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Computational Biology
Lecture #3: Lecture #3: Probability and Probability and 

StatisticsStatistics
Bud Mishra

Professor of Computer Science, Mathematics, & Cell Biology
Sept 26  2005
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Basic ProbabilitiesBasic Probabilities
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Random Variables
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Examples
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Probability Distribution
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Bernoulli Trial
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Binomial Distribution
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Uniform Distribution
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Geometric Distribution
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Poisson Distribution
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Continuous Random Variables
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Normal (Gaussian) Distribution
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Expectation
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Conditional Probabilities
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Bayes Rule
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Bayes’ Rule

• Can rearrange the conditional probability formula

• to get P(A|B) P(B) = P(A,B), but by symmetry we can also get: P(B|A) 
P(A) = P(A,B) It follows that:

• The power of Bayes' rule is that in many situations where we want to 
compute P(A|B) it turns out that it is difficult to do so directly, yet we 
might have direct information about P(B|A). Bayes' rule enables us to 
compute P(A|B) in terms of P(B|A).
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Markov Models

10/18/2005 ©Bud Mishra, 2005
L2-18

Hidden Markov Models 
(HMM)

• Defined by an alphabet Σ,
A set of (hidden) states Q,
A matrix of state transition probabilities A,
and a matrix of emission probabilities E.
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States

• Σ = An alphabet of symbols
• Q = A set of states that emit symbols from the alphabet Σ
• A = (akl) = |Q| £ |Q| matrix of state transition probabilities
• E = (eK(B)) = |Q| £ |Σ| matrix of emission probabilities
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A Path in the HMM

• π = π1 π2 L πn

= a sequence of states 2 Q* in the hidden Markov model M
• x 2 Σ* = sequence generated by the path π, determined by the model M
• P(x| π) = P(π1)[ ∏i=1

n P(xi | πi) P(πi | πi+1) ]
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A Path in the HMM

• P(x| π) = [∏i=1
n P(xi | πi) P(πi | πi+1) ] P(π1)

• P(xi | πi) = eπi(xi)
• P(πi | πi+1) = aπi, πi+1 

• π0 = Initial state “begin”
• πn+1 = Final state “end”
• P(x| π)

= aπ0, π1 eπ1(x1) aπ1, π2 eπ2(x2)L eπn(xn) aπn, πn+1

= aπ0, π1 ∏i=1
n eπi(xi) aπi, πi+1
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Decoding Problem

• For a given sequence x, and a given path π,
The model (Markovian) defines the probability P(x | π)

• The dealer knows π and x
• The player knows x but not π

“The path of x is hidden.”
• Decoding Problem:

Find an optimal path π* for x such that P(x|π) is maximized.

π* = arg maxπ P(x|π)π* = arg maxπ P(x|π)
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Dynamic Programming Approach

• Principle of Optimality:
• Optimal path for the (i+1)-prefix of x

x1 L xi+1

• uses a path for an i-prefix of x that is optimal among the paths 
ending in an (unknown) state πi = k 2 Q
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Dynamic Programming Approach

• sk(i) = The probability of the most probable path for the i-prefix ending in 
state k.

8k 2 Q 81 5 i 5 n

sl(i+1) = el(xi+1). maxk2 Q [sk(i) . akl]
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Dynamic Programming
• i=0

sbegin(0) = 1, sk(0) =0, 8k ≠ begin

• 0 < i 5 n
sl(i+1) = el(xi+1) ¢ maxk2 Q [ sk(i) ¢ akl ]

• i= n+1
P(x | π*) = maxk2 Q sk(n) ak, end
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Viterbi Algorithm

• Dynamic Programming with log-score function
Sl(i) = log sl(i)

• Space complexity = O(n |Q|)
• Time complexity = O(n |Q|)
• Sl(i+1) = log el(xi+1)

+ maxk2 Q [ Sk(i) + log akl ]
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Bayesian Probabilities
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Bayesian Interpretation

• Probability P(e) a our uncertainty about whether e is 
true or false in the real world

(given whatever information we have avialable)
• “Degree of Belief”
• More rigorously, we shoul write

conditional probability P(e | L) a represents degree 
of belief, where L is the background information on 
which our belief is based
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Probability as a Dynamic Entity

• Update the “degree of belief” as more data arrives:

• Bayes Theorem: P(e | D) = P(D | e) P(e)/P(D)
• Prior Probability: P(e) is your belief in the event e 

before you see any data at all
• Posterior: P(e | D) is the updated posterior belief in e 

given the observed data.
• Likelihood: P(D | e) a probability of the data under the 

assumption e.
• Posterior is proportional to the prior.
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Dynamics

• P(e | D1, D2) = P(D2 | e, D1) P(e | D1)/ P(D2 | D1)

• Important Observation:
• The effects of prior diminish as the number of data 

points increases.
• The Law of Large Number:
• With large number of data points, Bayesian and 

frequentist viewpoints become indistinguishable.
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Parameter Estimation

• Functional form for a model M
Depends on parameters Θ
Best estimation for Θ?

• Typically our parameters Θ are a set of real-valued 
numbers

Both prior P(Θ) and the posterior P(Θ | D) are 
defining probability density functions
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Maximum A Posteriori 
(MAP)

• Find the set of parameters Θ
maximizing the posterior P(Θ | D) or minimizing a 
score -log P(Θ | D)
E’(Θ) = -log P(Θ | D) 
= -log P(D | Θ) – log P(Θ) + logP(D)

Same as minimizing E(Θ) =  -log P(D | Θ) – log 
P(Θ)
If the prior P(Θ) is uniform over the entire parameter 
space (uninformative):

Minimize EL(Θ) = -log P(D | Θ) 
Maximum likelihood solution
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To be continued…

…


