
Continuous Time in a SAT-based Planner

Ji-Ae Shin and Ernest Davis∗
Courant Institute

New York University
{ jiae | davise}@cs.nyu.edu

Abstract

The TM-LPSAT planner can construct plans in domains con-
taining atomic actions and durative actions; events and pro-
cesses; discrete, real-valued, and interval-valued fluents; and
continuous linear change to quantities. It works in three
stages. In the first stage, a representation of the domain and
problem in an extended version of PDDL+ is compiled into
a system of propositional combinations of propositional vari-
ables and linear constraints over numeric variables. In the
second stage, the LPSAT constraint engine (Wolfman & Weld
2000) is used to find a solution to the system of constraints.
In the third stage, a correct parallel plan is extracted fromthis
solution. We discuss the structure of the planner and show
how a real-time temporal model is compiled into LPSAT con-
straints.

Keywords: Propositional planning, LPSAT, continuous
time, numerical quantities, processes.

Introduction
Over the past decade, several new powerful engines for
propositional satisfiability have become available and are
now being used in a broad range of applications (Alessandro
et al. 2002). One very successful application has been the
development ofpropositional planning,in which a planning
problem is compiled into a set of propositional constraints
in such a way that a solution to the constraints demarcates
a valid plan (Kautz & Selman 1992; Kautz & Selman 1996;
Ernst et al. 1997; Kautz & Selman 1999) .

Recently, a new class of inference engines (Wolfman &
Weld 1999; Audemard et al. 2002; Barrett & Berezin 2004)
has been developed for systems of propositional combina-
tions of linear constraints over real-valued quantities. In this
paper, we show that these can be used to extend proposi-
tional planning to many domains that involve real-valued
quantities and continuous change.

The TM-LPSAT planner (Shin 2004) constructs plans in
domains with the following features:
• The effects and preconditions of actions can involve dis-
crete, real-valued, and interval-valued fluents.

∗The research reported in this paper was supported in part by
NSF grant IIS-0097537.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

• An action can change the value of a real-valued fluent ei-
ther continuously, as a linear function of time, or discretely.
• An action may be either atomic or durative (taking place
over an extended time interval).
• An action may take real- or interval-valued parameters.
• Actions may be concurrent.
• Exogenous events may occur. These can have the same
types of preconditions and effects as atomic actions.
• Autonomous processes can be defined in the language.
• Reusable resources,both multiple-capacity and interval-
valued, can be defined in the language.

TM-LPSAT has three modules. Thecompiler takes as
input a domain and a problem description in PDDL+ (Fox
& Long 2001; 2003) and outputs a set of constraints over
propositional and numerical variables. TheLPSAT con-
straint engine, developed by Wolfman and Weld (Wolfman
& Weld 1999) , takes this set of constraints as input and out-
puts a solution, if one exists, in the form of an assignment to
the variables. Thedecodertakes as input the assignment and
outputs a correct plan. The overall system is thus a powerful
and elegant planner for a wide range of problems.

In this paper1, we present the encoding of real-time tem-
poral model defined in PDDL+ Level 5 (Fox & Long 2001),
consisting of atomic actions, exogeneous events and au-
tonomous processes.

Foundations
The TM-LPSAT planner builds on three foundations: the
theory of propositional planning, the LPSAT constraint en-
gine, and the PDDL+ specification language.

Propositional planning
In propositional planning, a planning problem in a domain
with discrete actions and fluents2 with discrete values is con-

1We are preparing a paper that deals with the details of the en-
coding of a durative action, as defined in PDDL+ Levels 3 and 4.
Due to space limitations, we do not discuss intervals or reusable
resources here.

2Throughout this paper, we will use the word “fluent” in the
temporal logic sense of “entity that takes on different values at dif-
ferent times” such as “on(blockA,blockB)”, rather than meaning
the particular PDDL construct of that name. Temporal logic “flu-
ents” includes PDDL “predicates”.



verted into a set of propositional constraints. This is doneas
follows:

• An upper bound N is guessed for the maximum number
of steps in the plan. Time points are labelled 0 . . . N.

• The following propositional atoms are defined at each
time point I:

A. For each fluent F, for each possible value V of F, the
statement that the value of F at time I is V.

B. For each action A, the statement that A is executed at
time I.

• The laws governing the domain are imposed by asserting
every instance of every law at every moment of time. In
classical planning domains the major categories of laws
are: causal laws, domain constraints, and frame axioms.

• The problem is specified by stating that the start state
holds at time 0 and that the goal state holds at time N.

• The constraints are fed to a propositional satisfiability en-
gine. If the constraints can be solved, then the actions that
are marked as occurring constitute a valid plan.

Propositional planners can be implemented easily and,
with the current generation of satisfiability engines, quite
effectively. Since their introduction in (Kautz & Selman
1992), they have been extensively studied (Kautz et al. 1996;
Kautz & Selman 1996; Ernst et al. 1997; Kautz & Selman
1999), and various ways of formulating the constraints have
been compared. The major drawback is that large domains
can lead to enormously large systems of constraints. Partic-
ularly dangerous are functions with many arguments; a flu-
ent function or action function withk arguments generates a
collection of atoms of size exponential ink.

The LPSAT program
The LPSAT constraint engine is composed from RelSAT a
DPLL-based propositional solver, and Cassowary an incre-
mental linear constraint solver. The input to LPSAT (Wolf-
man & Weld 1999) is a set of generalized clauses. Each
clause is a disjunction; each disjunct is either a propositional
literal or a linear equality or inequality over numeric vari-
ables. The program first looks for a propositional solution,
treating each linear equation as a propositional atom, then
tries to solve the set of equations that have been marked as
true. If that set is inconsistent, then LPSAT adds a clause
stating that these linear inequalities are not all true, andit
looks for a new propositional solution. It goes back and
forth between propositional and numerical mode until either
finding a solution or establishing that no solution exists.

PDDL+
PDDL (Planning Domain Definition Language) (McDer-
mott 1998; 2000) is a declarative language for the defini-
tion of causal domains and planning problems. The basis
of our work is PDDL+, which is the most recent extension
to PDDL. PDDL+ comprises five levels. Level 1 contains
discrete actions and fluents. Level 2 adds features for nu-
meric quantities. Level 3 allows durative actions that cause
discrete changes occurring at the beginning and at the end of

the action. Level 4 allows durative actions that cause contin-
uous changes throughout the occurrence of the action. (Lev-
els 1 through 4 collectively comprise PDDL2.1 (Fox & Long
2003).) Level 5 (Fox & Long 2001), proposed but not ap-
proved by IPC (International Planning Competition) com-
mittee, is a real-time temporal model that includes atomic
actions, exogeneous events, and autonomous processes.

The input specification language for TM-LPSAT extends
PDDL+ in that we allow actions to have real-valued param-
eters. For instance, there can be an action “scoop(N, C, B)”
of scooping upN cups of flour from binB into cup C.
PDDL2.1 excludes this (Fox & Long 2003) but their ar-
guments do not strike us as cogent. Numerical parameters
greatly increase the expressivity power of the language, and,
in the LPSAT approach, impose no additional computational
burden.

One restriction must be imposed on actions with nu-
meric parameters: There cannot be two or more concur-
rent actions with the identical non-numeric parameters. For
instance, we do not allow the actions “scoop(5,c1,b1)”
and “scoop(2,c1,b1)” to be executed concurrently, though
“scoop(5,c1,b1)” and “scoop(2,c2,b2)” may be concurrent.
The restriction is reasonable because such numerical param-
eters are typically used in one of two ways. If the value of
the parameter is assigned to a fluent – e.g. “scoop(N, C, B)”
results in the cup containingN cups of flour — then two ac-
tions with different numeric parameters would be mutually
exclusive. If the value of the parameter is used to incre-
ment a fluent — e.g. “scoop(N, C, B)” results in addingN
cups of flour to cupC — then two such concurrent actions
scoop(5,c1,b1) and scoop(2,c1,b1) can be combined into a
single action scoop(7,c1,b1). We have not found any cases
where it would be reasonable and important to violate this
restriction.

By virtue of this restriction, an action type is identified by
the name of the functor and the non-numeric arguments. For
example, we may speak of the action type “scoop(·,b1,c1)”
(scooping some amount from b1 into c1) and be sure that at
most one of these occurs at one time.

A few features of PDDL+ cannot be included in TM-
LPSAT. First, TM-LPSAT cannot optimize a specified plan
metric. Second, the language must be restricted so that, in
any multiplication, all but one of the terms can be statically
evaluated; and, in any division, the denominator can be stat-
ically evaluated. Otherwise, the result will be a non-linear
equation that LPSAT cannot handle. Third, no non-linear
expressions are allowed in any definitions. All other features
of PDDL+ are included.

Temporal ontology
We use a linear, real-valued time line. The representation
used in the constraint language output by TM-LPSAT char-
acterizes the time line in terms of the states of the world
at a collection ofsignificant time points. A significant time
point is one where “something changes”; roughly speaking,
some action, event, or process occurs, starts, or ends. In the
intervals between significant time points, fluents are either
constant, or, if they are numerical, they may undergo con-
tinuous change as a linear function of time. Every discon-



tinuous change, or change in the derivative of a numerical
fluent, occurs at a significant time point. Thus, there are two
states associated with each time point T; the statebeforeT
and the stateafter T.

Each time point has aclock time, which is a non-negative
real value. These clock times become numerical variables in
the system of constraints set up by the compiler. It is pos-
sible, however, to have two distinct time points with equal
clock times. This is used to accommodate the following sit-
uation: Suppose that action A is executed at timeTi, and
has the effect of either causing fluent P to be true or making
a discrete change to a numerical fluent. Suppose further that
event E has triggering condition P or a numeric constraint
satisfied by the discrete change. Then E should be executed
immediately after A. We model that by positing that E is ex-
ecuted at timeTi+1, but that the clock time forTi+1 is the
same as the clock time forTi. Note that event Emustdis-
able its own triggering condition; else there would have to
be additional occurrences of E atTi+2, atTi+3, etc.; the re-
sult would be that the system of constraints would have no
solution with finitely many time points.

An atomic actionoccurs instantaneously. An action is
characterized by preconditions that must hold before the ac-
tion and effects that hold after the action. For example,
the action “turn on the faucet” has the precondition that the
faucet is off and has the effect that the faucet is on.

An eventis like an atomic action, except that, whereas
an atomic actionmayoccur if its preconditions hold (if the
actor so chooses), an eventmustoccur if its precondition
hold. For example, the event ”flood” has a precondition that
the tub is full, the bathroom floor is dry, and that there is a
process of inflow into the tub. It has the consequence that
the bathroom floor is wet.

A processis active over an extended interval. It is char-
acterized by preconditions and effects. The preconditions
must hold through the interval; if the preconditions cease
to hold, the process stops. The effects of a process are, in
the language of (Forbus 1984),direct influenceson numeric
fluents. Specifically, each process has a fixed influence on
some collection of real-valued fluents; the derivative of the
fluent at a given time is the sum of its influences over all
active processes and actions that influence it.

For example, the process “fillBath(B - bath; T - tap)” has
the precondition that tap T is open and that the level of the
bath is less than its capacity; and the constraint that T is
a tap of B. (We assume, unrealistically, that flow will stop
once the bath is full.) It has the effect of increasing level(B)
at the rate flow(T). (We allow only taps that are fully on or
off.) At any moment, the derivative of level(B) is the sum of
the rates of the active fillBath processes.

PDDL+ permits concurrent actions under fairly restric-
tive conditions, designed to ensure that the actions do not
interact, either destructively or synergistically. The actual
condition imposed is one that can be computed easily and
statically and that is sufficient, though not necessary, to en-
sure this non-interaction.

Sample domain
The bath domain includes filling processes with different
taps, a draining process, a flood event, and atomic actions
of tapOn, tapOff, plugIn, plugOut, and addBubble. Filling
processes can be concurrent with draining process. We can
add bubble before the bath is half full. Thus, this domain
can show concurrent continuous and discrete changes on the
level of a bath.

(:process fillBath
:parameters (?b - bath ?t - tap)
:precondition (and (tapon ?b ?t)

(<= (level ?b) (capacity ?b)))
:effect (increase (level ?b) (* #t (flow ?b ?t))))

(:process drainBath
:parameters (?b - bath)
:precondition (and (not (plugin ?b))

(> (level ?b) 0))
:effect (decrease (level ?b) (* #t (drainingflow ?b)))

(:event flood
:parameters (?b - bath)
:precondition (and (exists (?t - tap) (tapon ?b ?t))

(>= (level ?b) (capacity ?b))
(dry floor ?b))

:effect (not (dryfloor ?b)))
(:action addBubble
:parameters (?b - bath ?q - real)
:condition (and (exists (?t - tap) (tapon ?b ?t))

(not (bubbleadded ?b))
(<= (level ?b) (/ (capacity ?b) 2)))

:effect (and (bubbleadded ?b)
(increase (level ?b) ?q)))

The goal may include constraints on the ratio of flows
from hot taps to flows from cold taps by distinguishing taps,
so that the desired bath temperature is achieved.

Compilation to LPSAT constraints
We begin by guessing at an upper boundN on the number
of significant time points that will be needed to solve the
problem. The significant time points are thenT0 . . . TN .

We define the following propositional atoms:

• For each timeTi, for each propositional fluentF , for each
valueV , the assertion thatF has valueV atTi. We notate
this ”F [Ti] = V ”.

• For each timeTi, for each atomic action/eventE, the as-
sertion thatE occurs atTi. (Note: An action/event is
identified by the name of the action and the value of the
non-numeric parameters, as discussed above.)

• For each timeTi, for each process3 P , the assertion that
P is active atTi. (This includes the time thatP starts but
not the time when it terminates.)

We define the following numeric variables:

• The clock time of every significant time pointTi. We will
denote this “c(Ti)”.

3The encoding assumes that two instances of the same process
cannot be concurrent.



• For every timeTi, for every numeric fluentQ, the value
of Q before and afterTi. We notate these “Q[T−

i ]” and
“Q[T +

i ]” respectively.

• For each numeric fluentQ, for each action or eventA
that changesQ incrementally (i.e. executes a discrete “in-
crease” or “decrease”) the amount of increase or decrease
that an occurrence ofA makes toQ at timeTi. This is
denoted∆(A, Q, Ti).

• For each numeric fluentQ, for each durative action or
processA that changesQ continually, for each timeTi,
the net change inQ due toA betweenTi andTi+1. This
is denotedΓ(A, Q, Ti, Ti+1).

• Let A(P1 . . . Pk, Q1 . . .Qm) be an action where
P1 . . . Pk are discrete parameters andQ1 . . .Qm are
numeric parameters. Then, by the restriction mentioned
above, at any particular timeTi, for any particular values
V1 . . . Vk of the discrete parameters, there is at most
one valuation on theQi for which an action of the form
A(P1 . . . Pk, Q1 . . . Qm) begins at timeTi. The value of
each suchQj before and afterTi is a numeric variable.

We will use the following convention for labelling time-
dependent terms:

• If a complex termα over fluents or numerical parameters
that appears in a precondition or on the right side of an
assignment statement is evaluated using the valuesbefore
a discrete change is made at timeTi, we will denote this
evaluation asα[T−

i ]. That is, it is evelauted with the val-
ues of propositional fluents fromTi−1 and the values of
numeric fluents from beforeTi.

• If a complex termα over fluents or numerical parameters
that appears in a precondition or effect is evaluatedafter
a discrete change is made at timeTi, we will denote this
evaluation asα[T +

i ]. That is, it is evaluated using the
values of propositional fluents fromTi and the value of
numeric fluents from afterTi.

A domain definition then gives rise to the following kinds
of constraints:

1. Atomic actions
1.1: Effects:
1.1.1: If an effect of actionA is to assign termα to discrete
or interval fluentF , then add the constraint

active(A, Ti) ⇒ F [Ti] = α[T−
i ].

1.1.2: If an effect of actionA is to assign termα to numeric
fluentF , then add the constraint

active(A, Ti) ⇒ F [T +

i ] = α[T−
i ].

1.1.3: If an effect of actionA is to increase numeric fluent
Q by the termα, then add the constraint

active(A, Ti) ⇒ ∆[A, Q, Ti] = α[T−
i ].

¬active(A, Ti) ⇒ ∆[A, Q, Ti] = 0.
1.1.4: LetA1 . . . Ak be all the action/events that can change
numeric fluentQ incrementally. LetE1 . . . Ep be all the
action/events that can assign toQ. Add the constraints:

¬active(E1, Ti) ∧ . . .∧ ¬active(Ep, Ti) ⇒
Q[T +

i ] = Q[T−
i ] +

∑
j ∆[Aj , Q, Ti].

(Note that the terms in this sum can be determined stati-
cally.)
1.1.5: Conditional effects: If an effect of one of the above
types is conditional on expressionβ then addβ[T−

i ] as a
conjunct on the left side of the above implication.
1.2: Preconditions: If actionA has preconditionsβ, then
add the constraint: active(A, Ti) ⇒ β[T−

i ].
1.3: Mutual exclusion: If actionA is mutually exclusive
(mutex) with action or eventE then add the constraint

active(A, Ti) ⇒¬active(E, Ti).
The rules for mutual exclusion are complex, but statically
determined (Fox & Long 2003; Shin 2004).

2. Events
2.1: Effects: Same as for atomic actions.
2.2: Preconditions: Letβ be the preconditions of eventE.
Add the constraint: active(E, Ti) ⇔ β[T−

i ]
2.3: Immediate occurrence of events. Letβ be the precon-
ditions of eventE. Add the constraint:

β[T +

i ] ⇒ c(Ti+1) = c(Ti).
PDDL+ requires an event to have at least one numerical
constraint in its preconditions. This constraint ensures that
the event is triggered with no time slip by discrete changes
on numeric fluents.

3. Processes
3.1: Effects.
3.1.1: For each processP , for each quantityQ influenced
by P , let Φ be the influence ofP on the derivative ofQ.
Add the constraints

active(P, Ti) ⇒ Γ(P, Q, Ti, Ti+1) = Φ·(c(Ti+1)−c(Ti)).
¬active(P, Ti) ⇒ Γ(P, Q, Ti, Ti+1) = 0.

3.1.2: For each quantityQ, let P1 . . . Pm be the processes
that potentially affectQ. Add the constraint

Q[T−
i+1

] = Q[T +

i ] +
∑

j Γ(Pj , Q, Ti, Ti+1).
3.2: Preconditions: Letβ be the preconditions for process
P . Add the constraint

active(P, Ti) ⇔ β[T−
i ] ∨ β[T +

i ] .
A process can be triggered either by continuous changes or
by discrete changes.

4. Frame Axioms
4.1: Propositional fluents: For any fluentF let A1 . . . Ak be
the actions and events that potentially changeF . For each
timeTi, for each valueV of F , add the constraint
F [Ti−1] = V ∧ ¬active(A1, Ti) ∧ . . .∧ ¬active(Ak, Ti) ⇒
F [Ti] = V .
4.2: Numerical fluents: No additional frame axioms are
needed. If no processes that changeF are continuing
betweenTi and Ti+1, then all the terms in the sum in
equation 3.1.2 will be 0, so the equation will state that the
quantity does not change. Likewise, if no actions or events
occur that changeF at timeTi, then all the terms in the sum
in equation 1.1.3 will be 0.

5. Order on Significant Time-Points
For eachTi, add the constraintc(Ti+1) ≥ c(Ti).

6. Zero crossings



One last type of constraint is trickier. This has to do with an
event or process being triggered or terminated by a continu-
ously changing numerical fluent attaining a particular value.
Suppose that process P1 is active between timesTa andTb

and is steadily increasing the value of fluent Q; that process
P2 will be triggered when Q reaches value V; and that this
transition will occur at a timeTx betweenTa andTb. Sup-
pose, further, that in the absence of P2, no significant change
would occur betweenTa andTb, so they would be consec-
utive significant time points. The problem is, how do we
force the system of constraints to recognize the time point
Tx? That is, how can we prevent the system from accepting
a solution in whichTa andTb are consecutive time points
and process P2 starts at timeTb? (Worse yet, consider a case
where P2 is only triggered if Q is between V1 and V2; at
time Ta Q is less than V1 and at timeTb Q is greater than
V2. Then the system of constraints will discover that P2 is
not triggered at timeTa and not triggered at timeTb and will
conclude that it never occurs at all.)

The same thing can happen, in the reverse direction, with
the termination of processes; we must make sure that they
stop as soon as their continuation condition becomes false.

The solution rests on the fact that all numeric conditions
are Boolean combinations of linear constraints, and that,
within our domains, any numeric parameter that changes
continuously is a linear function of time. Therefore, we can
proceed as follows. First, we put every such condition that
has to be checked over an interval into disjunctive normal
form; that is, we express it as the disjunction of a collection
of conjuncts. Further, we may assume that every numeri-
cal constraint has the formQ(t) ≥ 0 whereQ(t) is a linear
function of the numerical variables and of timet. Now, con-
sider any such constraintF1∧. . .∧Fk∧Q1 ≥ 0∧. . .∧Qm ≥
0, where theFi are propositional expressions and theQi are
linear functions. The values of theFi do not change between
two consecutive significant time points. (TheFi will include
conditions on the activity of processes and durative actions
that affect the numeric quantities involved.) Depending on
the context of the condition, we either have a case (such as
the condition of an active process) where the conjunct is true
at Ti and we are interested in the first time when any of the
numeric conjuncts becomes false; or a case (such as the pre-
condition of an event) when the conjunct is false atTi and
we are interested in the time when the last remaining nu-
meric conjunct becomes true. Let us consider the second
case; the first case is essentially a dual construction. Note
that, at the time whenQj ≥ 0 becomes true,Qj = 0 by
continuity. Thus the time whenQj = 0 is no earlier than
Ti+1; thusQj [T

−
i+1

] ≤ 0. We therefore state the following
constraints: For each significant time pointTi, for each such
conjunction, for each conjunctQj, assert
[∧pFp[Ti]] ∧ Qj [T

+

i ] < 0 ∧ [∧p6=jQp[T
−
i+1

] ≥ 0]⇒

Qj [T
−
i+1

] ≤ 0.
This is just a continuity constraint overQj of a form fa-

miliar from qualitative process theory (Forbus 1984); how-
ever, we are applying it to the complex termsQj and re-
stricting its application to those cases where it might makea
difference in terms of triggering an event or process.

The effect of these constraint is, essentially, to generate
the necessary intermediate time points by a sort of proof by
contradiction, but a logic-based system such as TM-LPSAT
has no trouble with proof by contradiction.

Experimental Results4

Related Work
Obviously, TM-LPSAT is based on LPSAT (Wolfman &
Weld 1999). The LPSAT planner both developed the con-
straint engine that we have used, and applied it to the metric
planning in discrete time. The encoding of discrete changes
on numeric fluents adopted in TM-LPSAT is almost the
same as their encoding.

Among a number of early partial-order planners dealing
with continuous changes to a limited extent, ZENO (Pen-
berthy & Weld 1994) permitted a very general plan speci-
fication language, though its models of concurrency and of
processes were less general than TM-LPSAT. Also, it was
extremely slow; (Wolfman & Weld 2000) reports that ZENO
was unable to solve even the simplest of the logistic prob-
lems that were used to test LPSAT.

McDermott (McDermott 2003) has extended his
estimated-regression planner, Optop, to deal with processes
and continuous change. Unlike TM-LPSAT, his planner
is not complete (arguably an advantage, of course). It
finds zero-crossings using binary search, so presumably it
could easily be extended to non-linear functions; however,
the current implementation has the same restriction as
TM-LPSAT to linear functions with constant coefficients.

The best known study of processes in the AI literature is
QP theory (Forbus 1984), which initiated a large body of
research on physical reasoning with processes. This is at
the extreme opposite end in terms of the language of quan-
tities used; effects of processes are characterized purelyin
qualitative terms. A number of important ideas developed
in this line of research have yet to be incorporated into the
planning literature, such as indirect influences. Davis (Davis
1992) gives a logical analysis of QP theory.

Conclusions and Future Work
As far as we know, TM-LPSAT is the first SAT-based plan-
ner that can reason about exogenous events and autonomous
processes that cause continuous changes. It generates a par-
allel plan dealing with concurrent continuous and discrete
changes. Preliminary experimentation on toy domains is
reasonably encouraging this can be an effective framework
for planning in continuous time over a wide range of prob-
lems.

Currently we are working on:

• Optimize both the process of compilation and the con-
straints output by compilation. The current implementa-
tion of TM-LPSAT prunes in a Graphplan style.

• Test the effectiveness of some engines other than LPSAT
in solving the kinds of constraint systems generated by

4TM-LPSAT might be compared with McDermott’s Optop;
however, Optop is not available for comparison at this point.



our compiler. MathSAT (Audemard et al. 2002) and CV-
CLite (Barrett & Berezin 2004) are both engines that can
find solutions to propositional combinations of arithmetic
constraints, so either of these could be used for this pur-
pose.

In continuing this research, we hope to:

• Adapt SAT-based planning to the plan metrics.

• Study whether our methods for dealing with continuous
change can be applied in the planning architectures based
on Graphplan (Blum & Furst 1997).

• Add spatial reasoning by allowing region-valued fluents
and motion as a process. If regions are restricted the poly-
gons or polyhedra, either fully specified, or of a speci-
fied maximum complexity, and all motions are constant-
velocity translations, then it should be possible to compile
these domains into systems of linear constraints.

Acknowledgments
We would like to thank Steven Wolfman and Daniel Weld
for making their LPSAT program available for our research.

References
Alessandro, A., Castellini, C., Giunchiglia, E., Giunchiglia,
F., and Tacchella, A. 2002. SAT-Based Decision Procedures
for Automated Reasoning: a Unifying Perspective.Journal
of Automated Reasoning, 28.
Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A., and
Sebastiani, R. 2002. A SAT Based Approach for Solving
Formulas over Boolean and Linear Mathematical Proposi-
tions. Proceedings of the 18th International Conference of
Automated Deduction (CADE-02).
Barrett, C., and Berezin, S. 2004. CVC Lite: A New Imple-
mentation of the Cooperating Validity Checker. Proceedings
of the 16th International Conference on Computer Aided
Verfication (CAV-04).
Blum, A. and Furst, M. 1997. Fast Planning through Plan-
ning Graph Analysis.Artificial Intelligence,97.
Davis, E. 1992. Axiomatizing Qualitative Process Theory.
KR-92.
Ernst, M., Millstein, T., and Weld, D. 1997. Automatic SAT-
Compilation of Planning Problems.IJCAI-97.
Forbus, K. 1984. Qualitative Process Theory.Artificial In-
telligence,24.
Fox, M., and Long, D. 2001. PDDL+ Level 5:
An Extension to PDDL2.1 for Modelling Planning Do-
mains Continuous Time-dependent Effects. Available at
http://www.dur.ac.uk/d.p.long/competition.html.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains.Journal
of Artificial Intelligence Research,20.
Kautz, H., and Selman, B, 1992. Planning as Satisfiability.
ECAI-92.
Kautz, H., McAllester, D., and Selman, B. 1996. Encoding
Plans Propositional Logic.KR-96.
Kautz, H., and Selman, B. 1996. Pushing the Envelope:
Planning, Propositional Logic and Stochastic Search.AAAI-
96.

Kautz, H., and Selman, B. 1999. Unifying SAT-based and
Graph-based Planning.IJCAI-99.
McDermott, D. 1998. PDDL - the Planning
Domain Definition Language. Available at
http://www.cs.yale.edu/homes/dvm.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition.AI Magazine, 21.
McDermott, D. 2003. Reasoning about Autonomous Pro-
cesses in an Estimated-Regression Planner.ICAPS-03.
Penberthy, J., and Weld, D. 1994. Temporal Planning with
Continuous Change.AAAI-94.
Shin, J. 2004. TM-LPSAT: Encoding Temporal Metric Plan-
ning in Continuous Time. Ph.D. Dissertation, Dept. of Com-
puter Science, New York University.
Wolfman, S., and Weld, D. 1999. The LPSAT Engine and
its application to Resource Planning.IJCAI-99.
Wolfman, S., and Weld, D. 2000. Combining Linear Pro-
gramming and Satisfiability Solving for Resource Planning.
Knowledge Engineering Review15.


