMBL/DDBJ, 
Medline, SwissProt, PDB, 
…

• Sequence alignment
BLAST, FASTA

• Multiple sequence alignment
Clustal, MultAlin, DiAlign

• Gene finding
Genscan, GenomeScan, 
GeneMark, GRAIL

• Protein Domain analysis and 
identification

pfam, BLOCKS, ProDom,  
• Pattern Identification/
• Characterization

Gibbs Sampler, AlignACE, 
MEME

• Protein Folding prediction
PredictProtein,
SwissModeler
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Five Important Websites

• NCBI (The National Center for Biotechnology Information;
http://www.ncbi.nlm.nih.gov/

• EBI (The European Bioinformatics Institute)
http://www.ebi.ac.uk/

• The Canadian Bioinformatics Resource
http://www.cbr.nrc.ca/

• SwissProt/ExPASy (Swiss Bioinformatics Resource)
http://expasy.cbr.nrc.ca/sprot/

• PDB (The Protein Databank)
http://www.rcsb.org/PDB/
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NCBI 
(http://www.ncbi.nlm.nih.gov/)

• Entrez interface to databases
Medline/OMIM
Genbank/Genpept/Structures

• BLAST server(s)
Five-plus flavors of blast

• Draft Human Genome
• Much, much more…
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EBI (http://www.ebi.ac.uk/)

• SRS database interface
EMBL, SwissProt, and many more

• Many server-based tools
ClustalW, DALI, …
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SwissProt 
(http://expasy.cbr.nrc.ca/sprot/)

• Curation…
Error rate in the information is greatly reduced in 
comparison to most other databases.

• Extensive cross-linking to other data sources
• SwissProt is the ‘gold-standard’ by which other databases 

can be measured, and is the best place to start if you 
have a specific protein to investigate
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A few more resources

• Human Genome Working Draft
http://genome.ucsc.edu/

• TIGR (The Institute for Genomics Research)
http://www.tigr.org/

• Celera
http://www.celera.com/

• (Model) Organism specific information:
Yeast: http://genome-www.stanford.edu/Saccharomyces/
Arabidopis: http://www.tair.org/
Mouse: http://www.jax.org/
Fruitfly: http://www.fruitfly.org/
Nematode: http://www.wormbase.org/

• Nucleic Acids Research Database Issue
http://nar.oupjournals.org/ (First issue every year)
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Example 1:

• Searching a new genome for a specific protein 
• Specific problem:

We want to find the closest match in C. elegans of D. 
melanogaster protein NTF1, a transcription factor

• First- understanding the different forms of blast
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The different versions of 
BLAST
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Some possible methods

• If the domain is a known domain: 
• SwissProt 

text search capabilities
good annotation of known domains
crosslinks to other databases (domains)

• Databases of known domains:
BLOCKS (http://blocks.fhcrc.org/)
Pfam (http://pfam.wustl.edu/)
Others (ProDom, ProSite, DOMO,…)
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Nature of conservation in a 
domain

• For new domains, multiple alignment is your best 
option

Global: clustalw
Local: DiAlign
Hidden Markov Model: HMMER

• For known domains, this work has largely been done for 
you

BLOCKS
Pfam
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Protein Tools

• Search/Analysis tools
Pfam
BLOCKS
PredictProtein 
(http://cubic.bioc.columbia.edu/predictprotein/pred
ictprotein.html)
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Different representations of 
conserved domains 

• BLOCKS
Gapless regions
Often multiple blocks for one domain

• PFAM
Statistical model, based on HMM
Since gaps are allowed, most domains have only one 
pfam model
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To be continued…

…


