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With the first complete ‘draft’ of the human genome sequence expected for Spring 2000, the three basic challenges
for today’s bioinformatics are more than ever: (i) finding the genes; (ii) locating their coding regions; and
(iii) predicting their functions. However, our capacity for interpreting vertebrate genomic and transcript (cCDNA)
sequences using experimental or computational means very much lags behind our raw sequencing power. If the
performances of current programs in identifying internal coding exons are good, the precise 5 ' 5 3' delineation of
transcription units (and promoters) still requires additional experiments. Similarly, functional predictions made
with reference to previously characterized homologues are leaving >50% of human genes unannotated or
classified in uninformative categories (‘kinase’, ‘ATP-binding’, etc.). In the context of functional genomics, large-
scale gene expression studies using massive cDNA tag sequencing, two-dimensional gel proteome analysis or
microarray technologies are the only approaches providing genome-scale experimental information at a pace
consistent with the progress of sequencing. Given the difficulty and cost of characterizing genes one by one,
academic and industrial researchers are increasingly relying on those methods to prioritize their studies and
choose their targets. The study of expression patterns can also provide some insight into the function, reveal
regulatory pathways, indicate side effects of drugs or serve as a diagnostic tool. In this article, | review the
theoretical and computational approaches used to: (i) identify genes differentially expressed (across cell types,
developmental stages, pathological conditions, etc.); (ii) identify genes expressed in a coordinated manner across
a set of conditions; and (iii) delineate clusters of genes sharing coherent expression features, eventually defining
global biological pathways.

INTRODUCTION In the context of functional genomics, computational methods

. . . . were also expected to significantly contribute to the prediction of
For a long time, the common view has been that the decipherin ne function. Here again, the results have been poor. If rich

of genomic sequence information would mostly be accomplishegg

b f aut ted tational methods. imol i talogues of recurrent protein motifs have been designed (9-14),
y means ofautomated computational methods, Implementingga 5ssociation with a precise function is often too vague to
set of rules describing the architecture of genes and a finit

) i _Elentify the precise biological pathway in which they operate.
catalogue of regulatory elements and functional signatures. W”ibloreover, close to 50% of all newly identified genes do not

the first complete genome ofamulticellular organismin hand (Layhibit a significant similarity with a previously well-
several others to follow rapidly (2,3) and a ‘draft’ of the humancaracterized homologue or fall into uninformative categories
genome to be completed by Spring 2000 (4), we know that thig,,ch as ‘protein kinases’ or ‘transcription factors'.

will not happen. The accomplishments of bioinformatics .in the Ag genomic sequencing was picking up, methods to monitor the
context of higher eukaryote genomes have been humbling ang yression of many genes simultaneously were also designed and
basu_: analyses such as precisely |de_nt|fy|ng the_'ntron/exoﬁrogressively scaled up to allow genome-wide studies. The
architecture of genes and the precise boundaries of theigchnique of ‘differential display’ (15,16) and the generation of
transcript(s) are still performed with unacceptable uncertaintiesypressed sequence tags (ESTs) (17—23) have first been used
(5). The prediction of promoter locations (and properties) is also fyr the identification of genes exhibiting marked differential
notable failure (6-8). expressions across tissues, development stages or normal versus
On the other hand, bioinformatics methods becomeathological conditions. The original EST approach was then
immediately more useful if they can be supplemented with somggnproved by the use of smaller, concatenated and more numerous
experimental knowledge (i.e. transcript maps, homologousDNA tags (24—26). As an alternative to sequencing, cDNAs can
sequences, etc.). Thus, the present successes of bioinformaticsag® be identified by oligonucleotide fingerprinting (27). More
truly in the realm of ‘reverse engineering’, i.e. decoding therecently, microarrays capable of providing hybridization-based
genetic information using some associated experimental insightexpression monitoring of tens of thousands of genes in parallel
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have become available, with two main technologies competingnRNA. Here again, the total number of simultaneously studied
oligonucleotide-grafted chips (28-31) and cDNA-printed glasgienes ranges from a hundred to several thousands (or tens of
slides (32—34). The latter are most often used in conjunction witthousands).
a two-colour fluorescence competitive assay (35,36). NumerousThe lay-out of the above data table recalls a setting for which
recent review articles have commented on the enormous potentisiblogists might think it appropriate to use the traditiogaiRxk
of microarray-based transcriptome studies (see, for example, refgjnificance test. However, this would be incorrect. The purpose
37-42). However, tag-counting methods are still very popular angf the x2 computation is to test whether conditions A and B
important results have been obtained with the EST (43-53) afignificantly differ as a whole, using the entire A and B columns
SAGE (54-59) protocols. of expression intensities. The question asked through differential
The analysis of gene expression patterns derived from normakpression experiments is different; it is to identify the peculiar
and pathological situations is a valuable tool in the discovery ofjenes, the expression of which significantly varies between the
therapeutics targets and diagnostic markers. The recognition ffo conditions. At the two extremes, ubiquitous genes will exhibit
coordinated expression profiles between characterized @fo variation, while ‘condition-specific’ (e.g. tissue-, developmental
anonymous genes also enables inferences about biologicahge- or disease-specific) genes will only be detected in A or B. In
pathways and gene functions to be made. this section | review and discuss the different statistical methods
At the moment, the measurement of gene expression usifgquired to mine the expression intensity tables generated from tag
microarrays or cDNA tag sampling appears to be the solgampling or microarray experiments.
approach to gene characterization capable of matching the speed

of sequencing and the scale requirement of functional genomicSetecting differential expression in tag sampling experiments

In consequence, expression profiles for many genes and from

!””f“'“p'e. eng”mgma'h conditions Oﬁin cor;stltute .tr?e hm?]'r\_arge tag sampling experiments are usually not replicated. This
information (besides the sequences themselves) with which {g,hjies that the standard errors associated with each expression
guide the ‘reverse engineering: process _Of functional genomics,easrement cannot be estimated from its dispersion and that
Thus, a general understanding of the various ways such dataac@ne of the standard tests requiring variance estimates (such as

be used becomes central. In this article, | review the concepts aieg jent'«-test) can be used. Fortunately, the result of randomly
methodologies involved in the interpretation of gene expressiop '

o X s Follow th . . K of ampling tags from a large set of genes is very well
,FA)\rOdI Ing e?p?rlrggn S olowmg ¢ ?. Iplo?]eenng_ wor dothapproximated by the Poisson distribution, which implicitly
naersonet al. (60), several recen articles have diScussed gy g iqes g built-in estimate of the standard error. In this context,
bioinformatics of large-scale expression monitoring, emphasizin

: udic and Claverie (61) have derived a new significance test
computational (61-69) or data management (70-77) aspects. specifically adapted to the analysis of tag sampling data. Their

basic result is quite simple: for two sampling experiments A and
METHODS B, involving the same total number of tags, the probability of

observingg, andgg tags for a gene equally expressed in both
Differential expression studies: pairwise condition conditions is given by:

comparison

+0g)!
In the simplest experimental situation, gene expression is P(9g|9a) = (9, (ggf)g 5
A B

compared between two conditions such as normal versus 0a!0g!2 1
pathological or control versus drug-treated. The general form

of the expression data table is then: .
Small values fop correspond to large differences betwegn

Condition A Condition B andgg, unlikely to arise by chance if the gene under scrutiny is
Gene 1 Oia Oin expressed at the same level in conditions A and B. Provided
Gene 2 Ooa O that all experimental factors are well replicated, statistically
Gene 3 O3a O35 significant discrepancies (suchms< 1%) between the values
Gene... g a g s of g, andgg can thus be used to point out the gene most likely
Genen O O to be differentially expressed.

It is worth noting that the sampling size (i.e. the total number

In the context of EST (17) or SAGE (24) studies, the expressiohl of generated tags) does not appeadiand has no direct
‘intensities’g, andgg are cDNA tag counts and the genes listed ininfluence on thep value. The statistical significance of the
the first column are those for which at least one occurrence watdifferences observed in tag counts only depends on the
observed from at least one of the libraries (A or B). The samplingibsolute valueg, andgg. This apparent paradox is discussed
sizesN, andNg (i.e. the total numbers of sequenced tags) mayn Audic and Claverie (61). The form df also indicates that
vary from a few hundred to several tens of thousands dependirmalyzing expression measurements in terngp i ratios (as
on the laboratory (or company) sequencing capacityis customary in most published works) is not appropriate, as it
Accordingly, the numben of observed genes also varies from acannot be related to a confidence estimate. Equdtimovides
few hundred to a few thousand. a quantitative test of our intuition that a 2-fold increase

In RT-PCR- (64) or hybridization-based (30,32) studies, theomputed from &, = 10 versug); = 20 change in tag counts
expression intensities are derived from absorbency dip(20]10) = 0.014]is more robust and significant than the same
fluorescence ‘analog’ signals, often normalized to a number afatio computed from &, = 1 versusy; = 2 transition p(2|1) =
mRNA molecules using a known guantity of exogenous contro.19]. In fact, a more rigorous significance test requires the use
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of the cumulative form ofl. A table of [g,, gg] couples Detecting differential expression in hybridization-based
corresponding to the usual 5 and 1% significance thresholds gxperiments

provided in Audic and Claverie (61). In the same work, Audicpypyigization-based experiments [or quantitative RT-PCR
and Claverie also extendedto the more practical case of A protocols (79,80)] produce ‘analog’ expression intensities in
versus B comparisons involving different total numbers of taggontrast to the ‘digital’ nature of the tag counting protocols
N, andNg. This significance test was successfully validateddiscussed above. The expression data matrix thus consists of real
using computer simulation on real EST data. As expected, theumbers such as:

frequency of genes falsely identified as differentially

expressed was found to be less than or equal to the selected Condition A Condition B
significance threshold (i.e. 5% of false identifications when using>ene 1 Oia9149 14 0189189 18
asignificance value of 5%). The general form of the significance S€N€ 2 %ond2ad 2 %e927 28
test can be used interactively on a web site at http:/igsS€ne 3 Ysa 9309 3 99 39 38
server.cnrs-mrs.fr or the source code obtained from thgene... 9...A’9...A;Q A g_”B,g ...B;Q ..B
authors. enen GG nad m Oe9ne9 s

F|sh_er’s 2x 2 (_axact test (78) is also being used to analyse ta%hereg, g andg’ denote replicated measurements (here in
sampling experimental data, most notably the Cancer Genomgpjicate) of expression intensities in A versus B conditions,
Anatomy project (43). This test is traditionally used for thenormalized to a common internal control (e.g. exogenous
analysis of 2 2 contingency tables arising from treatment ver-mrNA). By definition, the genes deemed to exhibit significant
sus control experiments. To fit this test, the data correspondingxpression changes will be those for which the absolute
to each gene in the original two-condition expression matrixdifference in the average expression intensitgs— d,| is

must be, quite artificially, rewritten as: much larger than the estimated standard erdqr oqr
computed from the dispersion gf g andg” measurements.
Condition A Condition B Multiple independent experiments are thus essential to the
Gene 1 Oa O assessment of significance with tradl_tlonal s;atlstlcal
All others Na — Gia N procedures such as the unrelatedst. For a given confidence

level, smaller differences will be required as the number of

h d h iated with d replicate measurements increases. For experiments performed
whereg, , andg,g are the tag counts associated with gene I\gnd duplicate, ¢ — g5| has to be larger than 43 6( is the

andN; are the total numbers of tags generated in experiments fstimated standard error) to reach the 5% significance
and B, respectively. On theoretical grounds, the validity of usinghreshold, and larger than 23~ for the 1% significance level.
Fisher's 2x 2 exact test in such a setting is not clear. RigorouslyFor experiments performed in triplicate, the requirements are
the test requires the sums of columns and rows to be known prifg, —g,| > 2.85 anddg —da| > 5.26 for the 5 and 1% levels,

to the experiment. Also, the definition of the ‘all others’ respectively. Most published large-scale studies are quite
aggregated gene category is logically inconsistent, as it impliedusive about measurement reproducibility and the confidence
that the genes expressed and observed in conditions A and B &@¥els of the observed changes in expression are rarely
the same, which might be a largely incorrect assumption. I@ssessed using standard methods. When the information is
practice, however, probability values computed according t&Vailable, experiments have been done in triplicate (64)_’ In
Audic and Claverie (61) or from Fisher’s test are close, with théduphcate (32,36) or only partially duplicated  (http://
latter being slightly too conservative (i.e. a larger expression bi cmgm.stanford.edu/~kimlab/ ). Some redundancy (e.g. 20

. . . o aﬁrobes/gene, some probe sets duplicated) is built into the
is required to reach a given significance threshold) (61). As.for Affimetrix oligonucleotide array technology and directly used

the setting for Fisher’s test again emphasizes that the significang9 the data acquisition software (GENECHIP; Affymetrix

of expression changes must be assessed from the tag count valdg#ita Clara, CA). However, this does not alleviate the need to

themselves and not from their ratio. _ assess the dispersion of expression intensities obtained from
Fisher's exact test is more appropriate when studying thdifferent chips and different complex mRNA probes.

distribution of alternative transcript forms in two different con- In the above studies, the traditional methods to assess the

ditions. The data setting then becomes: statistical significance of the observed differences are not used.
Insteadad hocthresholding procedures are used, resulting in the
Condition A Condition B elimination of subsets of genes and expression measurements.
Short form of gene 1 gs, Oss An all-or-none ‘reliable’ versus ‘unreliable’ classification is thus

used in place of a progressive ranking of expression changes
according top values. In the rare cases where the filtering

. . . e . . .procedure is described in enough detall, it can then be compared
now corresponding to a traditional ‘association’ experiment (i.e. i ith a more traditional significance assessment

a gene form preferentially associated with one of the conditions?) £ instance. Scheret al. (32), in their pioneering work on

for which Fisher's 2« 2 exact test is well suited. Such a design hagarge-scale cDNA microarrays using two-colour fluorescence
been applied to a large-scale analysis of alternative polyadenylatipiybridization, adopted the rule of only retaining expression
in human mRNAs (63) using the Merck-sponsored EST (22,23ntensities for which the difference of duplicate measurements
data set. did not exceed half their average. Translated into classical

Long form of gene 1 g, OB
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statistical terms, this constraint corresponds to: genes (as in the output of database similarity searches) and to
~ _ prioritize further analyses. For instance, the confidence levels
6, <22 andfg < =2 associated with couples of expression intensities (in number of
J2 J2 2 tags) such agy, = 10, g, = 26, ratio 2.6] andd, = 1,95 = 5,

ratio 5] point out the former as far better evidence for
differential expression. Similarly, the application of
Then, they classified ‘differentially expressed’ genes as thosgignificance testing to microarray data would sort out the best
exhibiting at least a 2-fold change in expression, i.e.: candidate genes among confusing combinations of ratios and
expression levels. Lowly expressed genes with expression
ratio gg/g, = 5 might then become less promising than highly
expressed genes with/g, = 1.5.
The use of confidence levels is also relative to the number of
genes simultaneously tested. Given a (small) probalpilityat a
A straightforward combination of the two previous equationsresult Will.(.)ccur by chance (i.e. its significance threshold), there is
shows that expression changes considered to be significa@trobability:
may include cases for which:

=2 or

@ll ]
> |w
@ll ]
> |w
IN
NI

3

P=1-(1-pN=Np 5
95— 9al 2 V26 . . .
B A A 4 for this result to occur at least onceNhindependent trials. Thus,
if candidate genes are selected on the basis of expression changes

Expression differences of the order of #.5 do not reach th&ignificant at the 5% level, a false prediction rate equal to 5% of
5% significance threshold (which is 43  for duplicate experin€ total number of assayed genes is expected. For a 1000 gene
iments). Thus, the filtering procedure used in this work is noay, this is 50. Choosingravalue threshold thus corresponds to
conservative enough. In their simultaneous monitoring of 100(6xing _the Ievel_of gcpeptable risk (i.e. the fraction of false leads an
genes, Scheret al. (32) found 15 genes exhibiting expression €xperimenter is willing to tolerate). _ =
ratios of ~2. For purely statistical reasons, we expect that a Conversely, significance testing can be used in the traditional
fraction of those genes might be ‘false positive’ rather tharf¥@y, i.€. to ‘demonstrate’ the reality of an observation. In this
bona fidedifferentially expressed genes. | noticed that, in theil“3Se the_’ experimenter will have to apply the so-called
first study with 46ArabidopsiscDNASs (36), the same authors Bqnfgrron| correction _When_ fixing its significance threshold.
adopted a more conservatigglg, = 5 ratio as their threshold  This simply consists of imposingmvalue such as:

for differential expression. Combined with their reproducibil-

ity constraint (2), this higher ratio is valid and does ensure that Np<<1 6

(on average) <2.5% of the calls for differentially expressed ) L
genes will be due to random fluctuations. to ensure the absence of ‘false positives’. Given the large (and

increasing) number of genes tested in microarray or in tag experi-
ments this corresponds to very snallalues (e.g. 5%/10 000 =

5x 109). Unfortunately, the constraints on the magnitude of
Large-scale hybridization experiments require numerougxpression changes and on the measurement accuracy required
manipulations to produce the final expression data matrixto achieve such a high confidence level might not be experi-
Various calibration steps are for instance needed to ensure theentally feasible. Strict application of the Bonferroni correc-
linearity of the fluorescence measurements and internalon could discard many biologically significant changes.
controls are used to transform fluorescence intensities into

number of mMRNA molecules. Various controls (e.g.
‘housekeeping’ genes) are also used to verify the consisten
of expression intensities obtained from different mMRNA poolsThe various technologies allowing parallel expression
and different microarrays. At the end, mathematicalmonitoring of large sets of genes are now being applied to the
conversions (using offsets, logarithms, ratios, etc.) are used study of development and differentiation (43,49,54,64,68,81;
the production of the final expression data. These manwttp://cmgm.stanford.edu/~kimlab/) and of the transcriptional
calibrations and normalization procedures might convey aesponse to various factors in yeast (31,33,56,65,82—-85) and
false sense of security, in particular for protocols such as thmammalian (32,65,86) cells. In this context, the data take the
elegant two-colour competitive hybridization assays in whichform of a multi-conditional expression intensity matrix:

error correction mechanisms may appear to be built in. Yet, if

The role of significance testing and the Bonferroni correction

é\{}ulti-conditional gene expression analysis

one wishes to associate a confidence level with the measured Condition A Condition B Condition C Condition... Condition Z
changes, it has to be clear that no data processing or eleg%ﬂﬂgé gm 815 810 81 glz
protocol can substitute for the requirement of multiple (at leastene3  Gor o Ooe & o
two) independent determinations of the expression intensitiegzene... g a 9 9.c .z

Confidence levels offer a rational way to output and interpret " Goa G Gre Gn. Gz

the results of large-scale differential expression experimentsvhere the various A-Z conditions might correspond to a time
As discussed in Audic and Claverie (6ftialues constitute an series (i.e. after stimulation), successive stages of
objective measure of the quality of the evidence (that a gene differentiation, various stages of a disease process (cancer),
differentially expressed) and can be used to rank the candidatgowth conditions or tissue or cell types. The same analysis
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might also be used to investigate the transcriptional effects of 4
drugs or gene transfer.

As before, the expression intensitggmay consist of cDNA
tag counts (i.e. each condition corresponds to the sampling of ¢
different library) or analog values obtained from quantitative
RT-PCR, microarray-based protocols or even protein two-
dimensional gel electrophoresis.

Detecting differential expression from multi-conditional
expression data

Obviously, the results of a multi-conditional expression
experiment can still be used to identify differentially expressed g,
genes by comparing gene expression levels between any pajj
of conditions. However, the proper Bonferroni correction will

xpression Intensity

have to be applied to assess the statistical significance of the >
results. For an expression intensity table vitltonditions, the A B € D E F G H
correction factor (i.e. multiplying the probability for a result Conditions

occurring by chance) is1(M — 1)/2.
Greller and Tobin (67) have proposed a new and I’Obuslétigure 1. Example of expression profiles (fictitious data). Gene Ign{g
i i ifi~ati ¢ i . : A Y18

CompUtE_itlo,nE_il method _for Fhe Identlflcatl_on . of SeleCtIV_e o Yo ---» O1nh g€Ne 2, gene 3 and gene 4 vectors are represented as profiles
expression’ (i.e. a pattern in Whmh the expressionis markedly higlising their expression intensities as coordinates for the various conditions (or
or markedly low in a single particular condition) from multiple time points) A-H. The profiles for genes 1 and 3 have a similar overall shape,
condition expression data. The method combines assessments ofgh@oesting a correlated expression. The profile for gene 2 exhibits the opposite
reliability of expression measurements with a statistical test of?rarion. s199estng an anti-correlation with genes 1 and 3. Thus, genes 1-3

. ) . . illystrate coordinated expression patterns. The profile for gene 4 indicates an
expression profiles. They consider that measurements in at least dfression pattern independent of the other three genes.
different conditions are required to make a reliable assessment o
exceptional gene expression intensities.

. ) . . data, such as:

Beyond the detection of differential expression, however,
two new types of analyses can be performed using multi-
conditional expression data, namely: (i) the identification of 1d q G(Ianiglqbetec_:ted Glerzlel_é nqt detected
pairs of genes exhibiting coordinated expression; and (ji) th&€ne 1 detecte n 1Ulbranes  In Zlibrares
clustering of genes according to their expression profiles. ~ Gene 1 notdetected In 2 libraries In 8 libraries

For the above example, the application of Fishers2exact test
would indicate that a significant association exists between the
occurrence of genes 1 and 2 in the panel of the sampled 22 libraries.
Each row of a multi-conditional expression matrix correspondShe same design is capable of detecting anti-association as well.
to a gene expression profile, technically a vector in a space dfowever, reducing the tag counts to a binary scale (detected versus
M dimensions (wher#l is the number of assayed conditions). not detected) is only advisable when the quantitative data are

The identification of coordinated gene expression: pairwise
analysis

A given gene is thus represented as: unreliable, such as in the case of normalized libraries.
For both tag sampling and ‘analog’ expression data, Spearman’s
genei={0g, Gg 9c 0 - Uiz} rank correlation test provides a way to assess the overall shape sim-

ilarity of two expression profiles. For each gene, the conditions are
Two genes can exhibit various forms of ‘coordinated expresranked according to expression intensities. For instance, gene 1 fol-
sion’ (Fig. 1). At the qualitative level, they might tend to be lows the decreasing order C, D, E, B, F, G, A, H (Fig. 1). Genes
expressed together (genes 1 and 3) or exclude each other (gen@sgociated with ‘parallel’ profiles, for instance gene 3, correspond to
versus genes 1 and 3). At the quantitative level, their abundanéesimilar order: C, E, D, F, B, A, G, H. Spearman’s rank correlation
might follow a linear dependency or a more complex relationships is simply a linear correlation computed on the ranked expression
(quadratic, sigmoidal, exponential, etc.). A simplified statisticalntensities of genes 1 and 3, as in the table:
procedure to identify pairs of genes exhibiting correlated expres-
sion is described in the Appendix. The basic principle behind all Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 Rank8
methods is that coordinated expression will be suspected when tggzg % e 9o G%e G Y G G O
expression profiles of two genes are more similar (or more dissim- G G G G Ge o O Ge O
ilar) than expected by chance. Coordinated expression is thusKendall’s significance test can also be used for the purpose
inferred through pairwise comparisons of all rows (gene profileof assessing a correlation in rank order. While the ranking pro-
vectors) in the expression data matrix. cedure may cause important information loss in the data, it is
Various methods can be used to assess the pairwiseell suited to the detection of strongly non-linear correlations
similarity of gene expression profiles. For tag samplingbetween two genes.
experiments, for instance, 2 2 co-expression contingency Nevertheless, the traditional Pearson’s linear correlation
tables can be computed from the multi-conditional expressionoefficient gives good results in most cases and has been used
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in many studies (32,65,84,86—88). This test can detect pairs ttie rat central nervous system. The resulting tree clearly identified
genes with similar (gene i = gene j), proportional (gerié i four major subsets of genes sharing four types of expression
gene j) or opposite (gene i £3-gene j) expression profiles. profile. A hierarchical (i.e. tree building) method adapted to the
Pearson’s linear correlation coefficient is also associated witHirect clustering of the correlation matrices mentioned above has
a p value which assesses the confidence level for suspectdxen used by Eisest al. (65) to analyse a 12 point time course of
coordinated expression. the serum response of 8600 human genes and a 75 condition
The results of a complete pairwise correlation analysis can bexpression study of the whole yeast genome. For other examples
summarized in a matrix of ‘expression similarity’ across all genespf the use of hierarchical clustering see Scheira. (32) Lashkari

such as: etal.(33) and Kharet al. (81).

Genel Gene2 Gene3 Gene... Gane As pointed out by Tamayet al (68), hierarchical methods
Genel ry ro s r, M0 have their shortcomings and are best suited to situations of actual
Gene2 ry o g r, Fon hierarchical desce_nts (such as in moI_ecuIar evolut_lon).
Gene3 1y Fa 3 fa Fan Eortunately, the design of clustering methods isa well-established
Gene... r r, [ o r r field Qf research and a large number of alternative procedures are
Genen 1, [y My r M possible and can be used.

Principal component analysis (PCA), for instance, can be

There are a number of ways of visualizing these results. The jrectly applied to a matrix of muitiple condition expression
involve different methods of classifying the genes that eXhib!ht:rgs}lgti)st:\oecn%nsgL:jtiesct:?i(renirr?zlfr?tvtirnglg??\igz?rigﬁzigggl go;i(ét
correlated expression patterns into ‘similarity clusters’. Th (64,92). Visual inspection or pattern recognition softwarepcan
simplest procedure will use the property of transitivity: if gene i isther,1 be.use 410 deIiFr)1 cate ex rgssion cluste?s
signiflic? n(;tly fr? rrelaterc]i Eﬁith gene_j -an% ﬁene j ?ignitfri]cantly Computer scientists are :Elso beginning tc; specifically adapt
correlated with gene h, then gene i, j and h are put in the sam . : >
cluster. Unfortur?ately, this megilhod is lvery sensitivrt)a to the choic&'assical graph theory-based clustering techniques (93) to the
of an arbitrary threshold and to the uncertainty of pairwise gen roblem dOf ?nalysmg r;'_r?'sdy Iexp(rjeSﬁon ldata. Fc;f( instance, rt]he
correlation assessment. A better procedure consists of using ] %ﬁ:ﬁéﬁe (C(“,Ig\usql:)grparrc))po;?ede b;mBer: So? ;ﬁfje:(:kg?r;tiy(gsgaxere
concept of Euclidean distance (square root of the sum of th e ;
squared differences in each dimension) to transform the aboﬁé#}cczséfsu”yl tesff{ﬁd on two Iadrgtt)a rr;'ultlﬁﬁ eﬁ(pggmtent Ida’;a sets.
gene correl_ation table into a.matrixluxbnafidepairwise distances qgltleectionsa(%oszAzroopnoiie gasi:rof t?]éi(r o)liggn(ilglsé gtri de
f:%?r)]bu':tgg ;r;?tance, the distance between genes 1 and 2 fmgerprints is_ also a good example of a graph thgoretical

technique designed to tolerate large stochastic perturbations.
The traditional hierarchical approaches, principal component
analyses and the graph theoretical techniques cited above, are all
7  examples of clustering procedures not requiring any assumption
of the number of clusters sought.

Other methods, such as the self-organizing map (SOM)
procedure adopted by Tamagbal. (68) require fixation of the
number of ‘nodes’ (which will serve as nucleation points for the
nes clusters), as well as their initial geometry in the space of the

2 2 2 2
dy o= «/(rll_r21) F(rp=Tpp) +(ryz=Tpg) +. +(ryy=rppy)

An important point is that the distandg, between gene 1 and
gene 2 now takes into account their similarity with all other

enes and is no longer computed from a single pairwise con€N€ o >0 o
garison Such a dis?ance ispthen less sensitgi]ve Ft)o the rand Iti-conditional expression intensities. However, SOMs can be

fluctuation of expression measurements. Using Euclidean dig_omputed very quickly, even on a large data set. An iterative
tances, two genes exhibiting a poor pairwise correlation mighrerocedure can thus be implemented o explor_e_ the underlying
still appear close by virtue of their correlation patterns withdus_ter structure and converge to an OP“”_‘a' partition.

other genes. Indeed, other types of Euclidean distance can be INally, the most sophisticated clustering methods are those
computed from the multi-conditional expression matrix, fordming at inferring causal relationships and regulatory

instance by directly using the expression intensities for eacfleéchanisms from multi-conditional expression measurements:
condition as coordinates (64). the genes are still partitioned into clusters, but the partition now

Once a set obona fidepairwise distances is available, a has an internal structure involving inhibitory or activating

number of clustering methods can be applied to reveal Subsé&{eracnons. Genes belonging to the same cluster are now

of genes obeying similar patterns of expression. These mett! egra_ted into a c_oherent pathway. Initially de_veloped f_or the
ods are discussed in the next section analysis of chemical reactions (96) or the interpretation of

complex genetic networks (97), such clustering approaches are
now adapted to the analysis of large-scale expression experiments
and to the modelling (or ‘reverse engineering’) of transcriptional
Pairwise gene distance matrices computed from expressigagulatory pathways (98,99). In a recent work, Cheal. (100)
analysis or from sequence alignments are similar mathematicatidressed the problem of identifying a small set of candidate
objects. Methods traditionally used for molecular phylogeny camegulatory genes from multiple time series of expression
thus be used to identify clusters of genes sharing a similameasurements. Using Boolean circuits to model biological
expression pattern. West al. (64), for instance, used the Fitch pathways, Karpet al. (101) are tackling the problem from the
algorithm (89) in the Phylip package (90,91) to interpret theother end, by designing algorithms for choosing the most
temporal gene expression of 112 genes during the developmentagpropriate conditional expression experiments (e.g. gene

Identifying gene expression clusters
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Figure 2. Example of a colour map derived from rice EST dats) Colour map generated from a gene expression correlation analysis (88) of publicly available
rice EST data (707 genes in 10 cDNA libraries). EST counts are represented according to the colour scale shown below the map. The colour scaleskeas been ch
so as to optimally represent the [5-55] range of EST counts (cells with a value >55 are assigned the colour red). The green and yellow arrows psiaf to grou
genes with specific expression patterns. The green arrow points to a set of genes mostly expressed in library 307 (green shoot, 8 days oldvaad thetgello
genes mostly expressed in library 193 (etiolated shoot, 8 days BlandC) Different magnified regions of the colour map. To the right of each region, genes are
shown with their putative identification, if available. To the left of each region, the relevant portion of the tree used to re-order the origiaalledatahown.
Different colour scales were used in (A), (B) and (C), to provide optimal contrast in the display of the EST counts.

disruption or external stimulus) that will reveal underlying DISCUSSION
regulatory networks.
Clustering methods and graphical displays are two closely relatégoordinated gene expression analysis in functional genomics

aspects of the interpretation of multi-conditional expression experi.l-he elegant two-hybrid system assay (102) is one of the most
ments. After hierarchical clustering, for instance, trees and COIOlﬁopular techniques in functional genomics. Given the cDNA of a
maps are the most natural representations (64,65,92). A colour MgRytein of interest, this technique allows the identification of other
is designed as follows (Fig. 2). Given the gene hierarchy, the rowsyoteins capable of interacting with it directly from a pool of target
(i.e. the genes) of the primary data matrix can be re-ordered RpHNAs. In this assay, the specific physical interaction between the
placing the genes sharing similar expression profiles next to eagfiobe and target proteins is directly used to trigger a reporter gene.
other. With the exception of time series, a similar re-ordering proce- The computational analysis of a multi-conditional gene
dure can also be applied to the columns (e.g. tissue type, growitxpression experiment can be seen as an extension of this technique,
condition or pathological samples) most similar in terms of gengsing the statistical interaction between the expression data of
expression. The re-ordered primary data table can then be displaygshes, rather than the physical interaction between their products.
by colouring each cell on the basis of intensity, variability, gene The network of interaction revealed by the computational
function, etc. Visual inspection of the resulting colour map willtechnique may encompass genes involved in the same biological
often reveal domains of similar or contrasting colours or remarkablgathway in a non-contiguous manner, as well as genes negatively
shapes, eventually suggesting new regulatory pathways as welliagerfering with each other.

disease or differentiation mechanisms. Standard image processingn practice, the detection of correlated/coordinated gene
techniques (e.g. contrast enhancing, boundary detection, etc.) maypression nicely complements sequence-based bioinformatics
be used to supplement human natural talent for pattern recognitiomethods in three main ways:




1828 Human Molecular Genetics, 1999, Vol. 8, No. 10 Review

* in assigning a precise biological pathway to a gene of ‘generic’ (87). Provided a large number of conditions are tested, it is also
function (such as transcription factor or kinase); conceivable that a relationship more subtle than a simple
« in relating an anonymous gene to better characterized genes; monotonic dependency (i.e. pairs of genes always going up or
« in revealing unexpected relationship between previously known down together, or the opposite) might become detectable (e.g.
genes or pathways. pairs of genes positively correlated in some conditions and
negatively correlated in some others). In any case, the
Gene expression correlation analyses might also considera-identification of pairwise correlation has a complexity of the
bly help sequence-based bioinformatics approaches in theorder of N(N — 1)/2 and is not a computational difficulty for
study of eukaryotic promoters. Among genes exhibiting corre- modern computers.
lated expression patterns across a large panel of biological con-The real challenge remains in the clustering step, for which
ditions, a significant fraction is expected to be co-regulatedalgorithmic approaches abound, but the best choice is not clear to
i.e. responsive to a common set of expression factors. The priiologists. For most clustering methods, the complexity is of the
moters of these genes should then contain common regulatogyder ofNlog(N), and again is not a real computational difficulty.
elements. Thus, the identification of gene expression clustetdowever, experimental errors and the complexity of the
constitutes precious accessory information for the ‘reversanderlying regulatory network structure require that arbitrary
engineering’ of the very elusive architecture of eukaryotic prosimilarity thresholds or minimal graph connectivity rules are
moters. This opportunity did not escape the attention ofncorporated in the practical implementation of all algorithms.
Brazmaet al. (103), who have systematically analysed theThe difficulty with clustering is thus not in the design, or the
upstream regions of yeast genes exhibiting similar expressiaghoice, of a perfect method, but rather in the fact that all
profiles. Completion of the genomic sequence of the nematodgigorithms will fail for an unknown fraction of the cases and that
Caenorhabditis eleganshould allow a similar study to be run there is no simple way to decide which will perform best for an
on a multicellular organism, using the large gene expressiogrhitrary (experimental) data set. Bioinformatics research is thus
data set (~150 conditions) generated by Kim and co-workergery active in this area, but the prospect is poor that alternative
(http://cmgm.stanford.edu/~kimlab/ ). clustering protocols will produce vastly different biological results
It is worth noting that the computational approachesfrom the same multi-conditional expression data.
reviewed h_ere can be applied at the protein level. In the searchgiven the complexity of regulatory networks, it is also not clear
for correlations, cDNA microarrays and gene expression levelgnether clustering by traditional methods (PCA, hierarchical
are simply replaced by two-dimensional electrophoresis angystering, etc.) is adding more to our understanding of biological
protein spot intensities (60,104)._In the few comparative StUdpathways than the simple knowledge of all pairwise gene
ies that have been performed, important discrepancies haygnression correlations. In practice, most academic or industrial
been noted between expression measurements made at figgists will be mining multi-conditional gene expression data
transcriptome versus the proteome level (104,105). It has begfi an idea in mind and look for correlations with previously
suggested that protein spot signatures correlate better with Phgsfineq genes, such as specific tumor suppressors, cytokines or
notype than gene expression intensity (104). membrane receptors, in a search for surrogate markers or

_ Finally, the same computational techniques are also being useflerative targets. Improving clustering might thus be both
in the information intensive, massively parallel, drug screeningyissic it and biologically pointless.

protocols (106-108). Euclidean distances, hierarchical clustenng-l-he true, more biologically relevant, exciting future of gene

and colour maps are very familiar concepts in the interpretation ngpression clustering might thus lie in the more abstract

large-scale (e.g. 49 000 compounds tested against 60 cell Iiner@Searches attempting a complete reverse engineering of
molecular pharmacology studies (108). transcriptional regulation networks. Only such approaches have
the potential to produce an integrated view of the cell pathways
from the intricate combination of individual gene expression
| have distinguished three levels in the interpretation of multipatterns. Detailed modelling of signalling pathways and the

Future directions

condition gene expression data: establishment of causal relationships are required to model
developmental mechanisms and elucidate, for example, how
() the identification of differentially expressed genes; commonly used signalling pathways are able to elicit tissue-

(ii) the identification of pairwise gene expression correlations;  specific responses in multicellular organisms. However, current
(iiithe delineation of gene clusters according to gene expressionorks (101,109) in this area are only at the preliminary stage of
patterns. defining which constraints must be fulfilled to allow a complex
The computational methods to accomplish step 1 are wefegulatory network architecture to be inferred from gene
worked out and the complexity of the task is only of the order ofexpression patterns. Itis thus too early to tell whether this goal will

N, the total number of genes analysed in the multi-conditionatver be reachable from a reasonable number of experiments.
expression experiment.

I\_/Ief[hods to perform step.2 are also well deflned.. Giverethe fACKN OWLEDGEMENTS
priori unknown mathematical form of the correlation, the bes
approach would certainly involve the use of a variety of tests| wish to thank C. Abergel, S. Audic and F. Gosse for reading the
each of them best suited to the recognition of a specific type ahanuscript and R. Ewing and A. Ben Kahla for allowing the use
dependency (Pearson’s, Spearman’s, mutual information, etaj their results in Figure 2 prior to publication.
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APPENDIX
. ) ) 10 coincidences is Pio=pt°
Identifying coordinated gene expression from perfect 9 coincidences is Py=1Co P 9-pn%, with ;(Cq = 101/[9!(10 - 9)!]
binary data 8 coincidences is Pg= 10Cg P>Prc
7 coincidences is P=10C7 P Pre
We start from a binary (0/+) multi-conditional gene expressiorp coincidences is Pe= 10C6 P Prc’
; . 5 coincidences is Ps=1,Cs P Prc’
matrix such as:
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From these, we can compute themulativeprobabilities of  ‘correlations’ of the order of:

observing:

N(N - 1)/2 1/2
10 coincidences: Pio,
atleast 9 coincidences:  Pg+ Py, To ensure a reliable identification of coordinated expressed
at least 8 coincidences: Pg+ Py + Py,... genes among thid tested, we must thus impose the constraint:
and so forth to the probability of observing at least 0 coinci- N(N=1)/2 1/2 << 1 A2

dencePy+ P+ ... + Ppy=1.

Given our perfect data Sgi(= py: = 1/2), the numerical val- This equation establishes a direct relationship between the

ues are: ; :
maximal numbeilN of genes one can analyse simultaneously

-p - 0— — and the minimal numbelr of independent expression condi-

EO; Em:—((ll+/21)g)/—lé/21£82: - %%3%37 tions required to design a reliable study. Fré it follows

P9= Pl= (45 + 10 + 1)/1024 = 0'_055 that the parallel monitoring of 100 000 human genes using a

P’;: Piz (120 + 45 + 10 + 1)/1024 = 0.17 binary detgction system and a perfectly balanced Qata set

Py=P,= (210 + 120 + 45 + 10 + 1)/1024 = 0.377 would require expression measurements for ~35 conditions.

Py = (252 + 210 + 120 + 45 + 10 + 1)/1024 = 0.62 The situation is more favourable if our detection system can

discriminate c (>2) expression levels. If, for the sake of

At the 5% significance level, observing >8 coincidencessimplicity, we consider such levels equiprobable, the
between the expression profiles of two genes is thus indicativierobability of a score coincidence beconggs= 1/c. We then
of correlated behaviour, while observing <2 coincidences is &an rewrite the previous constraint as a three-way relationship
sign of an anti-correlation. between the numbeX of genes, the number of conditions
and the parametercharacterizing both the dynamic range and
The feasibility of a whole genome expression correlation the accuracy of gene expression measurement:
analysis

L i [oal
The most significant evidence for correlated expression is N(N —1)/2 1&* << 1 or, approximatelyN << v 2c

achieved for 10 coincidences and is associated withvalue o ) )

of (1/2)1°. In general, for any binary (+/0) multi-conditional ~ Although this simple formula has been obtained using
gene expression experiment involving (independent) drastic assumptions, it already indicates that, given the
conditions and equal proportions of + and 0 scores, the mogtynamic range and accuracy of the detection technologies at
significant pairwise correlation will be associated withpa hand, simultaneous parallel monitoring for pairwise
value ofp = (1/2)-. However, we are looking for any possible correlations of all human genes €400 000) is indeed feasible
association among| different genes and thus embarking onusing a relatively small number of independent expression
what statisticians call a ‘fishing trip’. On this fishing trip we experiments. This result is reminiscent of the rather
will be trying to hook a significant resuli(N — 1)/2 times. We  surprisingly small number of radiation hybrids required to map
must thus expect a number of false positive pairwiseall human genes.
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