
Chapter 3

Plausible Reasoning

Talking of those who denied the truth of Christianity, he [Dr. Johnson] said, “It is

always easy to be on the negative side. If a man were to deny that there is salt on the

table, you could not reduce him to an absurdity. Come, let us try this a little further.

I deny that Canada is taken, and I can support my denial by pretty good arguments.

The French are a much more numerous people than we; and it is not likely that they

would allow us to take it. ‘But the ministry have assured us, in all the formality of the

Gazette, that it is taken.’ — Very true. But the ministry have put us to an enormous

expense by the war in America, and it is their interest to persuade us that we have got

something for our money. ‘But the fact is confirmed by thousands of men who were at

the taking of it.’ — Ay, but those men have still more interest in deceiving us. They

don’t want that you should think the French have beat them but that they have beat

the French. Now suppose you should go over and find that it is really taken, that would

only satisfy yourself; for when you come home we will not believe you. We will say, you

have been bribed. — Yet, Sir, notwithstanding all these plausible objections, we have no

doubt that Canada is really ours. Such is the weight of common testimony. How much

stronger are the evidences of the Christian religion?”

— Boswell’s Life of Johnson, July 14, 1763

The logics outlined in the previous chapter describe how rules of universal validity can be applied

to facts known with absolute certainty to deduce other facts known with absolute certainty. Unfor-

tunately, few of the rules that we use in everyday life are universally true, and few, if any, of our

beliefs are completely certain to the degree that we cannot imagine them being overthrown given

sufficient contrary evidence. (Possible candidates for certain belief include mathematical theorems,

statements true by definition, and our knowledge of our own current mental state.) Therefore, de-

duction does not adequately characterize commonsense inference; we need also a description of how

plausible, provisional conclusion may be drawn from uncertain or partial evidence.

A great variety of issues arise in the study of plausible inference. There are many different

functions that a theory of plausible inference may serve; there are many types of complications that

it involves. The problems to be addressed, the centrality of the problems that are addressed, and

the interrelations between problems vary widely from one theory to the next. Below, we enumerate
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some prominent issues in plausible inference. The items on the list are not intended to be disjoint,

independent, or exhaustive.

Representing degree of belief. I am entirely certain that there is train service between New York

and New Haven, because I have taken this train dozens of times. I would guess that there is train

service between Portland, Oregon and Seattle, Washington, because they are major cities fairly close

together. It would be useful to be able to represent the difference in my strength of belief in these

two statements, reflected in the phrases “entirely certain” and “would guess”.

Evaluating the strength of arguments. I would guess that there is probably train service between

Portland and Seattle, because they are large cities close together. This is a fairly weak argument.

If I called train information, and they told me that there was no train, then that would stronger

evidence, and I would take that argument as overriding the first. This evidence could be counteracted

in various ways; for example, if I called the same information number, and was told that there was

no train service between New York and New Haven, which I know to be false, then I would lose

faith in the train information, and be in a state of doubt about whether there was a train. If I went

to the Portland station and took the train to Seattle, then that would be overwhelming evidence

that there was such a train; it would take very powerful counter-evidence, which would explain how

I was deceived, to shake my faith then. We would like our theory to provide a calculus in which we

can calculate and compare the strengths of such arguments.

Applying rules of general but not universal validity. Standard logic justifies the use of universally

quantified rules; rules that are always true without exception. Much commonsense inference relies

on applying default rules that hold in general but not always. For instance, in the above example,

we use a rule like, “If two cities are large and close together, then they are likely to be connected

by train.” In reasoning that I can call my wife from the office, I use rules like, “My phone generally

works,” and “My wife is generally home at six o’clock.” These rules sometimes fail, but they are

usually valid.

Avoiding the enumeration of all the conditions on a rule. It often happens that a plausible

commonsense rule, when examined closely, has an almost unlimited number of possible types of

exceptions. The problem of dealing with all these potential exceptions is known as the qualification

problem. For example, a rule like, “To find out how my stocks are doing, I can buy a newspaper

at the news stand and read it,” should really read, “To find out how my stocks are doing, I can

buy a paper at the news stand and read it, as long as the newspaper is in English, and I can find

some light, and no lunatic passerby tears the newspaper from my hands, and the newspaper is not

a fake distributed so as to spread disinformation, and I don’t go blind or mad, and the editor of

the newspaper has not decided to stop printing the stock prices, and ...” It would probably be

impossible to state all the necessary conditions; it would certainly be impossible to verify them each

time you wanted to read a newspaper. What you would like is to state the rule, “To find out how

my stock are doing, I can buy and read a newspaper, unless something strange happens,” where the

“unless” clause is not to be verified unless there is substantial reason to worry about some particular

anomaly.

Inference from the absence of information: It is often reasonable to infer that a statement φ is

false from the fact that one does not know φ to be true, or from the fact that it is not stated to be

true in a problem statement. Such an inference can take a number of forms:
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a. The statement φ may be unlikely given other facts that I know. For example, if I hear of an

animal or infer the existence of one, and I do not know that it is an albino, I am probably safe in

assuming that it is not one, since albinism is a rare condition.

b. I may have reason to believe that, if φ were true, I would have learned about φ. For example,

I know that Mark Twain was never Governor of New York, not because I have ever read that he

was not, nor because I know all the governors, nor because I know everything that Mark Twain ever

did, but just because I may safely presume that I would have heard about it if he had been. This is

called an auto-epistemic inference [Moore, 1985].

c. If another person is communicating facts to me, it may be a convention that, if φ were true,

he should have communicated it. For example, if I find the statement “There are more than half a

million people in Boston,” in an article, I am probably safe in concluding that there are fewer than a

million people, since otherwise the author of the article should have written “More than a million.”

Such conventions are known as Gricean conditions [Grice, 1957]

Limiting the extent of inference. Many intuitively appealing sets of axioms have the property

that the first few inferences all seem to be reasonable and to have reasonable conclusions, but that,

as the inferences get further and further from the starting axioms, the conclusions seem less and

less sensible, and they eventually end up in pure nonsense. The “Sorites” paradox has this form:

If you have a heap of sand then you will still have a heap of sand after taking away one grain;

hence, by induction, if you take away all the sand, you still have a heap. No single application of

the rule is very objectionable, but too many together lead to trouble. The “Consequential Closure”

problem (section 8.2) is similar: It is often useful to postulate that, if a person knows that p is

true and he knows that p implies q, then he knows q. Certainly it would be strange to encounter

a man who knew that Socrates was a man and that all men are mortal but really did not know

that Socrates was mortal. Unfortunately, if we accept the axiom, then we can show that everyone

knows all mathematical theorems, since they can be proven in this way one step at a time from the

axioms. Again, no single application of the rule is troublesome. A way around these problems is to

cast them as plausible rather than certain inferences, and to construct a theory in which chaining

plausible inferences together leads to rapidly less plausible conclusions.

Inference using vague concepts. Inferences that involve reasoning near the boundaries of a vague

concept are often uncertain. For instance, given that a man is tall, it is a safe inference that he is

more than four feet tall, but it is a questionable inference that he is more than six feet tall. The

theory of fuzzy logic [Zadeh, 1987] addresses such issues.

Finding expected utility. Often, we are faced with choosing between actions whose consequences

are uncertain. In such a case, we would like to guide our actions in terms of reasonable combination

of the likelihoods of the various outcomes with their desirability. For example, we would like to be

able to reason that in Britain it is generally worthwhile carrying an umbrella while in Arizona it

is not generally worthwhile, using our knowledge of the cost of carrying the umbrella, the cost of

getting caught without it in the rain, and the likelihood of rain.

Inferring an explanation. Commonsense reasoners try to explain the reasons underlying their

observations. If I observe that the street is wet, I infer that it rained. On the presentation of other

evidence, I may adopt another explanation. For instance, if I observe that the sidewalk is not wet, I

may decide instead that the street-cleaners have been by. A distinctive characteristic of explanations
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is that generally only one explanation at a time is needed. Wet streets can be evidence either for

rain or for street-cleaners, but not for both; external evidence in favor of one, such as seeing overcast

skies or the street cleaning truck, will generally be taken as reducing the likelihood of the other,

even though they are not, in fact, incompatible. [Pearl, 1988]

Schema-Based Inference: Many useful commonsense concepts correspond to large systems of

relations that are instantiated in many separate instances in the world. For example, the concept

of a house involves both physical relationships between many different physical components (walls,

windows, floors, doors ...) and functional relations, such as being inhabited. A visit to the doctor

involves a structure of events and scenes (waiting in the waiting room, seeing the nurse, . . . ) Such

concepts are called schemas or frames. A schema is represented as a collection of slots, which are

characteristic variables, and the relations on these slots. The entity corresponding to a slot in an

instantiation of a schema is called the filler of the slot. Fillers may be atomic entities or they may

themselves be frames.

There are at least four different kinds of inferences involved in the use of a schema (called schema

application):

a. Schema identification: From finding a number of the fillers of slots satisfying appropriate

relations and properties, infer the presence of the frame. For example, from seeing an outer wall,

windows, and roof in their customary arrangement, infer that these are part of a house. From seeing

a man waiting in a doctor’s waiting room, infer that he is a patient waiting to see the doctor.

b. Slot prediction: Predict that the instance of the schema contains fillers of the slots. For

example, predict that there is a kitchen in the house; predict that the patient at the doctor’s office

will be asked to take off his clothes.

c. Filler identification: Identify a real-world entity as a filler of a slot. For example, identify the

real kitchen as filling the “kitchen” slot; identify a particular act of writing a check as filling the

“pay doctor” slot.

d. Relation prediction: Predict that the relations defined on the slots will hold on the specific

fillers. For example, predict that the walls of the house support the roof; predict that the patient’s

taking off his clothes will come after he has been brought to an inner room.

In general, these inferences are plausible rather than certain inferences. An office building may

look like a house from the outside; a house may lack a kitchen; a patient may write any number of

other checks while at the doctor’s; the roof of a house may be supported by some structure other

than the walls. These are default inferences, generally valid but not always.

Analogy. If A is similar to B in some ways then it may be reasonable to assume that it is similar

in other related ways as well. For example, if you meet a man who pronounces the words “car”,

“idea” and “fear” in the same way as your next-door neighbor, you may assume that he will also

have the same pronunciation of “tire”.

Inferring a general rule from examples. People are always on the lookout for general rules that

encapsulate their observations. If I get sick to my stomach after eating a Brazil nut for the first time,

I might construct the general rule, “Brazil nuts do not agree with me.” If I meet four graduates

of Pretentious U., and all four are unbearable, I might construct the general rule, “All graduates
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of Pretentious U. are unbearable.” No such inferences are sound; they can be overthrown either

by bringing a counter-example (an experience of eating a Brazil nut without trouble; a charming

graduate) or bringing a better alternative explanation. For example, if I observe that everyone else

I know also had stomach trouble this week, whether or not they ate the nut, I may conclude that

the trouble was due to a contagious stomach disease.

AI researchers and logicians have constructed a number of theories that address the above is-

sues. Section 3.1 discusses various non-monotonic logics, including default logic and circumscription.

Section 3.3 discusses probability theory. Analogy and generalization are not discussed here.

In subsequent chapters of this book, we will not, in fact, use any of these formal theories. Rather,

on the rather rare occasions where we discuss plausible inference, we will either describe a narrow

domain-specific inference rule, or we will use a bogus notation, “plausible(φ, ψ)”, meaning, “Given

φ, it is a plausible inference that φ is true, in the absence of contradictory evidence,” and we will

leave it open how this rule can, in fact, be reasonably defined and applied.

3.1 Non-monotonic Logic

3.1.1 Non-monotonicity

A major difference — arguably, the defining difference — between sound deductive inference and

plausible inference is monotonicity. Deductive inference is monotonic in the following sense: If a

sentence φ is a valid conclusion from a set of sentences Γ, and Γ is a subset of ∆, then φ is a

valid conclusion from ∆. Symbolically, if Γ ⊆ ∆ and Γ⊢φ then ∆⊢φ; if Γ|=φ then ∆|=φ. Plausible

inference does not have this property; inferences are made provisionally, and they may be withdrawn

if more evidence contravening them comes along.

(The statement is sometimes made that classical probability theory, such as we will discuss in

section 3.3, is a monotonic theory. This is true at the meta-level; the statement, “Given Γ, φ has

probability x,” does not change its truth. But, by the same token, the statements of non-monotonic

logic are monotonic at the meta-level; the statement “Given Γ, φ is a plausible inference,” does not

changes its truth. At the object level, probability theory is non-monotonic. The statement φ may

become more or less likely as increasing evidence is accumulated.)

This non-monotonicity has profound consequences for theories of plausible inference. Monotonic-

ity is deeply built into standard logic, both in the syntactic concept of a proof, and in the semantic

concept of semantic consequence; a theory of plausible inference must therefore alter or ignore these

basic concepts. In standard systems of proofs, the validity of a proof step depends only on partic-

ular steps being earlier in the proof or in the set of hypotheses. Adding additional axioms to the

hypothesis set cannot invalidate a proof step. Therefore, a proof of statement φ from axioms Γ is

also a proof of φ from any ∆ containing Γ. The axioms of Γ are also axioms of ∆, and any inferences

valid in proofs from Γ is also valid in proofs from ∆. In non-monotonic theories, an inference may

require the absence as well as the presence of information; it may therefore be valid in Γ and invalid

in ∆. Thus, an inference may involve the entire structure of the theory as a whole, not just some

particular set of axioms in the theory.
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Similarly, in the standard concept of semantic consequence, φ follows from Γ (Γ|=φ) just if every

model M that satisfies Γ also satisfies φ. This definition gives us the monotonicity property. Suppose

that Γ|=φ and that ∆ ⊃ Γ. By the definition of consequence, if M is a model satisfying Γ, then

M satisfies φ. Clearly, any model that satisfies ∆ must also satisfy Γ, since Γ is a subset of ∆.

Therefore any model satisfying ∆ also satisfies φ, which is our definition of ∆|=φ. Therefore to

describe plausible inference in terms of models, we will either have to change the definition of a

model satisfying a statement, or our definition of semantic consequence, or both.

The non-monotonicity of plausible inference invalidates many types of inference familiar from

ordinary logic; one must be careful about applying one’s logical intuitions. For example, in deductive

logic, if r follows from q and q follows from p then r follows from p. In plausible inference, this does

not hold. Let p be the sentence “John is a naturalized U.S. citizen,” let q be the sentence “John is

a U.S. citizen,” and r is the sentence, “John was born in the U.S.” Then q is a plausible (indeed, a

necessary) inference from p, and r is a plausible inference from q, but r is not a plausible inference

from p. Similarly, in standard logic, if it possible to infer a statement “α(γ)” from a hypothesis

set that contains “β(γ)” but no other mention of the constant symbol γ, then it is possible to infer

“∀X β(X)⇒α(X).” In plausible inference this close connection between universal generalization and

reasoning from partial knowledge does not hold. It may be plausible to infer “John was born in the

U.S.” from “John is a U.S. citizen,” but that does not legitimate the inference, “Every U.S. citizen

was born in the U.S.”

A non-monotonic logic is an extension of standard logic that supports some types of plausible

inferences. Non-monotonic logics address the problems of the non-monotonicity of plausible infer-

ence, and of inference from the absence of information; they do not, typically, allow the expression

of the degree of belief, the comparison of strengths of arguments, or the weakening of an argument

under many inference steps.

3.1.2 Domain-Independent Rules

Domain Closure

One basic type of inference often used in problem solving is to assume that the entities specified

in the problem are the only entities, or the only entities of a given sort, that are relevant to its

solution. For example, the initial conditions of a blocks world problem might be given by specifying

that block A is on block B and blocks B and C are on the table. The problem solver should then

assume that blocks A, B, and C are the only blocks relevant to the problem, and that, in particular,

there are no other blocks on block A. The missionaries and cannibals problem may specify, “There

are three missionaries, three cannibals, and a boat;” to address the problem one must assume that

there are no other people, and no other ways to cross the river.

The ultimate justification of this inference depends on the source of the information. If the

problem was given as a natural language communication, then it is an application of a Gricean rule:

The person formulating the problem should give all the relevant information, so if there were another

block, he should have mentioned it. If the table were seen, then it can be inferred that any other

blocks would have been seen as well. However, in all these cases, the inference takes the same form,

and can be handled in the same way.
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This kind of inference is called the domain closure assumption. It can be formalized as follows:

Given a theory T , assume that the only objects that exist are those named by ground terms in

the language of T ; that is, constant symbols and the application of function symbols to constant

symbols. Thus, in a blocks world problem where the only constant symbols were “table”, “a”, “b”,

and “c”, and where there are no function symbols, the domain closure assumption specifies that

these were the only objects; i.e.

∀X X = a ∨ X = b ∨ X = c ∨ X = table

In a problem in family relations, if the constants are “betty” and “mordred” and the function

symbols are “father of(X)”, “mother of(X)”, and “common ancestor(X,Y )”, then the assumption

specifies that the only objects are made by composing these functions with these constants, in terms

such as “betty”, “father of(mordred)”,

“common ancestor(mother of(betty), mordred)”, and so on. This assumption cannot be written as

a first-order formula.

The domain closure assumption is non-monotonic, since if T is augmented with axioms that use

new constant or function symbols, then the assumption becomes weakened to allow terms made

from these.

The assumption is often applied only to entities of certain sorts. For instance, in planning

problems, it might be reasonable to suppose that all the relevant physical objects have been explicitly

named, but not that all instants of time or points of space have been named. In this case, the domain

closure assumption could be applied only to physical objects.

The assumption depends only on the symbols used in T , not on the content of the theory T . In

fact, the assumption yields powerful consequences even when applied to a vacuous theory, such as

one with the single axiom “f(a) = f(a)”. Applying the domain closure assumption to this theory has

as a consequence the assumption that the only entities are a, f(a), f(f(a)) and so on.

If there are no function symbols in the language and only finitely many constant symbols “a”,

“b”, and “c”, then the domain closure assumption is completely stated in the axiom

∀X X = a ∨ X = b ∨ X = c

Thus, a proof of φ from T with the domain closure assumption can take the following form:

1. Verify that no function symbols appear in T and that the only constant symbols are “a”, “b”,

and “c”. Increment the theory T by adding the axiom

∀X X = a ∨ X = b ∨ X = c

2. Verify that there is a proof of the standard sort of φ from the augmented version of T .

Step (1) is not a proof step of an ordinary kind. It is a non-monotonic operation; if additional

axioms are added to the starting version of T , the domain closure axiom may be weakened by

allowing the possibility of other constant values.

For example, let T contain the following axioms:
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1. on(a,b).

2. on(b,table)

3. on(c,table)

4. on(X,Y ) ∧ Y 6= Z ⇒ ¬on(X,Z). (X can only be on one object at a time.)

5. ¬on(table,X). (The table is not on anything.)

6. clear(X) ⇔ ∀Y ¬on(Y,X) (An object is clear if nothing is on it.)

7. distinct(a,b,c,table).

Monotonically, T does not support the inference “clear(a)”, since these axioms do not rule out

the possibility that there is some other block d on a. However, we can derive this result through the

domain closure inference. Since the only constant symbols in T are “a”, “b”, “c”, and “table”, and

since there are no function symbols, the domain closure axiom allows us to add the axiom

DC. ∀X X = a ∨ X = b ∨ X = c ∨ X = table

We can then prove the desired result as follows:

From [1], [4], and [7] infer

8. ¬on(a,a)

From [2], [4], and [7] infer

9. ¬on(b,a)

From [3], [4], and [7] infer

10. ¬on(c,a)

From [5] infer

11. ¬on(table,a)

From [DC], [8], [9], [10], and [11], infer

12. ∀X ¬on(X,a)

From [12] and [6] infer

13. clear(a).
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If there are function symbols in the language, then the effect of the domain closure assumption

cannot be expressed in any first-order axiom, or, indeed, in any recursive axiom schema. (Proof:

Adding the domain closure assumption to the standard axioms of the integers is sufficient to rule out

non-standard models of those axioms, and restrict the model to the “standard” integers. But there

is no complete recursive axiomatization of the integers.) Thus, there is no complete categorization

of proof using the domain closure assumption. We can, however, categorize various limited classes

of proofs. For example, suppose that the constant symbols of T are “a” and “b”, and the function

symbols are “f” and “g”. Then, clearly, the domain closure assumption entails the following axiom:

∀X X = a ∨ X = b ∨ ∃Y X = f(Y ) ∨ X = g(Y )

Thus, any proof from T together with the above axiom is a valid proof from T with the domain

closure assumption.

If the starting theory has at least one constant symbol, and it is fully Skolemized — that is,

all existentially quantified variables are replaced by Skolem constants or terms — then the set of

terms is the Herbrand universe of the theory, and the domain closure assumption is guaranteed to

be consistent. If the theory contains sentences with existential quantifiers, then the domain closure

assumption may not be consistent.

For example, consider the theory T with the following axioms:

A. ∃Xp(X)

B. ¬p(a)

Since the only constant symbol is “a” and there are no function symbols, the domain closure

assumption is

C. ∀XX = a

However, [C] is obviously inconsistent with [A] and [B].

Closed World Assumption

In the domain closure assumption, we postulate that all the entities relevant to a given problem

are mentioned in the problem statement. Similarly, it is often reasonable to assume that all the

significant relations between entities in the problem are given in the problem statement. If we

identify a significant relation as one that has a predicate symbol, and a significant entity as one

named by a ground term, then we can formalize this assumption as follows: Let T be a theory,

and let φ be a ground atomic formula – that is, a formula without variables or boolean connectives,

including negation. If φ cannot be inferred from T , then non-monotonically infer ¬φ.

For example, using the closed world assumption in the above blocks world problem enables us

to simplify the starting theory by eliminating several axioms. Let T have the following axioms:

1. on(a,b)
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2. on(b,table)

3. on(c,table)

We now apply the closed world assumption to T . Since “on(a,a)” is clearly not a conse-

quence of T , by the closed world assumption, we can add the axiom “¬on(a,a)”. Similarly, since

“on(b,a)”, “on(c,a)” and “on(table,a)” are not consequences of T , we can add the axioms “¬on(b,a)”,

“¬on(c,a)” and “¬on(table,a)”. We now make the domain closure assumption

DC. ∀X X = a ∨ X = b ∨ X = c ∨ X = table

From these axioms, we can infer directly that nothing is on block a.

14. ∀X ¬on(X, a)

This is not quite the conclusion we arrived at before. We would like use 14 to infer “clear(a)”

from the definition of “clear”. Here, however, there is a difficulty. Let T2 be a theory containing [1],

[2], and [3] as above and also axiom [6] defining clear:

6. clear(X) ⇔ ∀Y ¬on(Y,X)

On the one hand, the closed world assumption and domain closure justify [14] in the same way as

before and by combining [14] with [6] we can infer “clear(a)”. However, we can also apply the closed

world assumption to T2 in a different way: Since T2 certainly does not by itself imply “clear(a)”,

therefore the closed world assumption justifies the inference “¬clear(a)”.

In short, the closed world assumption, applied across the board, is inconsistent for the theory

T2. The solution, therefore, is not to apply it across the board, but to specify that it applies to some

predicates but not others. In this example, we would wish to apply it to the predicate “on(X,Y )”,

but not to the predicate “clear(X)”. In reasoning about people at a party, it might be reasonable

to apply the closed world assumption to predicates that describe who is at the party, but not to

predicates that describe their personal relations.

The closed world assumption is non-computable in the general case, since the statement “p(a)

cannot be derived from T ” is non-computable.

The closed world assumption restricted to the equality predicate is known as the (non-monotonic)

unique names assumption. The unique names assumption asserts that two distinct terms t1 and t2
may be assumed to be unequal unless they are demonstrably equal. In our blocks world example,

the unique names assumption is equivalent to the axiom “distinct(a,b,c,table).”

It is suggestive of the power of these non-monotonic inference rules that, if we start with the

constant symbol 0 and the function symbol s(X) for the successor function, and no proper axioms

at all, and we apply the domain closure assumption and the unique names assumption, the result is

the complete theory of the integers. The unique names assumption asserts that the terms 0, s(0),

s(s(0)), and so on, are all distinct. The domain closure assumption asserts that these terms comprise

all the integers.
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All domain-independent types of non-monotonic inference depend strongly on particularly syn-

tactic features of the language used; if the language is changed to some logically equivalent form,

the non-monotonic inferences may all be changed. Domain closure depends on the use of particu-

lar constant and function symbols. For example, we may formulate a blocks world theory, either

using the predicate “on(X,Y )” or using the predicate “off(X,Y )”. The content of the two theories

will be exactly equivalent. However, the effect of applying the closed world assumption will be

exactly opposite. Similarly, we may formulate a theory of families, either using a function symbol

“father of(X)” or with a predicate symbol “father(Y,X)”. The content of the two theories will be

equivalent, if, in the latter case, we include an axiom stating that each person has exactly one father:

∀X∃1
Y father(Y,X). However, the domain closure assumption can be effectively applied only to the

first, while the closed world assumption can be applied only to the second.

It should be noted that it is possible to have an algorithm whose behavior depends on the absence

of some data structure but which can nonetheless be justified purely in terms of a monotonic logic.

It all depends on the conventions for interpreting the data structure in terms of the logic. For

example, consider an algorithm that computes least-cost paths in a weighted graph. The algorithm

is non-monotonic with respect to the data structure; if you add additional edges of lower cost,

the algorithm will arrive at a different answer. Whether this algorithm represents non-monotonic

inference depends on the meaning of the graph, and the meaning of the answer. If the graph is

defined as meaning just that the edges it records exist, and the answer is intented to be the exact

cost of the least cost path, then the algorithm is performing the non-monotonic inference that other

edges do not exist. If, however, the graph is defined as containing all relevant edges — that is,

if the input would be considered incorrect, not merely incomplete, if there turned out to be other

edges — then the inferences of the algorithm are entirely sound. The data structure has merely

encoded the completeness statement, “No other edges exist besides these,” in an implicit rather

than explicit form. The inference is truly non-monotonic only if there are circumstances under

which this reading of the data structure can be overruled. Likewise, if the answer is taken to be the

cost of an inexpensive path, rather than necessarily the cost of the least expensive path, then the

inference is monotonic, however the graph is interpreted.

3.1.3 Circumscription

Plausible inference often has the form “Assume that as few objects as possible have a particular

property.” The closed-world assumption, discussed above, is a simple form of this inference; we

assume that the only atomic ground formulas that are true are those that can be proven within

the theory. However, we often want to apply this assumption to non-ground formulas as well. For

example, the default assumption, “Assume that eggs are fresh,” can be phrased as, “Assume that

the class of rotten eggs is as small as possible.” Given this default assumption, we would like

to be able to assume that all the eggs in the box we are carrying are fresh. However, unless we

have a constant symbol for each egg in the box, the closed world assumption will not support this

conclusion. Instead, we can use the method of circumscription.

The rotten eggs example above turns out to involve some subtleties, so we will start with a simpler

example. Let us suppose that we know that kangaroos and opossums are marsupials, and we know

that very few animals are marsupials. We know that cats are neither kangaroos nor opossums. We
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would like to infer by default that cats are presumably not marsupials.

Our basic theory T consists of the following axioms:

1. ∀X kangaroo(X) ⇒ marsupial(X)

2. ∀X opossum(X) ⇒ marsupial(X)

3. ∀X cat(X) ⇒ ¬(kangaroo(X) ∨ opossum(X))

We want to force the set of marsupials to be as small as possible, consistent with the theory T .

We can formulate this requirement as follows: Let α(X) be any possible property of X which would

satisfy the axioms on “marsupial” in T . Then the real marsupials should not be a proper superset

of α; otherwise, we could reduce the class of marsupials to α, and still satisfy the axioms of T . That

is to say, if α satisfies the conditions

∀X kangaroo(X) ⇒ α(X)

∀X opossum(X) ⇒ α(X)

then it cannot be the case that all α’s are marsupials and that some marsupials are not α’s. We can

write this rule as the axiom schema

4. [∀X kangaroo(X) ⇒ α(X) ∧ ∀X opossum(X) ⇒ α(X) ] ⇒

¬[∀Xα(X)⇒ marsupial(X) ∧ ∃X marsupial(X) ∧ ¬α(X) ]

or, equivalently,

5. [∀X kangaroo(X) ⇒ α(X) ∧

∀X opossum(X) ⇒ α(X) ∧

∀Xα(X)⇒ marsupial(X) ] ⇒

∀X marsupial(X) ⇒α(X)

The above statement is true of every property α. In a second order logic, we can quantify over

all α, and state the axiom

∀α [ ∀X kangaroo(X) ⇒ α(X) ∧

∀X opossum(X) ⇒ α(X) ∧

∀Xα(X)⇒ marsupial(X) ] ⇒

∀X marsupial(X) ⇒α(X)

In a first order logic, we can assert formula (5) as an axiom schema, applying to each open formula

α. Since we have not discussed higher-order logic, we will take this approach. (Using higher-order

logic has some technical advantages. [Genesereth and Nilsson, 1987].)

Formula 5, above, is known as the circumscriptive axiom schema. The circumscription of theory

T in the predicate “marsupial”, written CIRC[T ;marsupial]) is the theory T with the circumscriptive

axiom schema added.
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We can easily show that the only marsupials are kangaroos or opossums in the circumscribed

theory. Pick α(X) to be the formula “kangaroo(X) ∨ opossum(X)”. Substituting this formula for

α in the axiom schema gives the axiom

6. [∀X kangaroo(X) ⇒ [kangaroo(X) ∨ opossum(X)] ∧

∀X opossum(X) ⇒ [kangaroo(X) ∨ opossum(X)] ∧

∀X [kangaroo(X) ∨ opossum(X) ] ⇒ marsupial(X) ] ⇒

∀X marsupial(X) ⇒ kangaroo(X) ∨ opossum(X)

Of the three implications in the antecedent of axiom 6, the first two are trivial, and the third is

just a restatement of axioms (i) and (ii) of T . Therefore, the antecedent of the implication is true,

which means that the consequent is also true. Thus we have the formula

7. ∀X marsupial(X) ⇒ [ kangaroo(X) ∨ opossum(X) ]

i.e. all marsupials are kangaroos or opossums. Using this and axiom (iii) of T , it follows directly

that no cats are marsupials.

We have thus shown that formula (7) above, which states that all marsupials are either kangaroos

or opossums, is a consequence of the circumscriptive axiom schema (5). In fact, (7) is equivalent to

(5); that is, if F is a theory containing T and (7), then all instances of axiom schema (5) are true in

F . (Exercise 6: Prove this.) Thus, in this case, circumscribing the theory has the effect of adding

a single first-order axiom. This is not true in all cases of circumscription, but it is true in many

important cases.

If we extend T by telling it about some other marsupials, then we change the circumscriptive

axiom. For example, let W be the theory containing axioms (1), (2), and (3) of T , together with

axiom (8), asserting that all koala bears are marsupials.

8. ∀X koala(X) ⇒ marsupial(X)

i.e. all koalas are marsupials. Then the circumscription of W in “marsupial” adds the axiom schema,

9. [ ∀X kangaroo(X) ⇒ α(X) ∧

∀X opossum(X) ⇒ α(X) ∧

∀X koala(X) ⇒ α(X) ∧

∀Xα(X)⇒ marsupial(X) ] ⇒

∀X marsupial(X) ⇒ α(X)

Substituting the formula “kangaroo(X) ∨ opossum(X) ∨ koala(X)” for α(X) in (9), we can infer

the conclusion,

10. marsupial(X) ⇔ [ kangaroo(X) ∨ opossum(X) ∨ koala(X) ]

Note that by strengthening the theory T to W, we have weakened the circumscriptive axiom

schema, and therefore have weakened the conclusions that can be drawn. We can no longer deduce

that cats are not marsupials, unless we have an additional axiom that no cats are koala bears.
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We can describe this technique formally as follows: Let T be a finite theory and let µ(X) be a

predicate symbol appearing in T . (X can be a single variable or a tuple of variables.) For any open

formula α(X), let T [µ/α] be the theory formed from T by replacing every occurrence of µ by α.

Then we define the circumscription of T in µ, CIRC[T , µ] as the theory T together with the axiom

schema

[T [µ/α] ∧ [∀X α(X)⇒µ(X)]]⇒ [ ∀X µ(X)⇒α(X) ]

where α(X) is any open formula. (In this formula, the antecedent T [µ/α] guarantees that α has all

the properties that µ must have; the antecedent ∀X α(X)⇒µ(X) guarantees that α fits within µ;

the consequent ∀X µ(X)⇒α(X) guarantees that µ fits inside α. Thus, the formula may be read, “If

α is any property that satisfies the theory T , and that fits inside µ, then α must just be µ.” Thus,

µ must be a minimal set satisfying T .)

As mentioned above, as T is strengthened, the antecedent of the circumscription axiom schema

is strengthened, and the axiom as a whole is weakened.

The original inference (7) that, if X is a marsupial then it is either a kangaroo or an opossum, can

only be used in the backwards direction, to infer that something that is known not to be a kangaroo

or opossum may be presumed not to be a marsupial. It cannot be used to deduced that something

that is known to be a marsupial should be presumed to be either a kangaroo or an opossum, for,

if the theory is extended to include other marsupials, the circumscriptive axiom will change. For

example, if we add to the theory T the statement that Pete is a marsupial, the circumscriptive

axiom will become

11. [∀X kangaroo(X) ⇒ α(X) ∧

∀X opossum(X) ⇒ α(X) ∧

α(pete) ∧

∀Xα(X)⇒ marsupial(X) ] ⇒

∀X marsupial(X) ⇒α(X)

or, equivalently,

12. ∀X marsupial(X) ⇔ [kangaroo(X) ∨ opossum(X) ∨ X = pete]

Note, also, that, in order to apply the circumscriptive axiom [5] to deduce that a given animal

is not a marsupial, it is necessary to know that it is not a kangaroo or opossum. One cannot

deduce that it is not a marsupial if one is completely ignorant about the animal. We can get around

this limitation by circumscribing over the three predicates “marsupial(X)”, “kangaroo(X)” and

“opossum(X)”. Circumscription in parallel is a straightforward extension of circumscription over a

single predicate. Consider the theory T2 containing the following axioms:

2.1. ∀X kangaroo(X) ⇒ marsupial(X)

2.2. ∀X opossum(X) ⇒ marsupial(X)

2.3. kangaroo(kanga).
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2.4. opossum(george).

We require that the extension of the predicates “marsupial”, “kangaroo”, and “opossum” be as

small as possible. To do this, we use three variable properties α, β, and γ, and require that, if α, β,

and γ satisfy the theory T2 when substituted for “marsupial”, “kangarooo”, and “opossum”, then

they cannot be strict subsets of the desired predicates. The resultant axiom schema is

2.5. [ [ ∀X β(X)⇒α(X) ] ∧ [ ∀X γ(X)⇒α(X) ] ∧ β(kanga) ∧ γ(george) ∧

[ ∀X α(X) ⇒ marsupial(X) ] ∧

[ ∀X β(X) ⇒ kangaroo(X) ] ∧

[ ∀X γ(X) ⇒ opossum(X) ] ] ⇒

[ [ ∀X marsupial(X) ⇒ α(X) ] ∧

[ ∀X kangaroo(X) ⇒ β(X) ] ∧

[ ∀X opossum(X) ⇒ γ(X) ] ]

It is easily shown (exercise 7) that the circumscribed theory, CIRC[T2; marsupial,kangaroo,opossum],

of T2 together with axiom schema (2.5) is equivalent to the single axiom (2.6).

2.6. ∀X [ marsupial(X) ⇔ X =kanga ∨ X=george ] ∧

[ kangaroo(X) ⇔ X =kanga ] ∧

[ opossum(X) ⇔ X =george ]

Let us see what happens when we apply these techniques to the fresh eggs problem. We wish

to infer that any given egg is fresh, unless they are known to be otherwise; that is, within the class

of eggs, we wish to maximize the class of those that are fresh. To apply circumscription, we must

pose the problem in terms of a predicate to be minimized. We can do this by introducing the new

predicate “rotten egg(X)”. We give an axiom stating that an egg which is not a rotten egg is fresh;

we can then achieve our goal of making as many eggs as possible fresh by minimizing the extension

of “rotten egg”. (Such a predicate is often called an “abnormality” predicate, and given a names

such as “ab(X)”)

Thus we start with a single axiom

3.1 ∀X egg(X) ∧ ¬rotten egg(X) ⇒ fresh(X)

and we circumscribe this theory in “rotten egg”. The result is the axiom schema

3.2. [ [ ∀X egg(X) ∧ ¬α(X) ⇒ fresh(X) ] ∧

[ ∀X α(X) ⇒ rotten egg(X) ] ] ⇒

∀X rotten egg(X) ⇒ α(X)

However, this circumscribed theory is equivalent to the axiom

3.3. ∀X rotten egg(X) ⇐⇒ egg(X) ∧ ¬ fresh(X)
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In other words, all that circumscription has done for us here is to restrict the extension of

“rotten egg” to eggs that are not fresh. Something has gone awry.

The problem is that our formalism treats “egg” and “fresh” symmetrically, while, in reality, we

are thinking of them in quite different ways. We can rephrase axiom (3.1) in the form

3.1a. ∀X [ egg(X) ∧ ¬fresh(X) ] ⇒ rotten egg(X)

There are three ways that we can make the extension of “rotten egg” as small as possible, while

preserving the truth of axiom (3.1a) above:

i. Disallow anything from satisfying “rotten egg(X)” unless it is an egg that is not fresh.

ii. Make the extension of “egg” as small as possible within the class of unfresh objects.

iii. Make the extension of “fresh” as large as possible within the class of eggs.

Simple circumscription, as we have seen, accomplishes only (i). In reality, what we primarily

want to accomplish is (iii). (i) is irrelevant and (ii) is misdirected. We can achieve our aim by using

circumscription with variable predicates.

In circumscription with variable predicates, we minimize the extension of one predicate (in this

case, “rotten egg”), letting certain other, specified predicates (in this case, “fresh”) range over all

possible extensions. That is, we choose a value for “rotten egg” and a value for “fresh” such that the

extension of “rotten egg” be as small as possible, subject to the constraint that the starting theory

be true.

Formally, if α and β are predicates that satisfy the given theory when substituted for “rotten egg”,

and “fresh” respectively, then the extension of α may not be a proper subset of the extension of

“rotten egg”. We state this in the axiom schema

3.4. [ [ ∀X egg(X) ∧ ¬β(X)⇒α(X) ] ∧

[ ∀X α(X) ⇒ rotten egg(X) ] ] ⇒

∀X rotten egg(X) ⇒ α(X)

It is easily shown (exercise 8) that this axiom schema is satisfied only if all eggs are fresh and none

are rotten. Thus, all the eggs in our box may assumed to be fresh. If we knew of some particular

rotten eggs, a similar circumscription would allow us to assume that the only rotten eggs in the

world were those known to be rotten.

3.1.4 Default Theory

One basic form of plausible reasoning involves the use of default inferences; inferring that an element

of a given class has properties characteristic of the class. For example — the standard example in

the field — given that Tweety is a bird and that birds can typically fly, infer provisionally that

Tweety can fly. This inference is non-monotonic, since it can be overruled by additional information

that Tweety is an ostrich, or is injured, or can’t fly.
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Reiter [1980a] describes a logic in which rules like “Birds typically can fly” can be stated as a

tentative rule of inference. This particular rule is written1 in the form

bird(X) : can fly(X)

can fly(X)

or, inline, as “bird(X) : can fly(X) / can fly(X)”. The general form of a default inference rule is

α : β

γ

The meaning of this rule is roughly, “If you believe α and you have no reason to doubt β then you

are justified in believing γ.” The formula α is called the prerequisite of the rule; β is the justification;

γ is the consequent. Frequently, default rules take the form “α : β/β”, with identical justification

and consequent. Such a rule is said to be normal ; it can be read “α’s are typically β’s” or “If α

then assume β.”

Defining the consequences of a theory containing axioms and default rules is tricky, because the

condition “no reason to doubt β” has a difficult circularity; whether one has reason to doubt β may

depend, circularly, on whether one can apply the rule in which β is a justification. For example,

consider a theory containing the two rules, “If someone speaks Turkish fluently, then assume that he

is a Turkish citizen,” and “If someone lives in the US, assume that he is a US citizen”, and the three

facts, “Kemal speaks Turkish fluently,” “Kemal lives in the US,” and “No one is both a Turkish

and an American citizen.” One way of thinking about this theory would be to deduce from the first

rule that Kemal is Turkish and use that conclusion to establish doubt of the justification “Kemal

is an American citizen” and thus block the use of the second rule. The use of the first rule is now

legitimated, since there is no reason to doubt that Kemal is Turkish. Alternatively, one can do the

reverse; use the second rule to deduce that Kemal is American and thus block the justification of

the first rule. Another possibility is to take the disjunction of these two, and conclude that Kemal is

either Turkish or American. Or perhaps the best thing under the circumstances is to abstain from

concluding anything at all about Kemal’s nationality.

In Reiter’s logic, either of the first two arguments is valid, but they cannot be combined. Each

argument gives a possible way of looking at the world, given these facts and default rules. The

view is that the proper use of a default theory T is to find one way of choosing one’s belief that

are “consistent” with T ; if there is more than one such belief set, the reasoner can choose between

them arbitrarily. Specifically, one looks for an extension E of T , a set of sentences with the following

properties: (i) E contains the sentences (not the default rules) of T . (ii) E is closed under ordinary

logical inference. (iii) E contains the conclusions of every applicable default rule in T . A default

rule is applicable if E contains its prerequisite, but does not contain the negation of any of its

justifications. (iv) Every sentence in E can be justified by a finite-length derivation, where each step

of the derivation is either an ordinary first-order inference or the application of an applicable default

rule.
1See exercise 11 for an alternative representation of the rule “Birds can typically fly” within Reiter’s theory with

some technical advantages.
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The catch here is that the definition of “applicable” depends on E itself. In formulating our

definition of an extension, therefore, we start with a set E , use that set to define applicability, and

thus a set of conclusions. E is an extension if this operation brings us back where we started.

Formally, let L be a first-order language. If S is a set of sentences in L, let Th(S) be the set of

first-order consequences of S. We define a default theory to be a pair < D,W > where W is a set

of sentences in L and where D is a set of inference rules of the form “α : Mβ/γ” where α, β, γ are

formulas in L. A default rule Φ′ is an instance of rule Φ if Φ′ is closed, and some substitution for

the variables in Φ gives Φ′.

Let < D,W > be a default theory and let E be any set of sentences in L. For any subset S ⊂ E ,

define the function concs(S,D, E) (the conclusions from S using default rules D in extension E) as

follows:

concs(S,D, E) = { γ | there exists a rule Φ′ = α : Mβ/γ

which is an instance of some rule Φ ∈ D

such that α ∈ S and ¬β 6∈ E }

Now, define the sequence E0, E1, . . . as follows

E0 = W

Ei+1 = Th(Ei) ∪ concs(Ei,D, E)

E is an extension of < D,W > if

E =

∞⋃
i=0

Ei

Examples:

A. Let D = { bird(X) : can fly(X) / can fly(X) } and

W = { bird(tweety) }.

Then there is a unique extension E = Th({ bird(tweety), can fly(tweety) }).

In this case E0 = W; E1 = Th(W) ∪ { can fly(tweety) }; E2 = E .

B. Let D = { bird(X) : can fly(X) / can fly(X) } and

W = { ostrich(ozzie),

∀X ostrich(X) ⇒ (bird(X) ∧ ¬can fly(X)) }.

This has a single extension E=Th(W).

C. Let D = { bird(X) : can fly(X) / can fly(X);

sings(X,bird song) : bird(X) / bird(X) } and

W = { sings(tweety,bird song) }.

This has a single extension E = Th(W∪ { bird(tweety), can fly(tweety) }).
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D. Let D = { speak(X,turkish) : citizen(X,turkey) / citizen(X,turkey);

lives in(X,C) : citizen(X,C) / citizen(X,C) }.

Let W = { speak(kemal,turkish),

lives in(kemal,usa),

∀X ¬(citizen(X,turkey) ∧ citizen(X,usa)) }.

This has two extensions: EA = Th(W ∪ { citizen(kemal,turkey) }) and

EB = Th(W ∪ { citizen(kemal,usa) }).

E. Let D = { :B / ¬B } and let W = ∅.

This theory has no extensions.

Proof: Let E be any set of sentences, and construct the sequence E0, E1 . . .

according to the above definition. If ¬B 6∈ E , then the justification of the default is satisfied,

so that ¬B∈ E1, and E 6= ∪Ei. If ¬B ∈ E , then the justification of the rule is denied,

and ¬B 6∈ Ei for any i, so again E 6= ∪Ei.

3.1.5 Preferred Models

As we discussed above, the monotonicity of standard logic is inherent in its semantics. A theory T

has a consequence φ if φ is true in all models satisfying T . This is an inescapably monotonic idea of

consequence, because when we increment T with a new fact ψ, we simply reduce the set of relevant

models to a subset; φ must still be true in all of them.

How can we get out of this? One approach is to say that T has consequence φ if φ is true in

most of the worlds satisfying T . Once we add a new fact ψ, we may select an atypical subset of

these models, and most of the models in this subset may not satisfy φ. This approach leads to the

possible worlds semantics for probability, which we will discuss in section 3.2.2. Another approach,

which we will study here, is to say that φ is a consequence of T if φ is true in the best models that

satisfy T . If T is augmented by a statement ψ, then the class of best models may change. φ may

be true in the best models of T ∪ {ψ}, though false in the best models of T .

Formally, we define a partial ordering M1 < M2 on models, read “M1 is preferred to M2.”

M is said to be a minimal model of theory T if M satisfies T , and no other model satisfying T is

preferred to M. If the sentence ψ is true in all minimal models of T , then ψ is called a non-monotonic

consequence of T relative to the partial ordering “<”.

For example, the default rule “Typical sonatas have three movements,” can be describing by

saying that model M1 is preferred to M2 if every sonata with three movements in M2 also has

three in M1, but not vice-versa. Now, suppose we do not know how many movements are in

Beethoven’s Opus 111. Our theory thus allows models in which it has three movements and models

in which it has other numbers of movements. The former will be preferred — to be precise, for each

model M2 in which Opus 111 has some other number of movements, there will be another model

M1 that agrees with M2 on all other sonatas but gives Opus 111 the standard three movements.

Thus, the statement “Opus 111 has three movements” is true in all minimal models of our theory;

it is a non-monotonic consequence of our theory. If we now find out that Opus 111 has only two

movements, then models where it has three movements do not satisfy our new theory; hence, the

conclusion is no longer valid.
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A number of types of non-monotonic inference can be described in terms of preferences on models.

For example, the effect of circumscription in a predicate µ can corresponds to the preference relation

M1 < M2 if the extension of µ in M1 is a proper subset of its extension in M2, and all other

predicate symbols have equal extensions.

3.2 Classical Probability Theory

The oldest and best understood formal theory of plausible reasoning is the classical theory of mathe-

matical probability. Probability theory is a quantitative theory; the probability of a statement given

a body of evidence is a real number between 0 and 1.2 The theory thus provides a straightforward

measure of strength of belief. Probability theory consists of two parts. The first part, the theory of

probability proper, asserts weak, inviolable constraints relating the probabilities of different state-

ments; for example, the probability of E ∧ F is less than or equal to probability of F . The second

part, the theory of statistical inference, gives non-monotonic suggestions for picking the actual val-

ues; for example, if there are n possibilities, and there is no reason to suppose one more likely than

another, then assign each of them a probability of 1/n.

There are several different ways to interpret probability theory. All of them use the same formulas;

they differ in what they connect probabilities to. In general, the simpler the interpretation of

probabilities, the further the theory is from anything that can be applied to plausible reasoning. In

the simplest formulation, probability is just a ratio of the measures of two sets [Kolmogorov, 1950]

[Russell, 1948]; the probability of “Brown” given “Cow” is just the number of brown cows divided by

the number of cows. In this interpretation, the axioms of probability theory are trivial consequences

of the axioms of measures on sets, and the question of deriving the initial value of probabilities

does not arise. In a more complex formulation [Mises, 1960], probabilities are based on the idea

of infinite random sequences of repeatable events. However, plausible reasoning involves reasoning

about events that occur only once; the probability that Sam has the measles, or the probability that

Clyde is grey. The only obvious sets here are singletons, namely the set of Sam and the set of Clyde,

and there is nothing repeatable about the events involved. In AI, therefore, we are obliged to use

subjective probability theory, in which probabilities are interpreted as the likelihood of particular

statements, given a body of evidence. This interpretation is much less concrete and its logical form

less clear than the other interpretations; indeed, its legitimacy has been hotly debated back and forth

over the last two hundred years (see the bibliography for references). Even in using a subjective

interpretation of probabilities, it is useful to have the frequency interpretation to refer to, since any

general formula of subjective probability can be justified in terms of frequencies, and frequencies are

a more concrete object of thought than judgements of likelihood.

We will view a theory as having two kinds of statements: unqualified statements about the real

world, such as “Clyde is an elephant,” or “95% of all elephants are grey,” and statements about

probabilities, such as “The probability that Clyde is grey is greater than the probability that he is

white,” or “The probability that Wendy is white is greater if Wendy is a seagull than if she is an

elephant.” These probabilities represent a possible judgement of the likelihood of E by an rational

2This does not mean that a program or a theory that uses probability theory must assign floating point numbers
as the probability of statements. It just means that probabilities are quantities (real numbers, in the classical theory)
which can be described in the languages of quantities discussed in chapter 4.
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agent who knows the given unqualified facts. Our definition of a “rational” agent is just one that

assigns probabilities in a way conforming to the rules given below.

Formally, we can define a probabilistic language as follows: (This is one method among many.)

Let L0 be an object language: this will be the language in which we write the object level sentences

to which we will assign probability. These object level sentences are called events.3 The unqualified

part of a theory T0 is a set of sentences in L0. We introduce two probability functions: the prior

probability of E, relative to T0, written P(E), and the conditional probability of E given F , relative

to T0, written P(E | F ). These are partial functions: P(E | F ) is always undefined if F is known

to be false, and it may be undefined if there is no relevant information whatever. (What is the

probability that Clyde is grey given the parallel postulate?) E and F , the arguments to P, are

events; the function P maps them to a real number in the interval [0,1]. We speak about these

probabilities by using them as atomic terms in a first-order language LR of real arithmetic. LR will

typically contain the arithmetic functions plus, minus, times and divide, the order relations X > Y ,

and any other useful arithmetic relations and functions. A probabilistic sentence, then, is some

sentence in LR containing terms of the form P(E) and P(E | F ) as atomic terms. A probabilistic

theory is a pair < T0, TP > where T0 is a set of sentences in L0, and TP is a set of probabilistic

sentences.

Thus, in the above example, L0 would be language rich enough to express sentences such as

“Clyde is an elephant,” “Wendy is white”, “95% of elephants are grey,” and so on. The unqualified

theory T0 would contain “Clyde is an elephant” and “95% of elephants are grey”. The terms

“P(grey(clyde))”, the probability that Clyde is grey, and “P(white(wendy) | seagull(wendy))”, the

conditional probability that Wendy is white given that she is a seagull, are probabilistic terms. The

sentences “P(grey(clyde)) = .95” and

P(white(wendy) | seagull(wendy)) > P(white(wendy) | elephant(wendy))

are probabilistic sentences, which may be part of the probabilistic component TP .

The above definition imposes two restrictions that should be noted:

• The definition does not allow quantification into the scope of a probability operator. For

example, the definition rules out a sentence such as “∀X P(grey(X) | elephant(X)) = 0.95”, or

“∃X P(color(wendy)=X | elephant(wendy)) ≥ 0.95,” (meaning “There is some particular color

that is almost certainly Wendy’s color.”) Such quantification would require that P be viewed as

a modal operator creating an opaque context; we should not want to substitute “the youngest

white elephant,” for X in the first sentence above, nor to derive the second sentence from the

fact “P(color(wendy)=color(wendy) | elephant(wendy)) ≥ 0.95” by existential abstraction on

“color(wendy)”. To simplify our theory, we therefore rule out these sentences. Part of the

effect of a universal quantifier can be gotten by using axiom schemas; for example, we might

posit the rule “For any constant symbol γ, P(grey(γ) | elephant(γ)) = 0.95.”

• The definition does not allow “higher-order” probabilities such as

“P(P(grey(clyde)) > .95) = .5” meaning “There is a .5 probability that the probability that

Clyde is grey is greater than .95.” Such higher-order probabilities can generally be avoided in

3This is quite different from the use of the term events in temporal reasoning.
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simple applications of probability theory to plausible reasoning, though they can be useful in a

meta-level evaluation of a system that assigns object-level probabilities. [Gaifman, 1983,1986]

In any probabilistic theory T =< T0, TP > the following axioms must hold:

1. (Closure) If P(E) and P(F ) are defined then P(E ∧F ), P(E ∨F ), and P(¬E) are all defined.

If two of the quantities P(E), P(F ), and P(E | F ) are defined, then the third is also defined, unless

P(F ) = 0.

2. (Probability of Known Facts) If T0⊢E then P(E) = 1 and P(¬E) = 0. Facts known without

qualification have probability 1, and their negations have probability 0. Note that the converse is

not the case; a sentence may be given probability 1 without its being provable from the known facts.

3. (Range) 0 ≤ P(E) ≤ 1. All probabilities are between 0 and 1.

4. (Invariance under equivalence) If T0⊢(E⇔F ) then P(E) = P(F ). If E and F are known to

have the same truth value, then they have equal probabilities.

5. (Conjunction) P(E ∧ F ) = P(E) · P(F | E). The probability that E and F are both true is

the probability that E is true times the probability that F is true given that E is true. This can

function as a definition of the conditional probability P(E | F ), except in cases where P(F ) = 0.

It should be noted that P(E | F ) is not the same as P(F⇒E) = P(¬F ∨E). The latter term is,

in fact, rather useless. If P(E | F ) is high, then we can legitimately infer E given F . By contrast

P(F⇒E) may be high just because F is very unlikely; if F is found out to be true, E may still be

unlikely.

6. (Disjunction) If T0 ⊢ ¬(E ∧ F ) then P(E ∨ F ) = P(E) + P(F ). If it is known that E and F

cannot both be true, then the probability of the disjunction E ∨ F is the sum of the probability of

E plus the probability of F .

7. (Belief Update) A final meta-axiom does not constrain any particular probabilistic theory;

rather, it describes how a rational agent should pass from one theory to another when he establishes

some new information. An agent who finds out that event E is true should adopt the previous value

of P(F | E) as his new value for the prior P(F ), and should adopt the previous value of P(F |E ∧G)

as his new value of P(F |G), assuming that these quantities were previously defined. For instance,

suppose you previously calculated that there was a .95 probability Clyde is grey given that Clyde is

an elephant, and a .90 probability that Clyde can do tricks given that Clyde is an elephant and that

he is a circus animal. You now find out that Clyde is, indeed, an elephant. You should now believe

that there is a .95 prior probability that Clyde is grey, and that there is a .90 probability that he

can do tricks given that he is a circus animal.

The expected value of a term is defined as the sum of its possible values times the probability of

its having that value.

E(T ) =
∑
Xi

P(T = Xi) ·Xi

A number of important consequences follow directly from these axioms:

8. (Implication) If T0⊢E⇒F then P(F ) ≥ P(E)
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9. (Relativising rules 3, 5, 6, and 8 to conditional probabilities.)

a. 0 ≤ P(E | F ) ≤ 1.

b. P(E ∧ F |G) = P(E | G) · P(F |G ∧ E)

c. If T0⊢G⇒(¬(E ∧ F )) then P(E ∨ F | G) = P(E | G) + P(F | G).

d. If T0⊢G⇒(E⇒F ) then P(F | G) ≥ P(E | G)

This result is important for establishing the coherence of the update rule (6), since it guarantees

that the new probabilities satisfy the axioms of a probability theory.

10. Exhaustive Disjoint Possibilities. Let E1 . . . Ek be a set of events of which it is known that

exactly one is true. Such a set of events is known as a frame of discernment. The sum of the

probabilities of such events must be 1. This applies both to prior probabilities and to probabilities

conditioned on some fixed condition F . Formally,

If T0⊢E1∨̇E2∨̇ . . . ∨̇Ek then

k∑
i=1

P(Ei) =

k∑
i=1

P(Ei | F ) = 1

11. The probability of a disjunction can be calculated as follows:

P(E ∨ F ) = P(E) + P(F ) − P(E ∧ F )

12. Corresponding to Modus Ponens: P(F ) ≥ P(E) · P(F | E)

13. Evidence augmentation: Let P(X | E) = a and let P(F | E) = b. Then

a+ b− 1

b
≤ P(X | E ∧ F ) ≤

a

b

If b is close to 1, this allows us to compute useful bounds on the effect of learning F on the plausibility

of X.

3.2.1 Bayes’ Formula

Axiom 5 allows us to reverse the direction of conditional probabilities. If we know P(E), P(F ), and

P(E | F ), then by axiom 5,

P(F | E) =
P(E ∧ F )

P(E)
=

P(E | F ) · P(F )

P(E)

This is called Bayes’ formula.

Bayes’ formula is often used in reasoning from an observed effect E to an inferred cause F . If

we know the prior probabilities of E and F and we know the likelihood that F will occur if E
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has occurred, then Bayes’ formula allows us to computer the likelihood that E occurred given that

F occurred. Often, the probability of the effect F is not known directly, but is computed from

considering all the possible causes. Let E1, E2, ...Ek be a exhaustive set of mutually disjoint causes

for F ; that is, given F we know that exactly one of the Ei must have occurred. Formally,

T0⊢F⇒(E1∨̇E2∨̇ . . . ∨̇Ek)

Using axiom 6 above

P(F ) = P(F ∧ (E1∨̇ . . . ∨̇Ek)) = P((F ∧ E1)∨̇ . . . ∨̇(F ∧ Ek)) =

P(F ∧ E1) + . . .+ P(F ∧ Ek) = P(F | E1) P(E1) + . . .+ P(F | Ek) P(Ek) =∑k
j=1

P(F | Ej)P(Ej)

Substituting this last expression for P(F ) in Bayes’ formula above yields the formula

P(Ei | F ) =
P(F | Ei)P(Ei)∑k

j=1
P(F |Ej) P(Ej)

For example, consider the following situation: Edgar invites Karen to a movie Saturday night,

and Karen answers that unfortunately she has a prior engagement. Edgar is now interested in the

probability that Karen is politely lying. Let A be the event that Karen answers that she is busy; B,

the event that Karen is actually busy; F , the event that Karen is actually free. Edgar now estimates

the prior probabilities as follows:

P(B) = 0.3 (She’s popular, but he called her on Monday, which is plenty of time)

P(F ) = 1 − P(B) = 0.7

P(A | B) = 0.95 (There was a 1/20 chance that Karen would be so wild about him as

to break a previous date.)

P(A | F ) = 0.25 (Edgar has a pretty good opinion of his own attractiveness.)

Applying Bayes’ formula, we have

P(F | A) =
P(A | F ) · P(F )

P(A | F ) · P(F ) + P(A | B) · P(B)
=

0.25 · 0.7

0.25 · 0.7 + 0.95 · 0.3
= 0.38

Not so large as to discourage another call next week.

3.2.2 Possible Worlds Semantics

There is a natural possible-worlds semantics for probability judgements. A world is described by

the events in L0. We define a measure µ on sets of possible worlds, satisfying the following axioms:
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1. For any set X, µ(X) ≥ 0.

2. If W and X are disjoint sets of possible worlds, then µ(W ∪X) = µ(W ) + µ(X).

We define the probability of an event E as the fraction of worlds satisfying E out of all the worlds

satisfying the background theory. Formally, let U be the set of all worlds that satisfy the background

theory, and let WE be the subset of worlds that satisfy both the background theory and E. Then

P (E) =
µ(WE)

µ(U)

The conditional probability P(E | F ) is defined as the ratio

P (E | F ) =
µ(WE ∩WF )

µ(WF )

It is easily shown that all the above axioms follow from these axioms and definitions, and that,

conversely, for any probability distribution satisfying the axioms, there is a corresponding measure

µ (just pick the measure to be equal to the probability.) In this way, subjective probability can be

formally reduced to frequencies.

3.3 Statistical Inference

The above formulas express the necessary properties of a probabilistic theory. They are, however,

very weak constraints. In particular, for any body of deterministic knowledge, it is possible to assign

all prior and conditional probabilities to be either 0 or 1. Moreover, the axioms above provide little

calculus of evidence combination, beyond the weak rule of augmentation (13) given above. If we

have n logically independent events X, A, B, C, ... then the 2n−1 quantities

P(X), P(X | A), P(X |B), P(X|C), . . .

P(X | A ∧ B), P(X | A ∧ C) . . . P(X | B ∧ C) . . .

P(X | A ∧ B ∧ C) . . .

. . .

can each be assigned an arbitrary value between 0 and 1, and the result will be perfectly consistent

with the axioms. To remedy the situation, we have a variety of rules that can used to pick probabili-

ties other than 0 or 1, and to relate conditional probabilities. These are all non-monotonic rules; they

are deduced from a body of information and can be overruled if more information becomes available.

For example, suppose an object-level theory T0 supports the probabilistic sentence P(E)=1/2. The

extension T0 ∪ {E} supports the sentence P(E)=1, and does not support the sentence P(E)=1/2.
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3.3.1 Frequency

The most basic probabilistic heuristic is the principle of relative frequency: if there are N objects

with property α and M of these have property β, then for any term t, P(β(t) | α(t)) = M/N , unless

we have some additional information about the term t. For example, given that about 51.5% of

all people are women, the probability can be taken to be .515 that the next person I see will be a

woman. This inference must be changed if I have more information available. For instance, if I know

that I am sitting in a class in which there are 17 people other than myself, of whom 3 are women,

then the probability is 3/17 = .176 that the next person I see will be a woman.

A important special case of the frequency principle is the principle of equidistribution. Let β(X)

be the property X = s for some term s. Since there is only one element with this property, namely s

itself, the probability P(t = s | α(t)) = 1/N . Again, the inference is non-monotonic and rests on the

assumption that there is no other information relating t and s. For example, if t and s are the same

term then the probability is 1. If t and s are different constants and the unique names assumption

is operative, then the probability is 0.

A much stronger form of the principle of equidistribution is the principle of indifference: If

the n events E1 . . . En form a frame of discernment, then, in the absence of other information,

each should be assigned probability 1/n. For example, if it is known that a block is either black,

red, blue, or white, then, absent other information, assign probability 1/4 to each possibility. The

obvious problem with this principle is that, in general, a given event may belong to many different

frames of discernment, of different sizes, and the principle does not indicate which one should be

chosen. For example, suppose that we carefully examine the contents of a supermarket. We are

then told, “Reginald bought one item at the market,” and we are asked, “What is the probability

that he bought a potato?” What is the proper frame of discernment here? Should we assign equal

probability to each individual item in the store? or to each category? or to each foot of shelf space?

If individual items form the frame of discernment, does a six-pack of beer count as one or six? If

categories are the frame of discernment, are Maine and Idaho potatoes two categories or one? It

would seem that there is no way to choose without more information; but once more information is

available, the problem is changed.

3.3.2 Independence

A key observation in probability theory is that most pairs of events have nothing whatever to do

with one another, and that knowing one has no effect on the probability of the other. Knowing that

one coin toss came up heads does not change the probabilities that another will come up heads;

knowing the price of tea in China does not affect the probability that the next President will be a

woman. Two such events are said to be independent.

Formally, events E and F are independent if P(E | F ) = P(E). By axiom 5, this is equivalent

to the symmetric constraint,

P(E ∧ F ) = P(E) · P(F ).

By formula 11, above, this implies the equation,

P(E ∨ F ) = P(E) + P(F ) − P(E) · P(F ).
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Thus, given a collection of independent events E1, E2, . . . , Ek, and their prior probabilities P(E1)

. . . P(Ek), we can compute uniquely the probability of any boolean combination of the Ei. Note

that we must know, not only that the Ei are pairwise independent, but that every subset of the Ei

is collectively independent; that is, for any set S of the Ei,

P(S) =
∏
E∈S

P(E)

This condition of collective independence does not follow from the pairwise independence constraints

P(Ei ∧ Ej) = P(Ei) · P(Ej)

Thus, the independence assumption is a very powerful tool when it can be applied. Moreover, it

is a default assumption; two events may be assumed to be independent unless there is some reason to

believe that they are connected. (We can also justify this assumption on the basis of the Maximum

Entropy principle; see section 3.3.4 below.) This assumption is enormously valuable in ignoring the

masses of irrelevant information always present; if we want to compute the probability that a patient

has a heart condition, we are justified in ignoring his name, zodiacal sign, and the color of his eyes

as independent of the event of interest. It is less frequently applicable in computing the probability

of boolean combinations, as described above. The problem is that, if the probability of the event

E ∧ F is worth computing, it is generally because there is some connection between E and F , and

where there is a connection there is often some degree of dependence.

Suppose, for example, that you are expecting twins, and you wish to know the probability that

both children will be boys. As a first guess, one might use the principle of indifference to estimate

that the probability that a random child will be a boy is 1/2, and then, assuming independence,

square this to get 1/4. Of course, this is wrong; fraternal twins are independent but identical twins

are not. To get an accurate probability, it is necessary to know the probability that a pair of twins

will be identical. If no information on the frequency of identical twins is available, one might use the

principle of indifference to guess that the probability is one-half, which would lead to a probability

of 3/8 that both children are boys.

In practice, establishing independence is not simply a default inference; it can be a very difficult

enterprise. For example, much of the ongoing debate about the interpretation of the differences

in standardized test scores across different segments of the population rests on such questions as

whether, for fixed intelligence, test scores are independent of social background; or whether, for fixed

conditions of social pressures and expectations, test scores are independent of sex.

3.3.3 Independent Evidence

The independence assumption can also be used in evidence combination. Suppose that we have two

events E and F , both of which are evidence for another event X. If we can assume that E and F

are independent given X, and that E and F are independent given ¬X then it is easy to compute

P(X | E ∧ F ) from P(X | E) and P(X | F ) as follows:

Let E and F be independent, both with respect to X and with respect to ¬X; thus P(E∧F | X)

= P(E | X) P(F | X) and P(E ∧ F | ¬X) = P(E | ¬X) P(F | ¬X). By Bayes’ formula
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1.

P(X | E ∧ F ) =
P(E ∧ F | X)P(X)

P(E ∧ F )

Similarly,

2.

P(¬X | E ∧ F ) =
P(E ∧ F | ¬X)P(¬X)

P(E ∧ F )

Dividing formula (1) by (2) yields

3.

P(X | E ∧ F )

P(¬X | E ∧ F )
=

P(E ∧ F | X)P(X)

P(E ∧ F | ¬X)P(¬X)

Using our independence assumptions, we can rewrite this.

4.

P(X | E ∧ F )

P(¬X | E ∧ F )
=

P(E | X)P(F | X)P(X)

P(E | ¬X)P(F | ¬X)P(¬X)

Let us define the odds on A as the ratio P(A)/P(¬A). Thus, if P(A) = 1/4, then P(¬A) =

1 − P(A) = 3/4 so Odds(A) = (1/4)/(3/4) = 1/3. Analogously, we define Odds(A | B) as the ratio

P(A | B)/P(¬A | B). Using Bayes’ rule

5.

Odds(A | B) =
P(A | B)

P(¬A | B)
=

P(B | A)P(A)/P(B)

P(B | ¬A)P(¬A)/P(B)
=

P(B | A)

P(B|¬A)
· Odds(A)

so 6.

P(B | A)

P(B | ¬A)
=

Odds(A | B)

Odds(A)

Let us now define the odds updating function OU(A | B) as the ratio Odds(A | B)/Odds(A), the

change that evidence B makes in the odds of A. From (6), we have

7.

P(B | A)

P(B | ¬A)
= OU(A | B)
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We can therefore rewrite formula (4) as

8.

OU(X | E ∧ F ) = OU(X | E) · OU(X | F )

For example, suppose that P(X) = 1/3, P(X | E) = 2/3, and P(X | F ) = 3/4. Then Odds(X)

= 1/2, Odds(X | E) = 2, Odds(X | F ) = 3; so OU(X | E) = 4 and OU(X | F ) = 6. Therefore

OU(X | E ∧ F ) = 24, so Odds(X | E ∧ F ) = OU(X | E ∧ F ) · Odds(X) = 12, and

P(X | E ∧ F ) =
Odds(X | E ∧ F )

1 + Odds(X | E ∧ F )
= 12/13

(The assumption we have made above that E and F are independent with respect to both X and

¬X is sometimes replaced by the assumption that E and F are independent with respect to both

X and the background theory (e.g. [Charniak and McDermott, 1985].) This leads to the following

combination formula:

P(X | E ∧ F )

P(X)
=

P(X | E)

P(X)
·
P(X | F )

P(X)

There are a number of reasons to prefer the assumption that we have made, leading to formula 8

above. First, intuitively, if E and F are both positive evidence for X, then it seems likely that they

are connected, and hence unlikely that they are independent relative to the background. Second, the

first formula always gives meaningful results; by contrast, the second can yield values for P(X | E∧F )

that are greater than 1. Third, the first formula is consistent with the maximum entropy assumption

(Exercise 12), while the second is not.)

3.3.4 Maximum Entropy

(Note: This section is somewhat difficult mathematically. It may be omitted without loss of conti-

nuity.)

Both the rules above, equidistribution and independence, can be derived as special cases of a

very general principle called the principle of maximum entropy. There are a number of ways to

justify this principle; our approach is relatively simple, though informal.4 We divide the principle

of maximum entropy into two parts:

(I) Let S = {E1, E2, . . . , Ek} be a set of events forming a frame of discernment. Suppose we

know some partial constraints on their probabilities pi. The values that we should assign to the

probabilities pi are those that give us the least information about which of the events occurs, subject

to our constraints.

4[Shore and Johnson, 80] gives a derivation of the principle of maximum entropy from a set of invariance principles.
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(II) One’s ignorance about which event will occur is measured by the entropy function H(S) =

−
∑k

i=1
pi log(pi) Therefore, principle (I) is carried out by picking the pi so as to maximize the

entropy function.

Principle (I) would seem to be inherently plausible. Since it is an informal statement of a

desideratum, there is no way of arguing for it formally, though it is evidence for its reasonableness

that it is consistent with equidistribution and independence. Principle (II), on the other hand,

though formally a definition, is not at all intuitive; its justification will require a brief excursion into

information theory. We will develop the formula above in three steps:

(1) Consider a process that randomly generates bits. Since there are 2k different strings of k

bits, the probability of any particular set of k bits having a particular value is 1/2k. For example,

the probability that the first 6 bits will be 101001 is 1/26 = 1/64. Thus, k bits of information

have probability 1/2k. Inverting this, we may say that an event of probability p has information

log(1/p) = − log(p).

(2) Let S = {E1 . . . Ek} be events with probabilities p1 . . . pk forming a frame of discernment.

Consider the measure of the information which is gained by finding out which event occurs. The

expected value of this information is

H(S) = −
∑

pi log(pi)

This quantity is called the entropy of the probability distribution.

A fundamental theorem of information theory [Shannon and Weaver, 1949] states that if you

devise any unambiguous binary code for the events E1 . . . Ek, then the expected number of bits

necessary to specify which event occurred is greater than or equal to H(S); and that there exists a

code where the expected number of bits is between H(S) and H(S) + 1.

(3) Now, suppose that we have a frame of discernment S = {E1 . . . Ek} and two candidate prob-

ability distributions p1 . . . pk and q1 . . . qk. Once we find out which event occurred, then we clearly

have the same information, under either distribution. Finding out which event occurred will, on av-

erage, provide information Hp(S) = −
∑
pi log(pi) if we assign the first distribution, and will provide

information Hq(S) = −
∑
qi log(qi) if we assign the second. Suppose that Hp(S) > Hq(S). Since we

end up with the same information once we know the event, and we gained more information under

pi than under qi, we must have started with more information under qi. That is, the probabilities qi

give us more information for predicting the event before knowing the outcome than the probabilities

pi do. Therefore, if we want to assume we have the least possible information about the event before

it occurs, distribution pi will be better than qi. To minimize the prior information, therefore, we

should choose the values of pi that maximize the sum Hp(S) = −
∑
pi log(pi).

The principle of maximum entropy, like the principle of indifference, requires an appropriate

choice of frame of discernment for its correct application.

We will now illustrate the power of the principle by using it to derive the principles of equidis-

tribution and of independence. We leave it as an exercise (12) to show that the maximum entropy

assumption justifies combining evidence using the independence assumptions described above.

Equidistribution. Let E1 . . . Ek be a frame of discernment, with probabilities p1 . . . pk about which

nothing whatever is known. The only constraint, therefore, is the universally applying constraint
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∑
pi = 1. We want to maximize the entropy function H(S) = −

∑
pi log(pi) subject to this

constraint. To simplify the calculations, we will use natural logs for the entropy function rather than

base-2 logs; the only effect is to change the magnitude of the entropy (a quantity of no great interest)

by a uniform factor of ln 2. We find our maximum using the method of Lagrangian multipliers: To

maximize Hp(S) subject to the constraint C(p) =
∑
pi − 1 = 0, we construct the formula

f(p) = Hp(S) + αC(p) = −
∑

pi ln(pi) + α(
∑

pi − 1)

and solve the simultaneous equations

∂f

∂pi
= 0

C(p) = 0.

Performing the differentiations, we get

−1 − ln(p1) + α = 0

−1 − ln(p2) + α = 0

. . .

−1 − ln(pk) + α = 0∑
pi = 1

The first k equation imply that all the pi are equal to eα−1, and therefore all equal to one another:

p1 = p2 = . . . = pk. Applying the last constraint gives us p1 = p2 = . . . = pk = 1/k, which is the

principle of equidistribution.

Independence: The principle of maximum entropy can be used to show that, given the probability

of a collection of events, and lacking any information connecting them, the minimum information

assumption is to assume that they are all independent. We will illustrate with two events; the

analysis for k events is analogous, but messier. Suppose that P(A) = a and that P(B) = b. We wish

to show that P(A ∧B) = P(A) · P(B) = ab.

We construct the frame of discernment E1 = A∧B; E2 = A∧¬B; E3 = ¬A∧B; E4 = ¬A∧¬B.

Let these have probabilities p1 . . . p4. Our constraints are as follows:

Frame of discernment: p1 + p2 + p3 + p4 = 1

P(A) = a: p1 + p2 = a

P(B) = b: p1 + p3 = b

We therefore construct the function
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f(p) = −(p1 ln(p1) + p2 ln(p2) + p3 ln(p3) + p4 ln(p4)

+α(p1 + p2 + p3 + p4 − 1) + β(p1 + p2 − a) + γ(p1 + p3 − b))

The equations to be solved are

1.

0 =
∂f

∂p1

= −1 − ln(p1) + α+ β + γ

2.

0 =
∂f

∂p2

= −1 − ln(p2) + α+ β

3.

0 =
∂f

∂p3

= −1 − ln(p3) + α+ γ

4.

0 =
∂f

∂p4

= −1 − ln(p4) + α

5.

p1 + p2 + p3 + p4 = 1

6.

p1 + p2 = a

7.

p1 + p3 = b

Adding equation 2 to 3 and 1 to 4 gives us

0 = −2 − ln(p2) − ln(p3) + 2α+ β + γ = −2 − ln(p1) − ln(p4) + 2α+ β + γ

Cancelling common terms, we get, ln(p2) + ln(p3) = ln(p1) + ln(p4), or equivalently

8.

p2p3 = p1p4

From (7), p3 = b− p1; from (6), p2 = a− p1; Combining these with (5) gives p4 = 1 + p1 − a− b.

Substituting these in (8) gives

9.

(a− p1)(b− p1) = p1(1 + p1 − a− b)

or, simplifying,
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10.

p1 = ab

which was the desired result.

3.3.5 Sampling

Frequently, it is not feasible or worthwhile to determine the actual incidence of a property in a

population. In such cases, it is often possible to estimate the frequency by sampling. A sample of

set S is just a subset of S. A sample T of S is representative of S with respect to a property α to

within a given tolerance if the fraction of elements of T with property α is within tolerance of the

fraction of the elements of S with property α. Thus, if you can determine the frequency of α in a

representative sample T , you can use it as an estimate of the frequency of α in S as a whole.

Of course, this statement is a useless tautology unless you have some way to find a representative

sample without knowing in advance the frequency of α in S. This can be done in various ways.

One way is to know that T is representative of S for properties similar to α. For example, if you

know that the overall popular vote for President has always been within 2 percentage points of the

vote in McMurdo County, then you can treat the county as a representative sample of the country

for the next election. Another technique is to divide the population into subgroups of known size

along lines believed to be relevant to α, to sample these subgroups, and to weight their significance

in proportion to the size of the subgroups. For example, political poll-takers are careful to pick a

proportional mix of sexes, ages, and income-levels in their samples.

The most basic method of getting a representative sample is to take a random sample. Almost

all samples of a substantial size are representative to within a small tolerance; therefore, if all

different samples have equal probability of being chosen, there is a very large probability of getting

a representative sample. In particular, Tschebyscheff’s inequality states the following. Let p be the

frequency of α in S, let T be a random sample of S of size n, and let q be the frequency of α in T .

Then, for any ǫ > 0

P(| p− q |> ǫ) <
p(1 − p)

nǫ2

Thus, by making n large enough, one can make arbitrarily certain that q lies arbitrarily close to

p.

We need to reverse this inference; to find the probabilities of frequencies in the overall population

given the frequency in the sample. We can do this using Bayes’ rule, if we have some prior distribution

on the probabilities of frequency in the population. This prior is generally taken to be a uniform

distribution, in which all frequencies are equally likely.

The following can be proven: Let T be a random sample of size n, out of a population S whose

size is very much greater than n. Assume a prior probability distribution in which all frequencies of

property α in S are equally likely. Then, given the further fact that k elements of T have property

α, the following statments hold:

1. The most probable frequency of α in S is k/n.

105



2. The expected frequency of α in S is (k + 1)/(n+ 2)

3. The probability that a randomly chosen element X in S is α is (k + 1)/(n+ 2).

The above theorem rests on the assumption that all samples are equally probable, or at least

that the event of an element being in your sample is independent of the event of its having property

α. This assumption is an instance of the principle of equidistribution or of independence, and

it is therefore the default in the absence of other information. In practice, however, it requires

considerable work to attain this condition. If you have access to all the elements of S, and can use a

truely random procedure, such as rolling dice, to pick the ones to include in your sample, then you

are on safe ground. In most commonsense cases, however, you do not have access to all elements

of S; indeed, often you are obliged to be purely passive, and use as your sample those elements of

S that happen within your grasp. Whether such a sampling is independent of the property under

study depends both on the set S being sampled and the property being sampled for. The students

in your classes may be an adequate sample for determining the incidence of Communism among

students at the University, or the incidence of left-handedness among the population of the world;

they are unlikely to be a valid sample for determining the frequencies of various majors among

university students, or the incidence of Communism in the world population, or the number of legs

among members of the animal kingdom. A large body of statistical theory addresses the question

of whether samples are being drawn randomly relative to a given property.

3.3.6 Domain Specific Knowledge

In many problems, domain specific knowledge will provide reasonable prior probability distributions,

or constraints on such distributions. Examples:

1. Let X be a point in space, let V 1 be a region in space, and let V 2 be a subset of V 1. Then

the probability that X is in V 2 given that X is in V 1 may be taken to be volume(V 2)/volume(V 1).

2. If you establish some desired condition, and then leave it alone, then the probability that it

will still hold after time T is a decreasing function of T . A good prior distribution for this probability

would be e−T/λ, where λ is a characteristic time constant.

3. Consider a set of objects which are designed to be as nearly as possible a given length L —

for example, nails that are supposed to be one-half inch long. The probability that the actual length

of a randomly chosen object is less than L+ ∆ is typically given by the integral

∫ ∆

−∞

e−x2/ǫ2dx

where ǫ is a constant length characteristic of the manufacturing process.

4. When someone tells you something that you had no particular reason to believe true or false,

your evaluation of the probability of its truth depends largely on your estimation of the reliability

of the source. This estimation combines a number of factors including:

• Has he been correct in the past?
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• Is he likely to know the truth of the matter?

• Does he have any reason to wish to deceive you?

• Are there reasons that he would be particularly careful in making this statement?

3.3.7 Conclusion

The axioms of probability theory are a solidly justified set of constraints for quantitative evaluations

of likelihood. They are, however, rather weak constraints. To get useful results, it is necessary to

have additional values or constraints on the prior or conditional probabilities of events. We have

seen a number of heuristics for computing such additional information: equidistribution, frequency,

independence, maximum entropy, sampling, and domain dependent knowledge. These heuristics are

more delicate and difficult than the axioms; they are non-monotonic inferences, and the relation

on world knowledge is not wholly understood. Nonetheless, when they can be correctly applied,

they give us powerful and well-founded techniques for evaluating likelihoods, combining evidence,

and calculating expected values. Probability theory has been successfully applied in many different

aspects of AI, including expert systems, robotics, planning, and natural language understanding.

Nonetheless, the problem of finding sufficient constraints or values for probabilistic computations

is still difficult and poorly understood for many types of commonsense reasoning. Let us return, for

example, to our example in section 3.2.1 of Edgar inviting Karen to a movie. Suppose that Edgar

has asked Karen out three weeks in a row and been turned down all three times. Edgar is getting

discouraged, and wants to compute the probability that, if he asks again this week, he will again be

rejected. Let Bi be the event that Karen is actually busy when Edgar asks here on the ith week;

Fi, the event that she is actually free; and Ai, the event that she rejects the invitation. Then we are

interested in the probability of A4 given A1, A2, and A3.

If Karen were actually a random process, the estimates of the probabilities were firmly established,

and the different invitations were independent trials, then there would be no reason to be discouraged,

any more than there is reason to bet on white after a run of red on the roulette wheel. The probability

of being rejected this week would be

P(A4 | A1 ∧A2 ∧A3) = P(A4) = P(A4 | B4) · P(B4) + P(A4 | F4) · P(F4) =

0.95 · 0.3 + 0.25 · 0.7 = 0.46

But these assumptions do not hold. First, there is good reason to think that the events A1 . . . A4

are not independent, relative to fixed Bi and Fi. They are likely to be positively correlated for any

of a number of reasons: Karen may be involved with someone else, or she may have some habitual

Saturday night activity, or she may dislike Edgar. Second, there is reason to suspect that the action

of asking may itself influence the outcome of later trials. Karen may get tired of being bugged; she

may deliberately arrange to be busy Saturday night so that she won’t have to lie. Contrariwise, she

may be impressed by Edgar’s persistence, and she may deliberately arrange to leave her Saturday

night free, so that she can accept his next invitation. Third, however the original prior probabilities

were derived, the experiences with Karen suggest that they may be due for revision. The original

priors were based on some kinds of estimates (based on sampling, or heuristics, or whatever) about
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how often, in general, young women have booked their Saturdays by Monday; how often they will

cancel a previous engagement for a date with Edgar; and how often they will invent a previous

engagement in order to avoid a date with Edgar. Perhaps these estimates were wrong to start with.

Edgar must now consider all of these circumstances in trying now to evaluate his prospects for

success if he calls again. Where is he to get any kind of estimate of the correlations and dependencies

involved here?

Moreover, even supposing that we have found rules for assigning subjective probabilities to events,

how are we to determine whether these rules are reasonable? Since each event is a unique occurrence

and involves a different prior knowledge state, it is not possible to ask whether the prediction

corresponds to the actual frequency. (See, however, [Gaifman, 1983].) We could try matching the

assigned probabilities to likelihoods as estimated by humans. However, many studies have shown

that human subjects judge likelihoods in bizarre ways, which violate the most fundamental laws

of probability theory. For example, Daniel Kahneman and Amos Tversky (1982) carried out an

experiment in which undergraduate subjects were presented with the following personality sketch:

“Linda is 31 years old, single, outspoken, and very bright. As a student she was deeply concerned

with issues of discrimination and social justice and also participated in anti-nuclear demonstrations.”

The subjects were then asked which of the following statements was more likely: (A) Linda is a bank

teller; or (B) Linda is a bank teller who is active in the feminist movement. 86% of the subjects

judged the second statement more likely, despite the fact that this violates the basic rule that a more

general state (being a bank teller) is never less likely than a more specific state (being a feminist

bank teller). (Perhaps more surprisingly, 43% of the psychology graduate students who were given

the same question made the same mistake.) It is hard to conceive of a coherent theory of likelihood

which would justify this answer.5 Nonetheless, people continuously carry out plausible reasoning,

and they do it well enough to work their way through a very uncertain world. They must be doing

something right, but these experiments suggest that it will not be easy to explain what they are

doing and why it is adequate.

3.4 References

General: [Turner, 1984] is a good introduction to many theories of plausible reasoning.

Non-monotonic logic: A good starting point is chapter 6 of [Genesereth and Nilsson, 1987],

which gives a more extensive treatment of the issues covered in this chapter. Many of the impor-

tant early papers on non-monotonic logic were published together in an special issue of Artificial

Intelligence [Winograd, 1980]. Most of these are reprinted, together with other important papers, in

[Ginsberg, 1987]. The closed world assumption was first analyzed in [Reiter, 1978]. Domain closure

5There are similar results that indicate that people often perform deductive inference poorly [Johnson-Laird and
Wason 1970]. In my opinion, however, the importance of these results to the theory of deductive reasoning is less
than the importance of Kahneman and Tversky’s result to the theory of plausible reasoning for a number of reasons:
(i) We have a complete formal characterization of valid deduction. We do not have a complete theory of the deter-
mination of prior and conditional probabilities. It has been often suggested that these ultimately rest on subjective
evaluations; these results show that this will be difficult.
(ii) The negative results on deductive reasoning appear only in rather artificial settings, while the results on likelihood
evaluation appear with quite natural questions, such as the experiment cited above.
(iii) The experiments with likelihood evaluation have the bizarre feature that the wrong answer still seems to have
something right about it even after the correct answer has been explained and understood.
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was presented in [Reiter,19 80b]. Circumscription was presented in terms of an axiom schema in

[McCarthy, 1980]; it was re-analyzed in terms of a second order axiom in [Lifschitz, 1985]. [Mc-

Carthy, 86] is a general discussion of the scope and limits of circumscription. Reiter’s default logic

was introduced in [Reiter, 1980a]. [Etherington and Reiter,19 83] studies the connection between

default logic and hierarchical inheritance. The minimal model theory was presented in [Shoham,

1987]. Other theories of non-monotonic logic include the NML of [McDermott and Doyle, 1980]

and [McDermott, 1982] and the autoepistemic logic of [Moore, 1985b]. Also closely related are the

techniques for carrying out nonmonotonic inference in actual programs, such as the “negation as

failure” rule of logic programming (analyzed formally in [Lifschitz, 1987b]) and various types of

data-dependency maintenance [Doyle, 1979].

Probability theory: The deepest and most extensive study of the applicability and imple-

mentation of probabilistic reasoning in AI systems is [Pearl, 1988a]. [Kanal and Lemmer, 1986]

and [Lemmer and Kanal, 1988] are collections of papers on the application of probability and other

theories of plausible reasoning to AI. The applicability of probability to AI is a matter of heated

debate; see, for example, [Cheeseman, 1985], [Charniak, 1983]. (This debate is closedly connected

with a larger debate about the correct interpretation of probability theory, and the legitimacy of

subjective probability [Fine, 1973].) The particular probabilistic logic described here is close to that

of [Grosof, 1988]. The possible-worlds semantics for probability is discussed in [Nilsson, 1986]. For

the principle of maximum entropy, see [Jaynes, 1979]. [Grosof, 1988] is a pleasing study of the use of

non-monotonic inference in probabilistic reasoning, particular in deriving independence conditions.

[Dawes, 1988] discusses how probability theory ought to be used by humans in commonsensical

situations, and how far humans are from actually using it.

Schemas: The locus classicus for reasoning using schemas is [Minsky, 1975]. See also [Kuipers,

1975], [Hayes, 1979b], [Schank, 1982], [Kolodner, 1984], and [Charniak, 1988].

Other: Other theories of plausible reasoning include Dempster-Shafer theory [Shafer, 1976],

[Hummel and Landy, 1986]; the theory of endorsements [Cohen, 1985]; and fuzzy logic [Zadeh,

1987], which deals with vagueness as well as uncertainty. Good overviews of these theories may be

found in [Turner, 1984] and in [Bonissone, 1987].

3.5 Exercises

(Starred problems are more difficult.)

1. Let T be contain the following axioms:

i. father(joe,sam).

ii. father(sam,agnes).

iii. sibling(X,Y ) ⇔ ∃Z father(Z,X) ∧ father(Z, Y ).

iv. only child(Z) ⇔ (sibling(X,Z) ⇒ X = Z).

v. ¬father(X,X).
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vi. father(X,Y ) ∧ father(Z, Y ) ⇒ X = Z.

Show how the conclusion “only child(sam)” can be inferred from T by applying domain closure.

2. Let T2 contain only axioms (i) - (iv) of T . Show how we can infer “only child(sam)” from T2

by applying the closed world assumption to the predicate “father” together with the domain closure

assumption.

3. Let T3 contain the axioms in T together with the seventh axiom

vii. ∀X∃Y father(Y,X)

What erroneous conclusion can be drawn if the domain closure assumption is applied to T3?

4. Explain the difference between applying the closed world assumption to a predicate α, and

circumscribing in α. Give an example where the two operations give different results.

5*. An important type of plausible inference is default inheritance of properties. A standard

example is “If X is a bird, assume that X can fly.”. Let T contain the following axioms:

a. creature(X) ∧ ¬ab1(X) ⇒ ¬can fly(X).

(Typically creatures do not fly. The predicate ab1(X) is an abnormality predicate. Peculiar

creatures can fly.)

b. bird(X) ∧ ¬ab2(X) ⇒ can fly(X). (Typically, birds can fly.)

c. penguin(X) ⇒ ¬can fly(X). (Penguins cannot fly.)

d. penguin(X) ⇒ bird(X) ∧ ab2(X).

e. bird(X) ⇒ creature(X) ∧ ab1(X).

f. creature(fred).

g. bird(wilma).

h. penguin(barney).

i. distinct(fred,wilma,barney).

Show that we can infer that Wilma can fly but Fred and Barney cannot, by circumscribing over

ab1 and ab2 in parallel, letting can fly vary.

6*. Show that formula (5) in section 3.2.2 is a consequence of formula (7), for all formulas α.

7*. Show that 2.6 in section 3.2.2 is equivalent to formula 2.5.

8. Show that formulas 3.1 and 3.4 in section 3.2.2 together imply the formula

∀Xegg(X)⇒fresh(X)

9. Consider the deduction theorem “If φ ⊢ ψ then ⊢ φ⇒ψ.”
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a. Prove that this theorem holds in a theory with circumscription.

b. Prove that it holds in a minimal models theory.

c. Prove that it does not hold in Reiter’s default logic.

10.* Prove formulas 8, 9b, 10, 11, 13 in section 3.3 from axioms 1-5.

11. In first-order logic, one can make inferences from disjunction using the rule of Splitting: if

P ⊢ R and Q ⊢ R then P ∨Q ⊢ R.

a. Show that if the default rules “Birds can typically fly,” and “Bats can typically fly,” are written

in the forms “bird(X) : M(can fly(X)) / can fly(X)” and “bat(X) : M(can fly(X)) / can fly(X)”,

then splitting fails. The conclusion “can fly(tweety)” cannot be inferred from “bat(tweety) ∨

bird(tweety)”, though it can be inferred from “bat(tweety)” and from “bird(tweety)”.

b. Show that the problem in (a) goes away if these default rules are written using the axioms

“bird(X) ∧ ¬ab(X) ⇒ can fly(X)” and “bat(X) ∧ ¬ab(X) ⇒ can fly(X)” and the default rule “:

M(¬(ab(X)) / ¬ab(X)”.

c.* Given that P(X | E)=a and P(X | F)=b, show that P(X | E ∨ F) ≥ ab / (a+b−ab).

12.* Show that the maximum entropy assumption justifies the independence assumptions used

for evidence combination in section 3.3.3. Specifically, show that given values for P(X), P(X | E),

and P(X | F ), the maximum entropy solution satisfies the equations P(E ∧ F | X) = P(E | X)

P(F | X) and P(E ∧ F | ¬X) = P(E | ¬X) P(F | ¬X).

You may use the following outline for the proof:

a. Use the frame of discernment

E1 = X ∧A ∧B. E2 = X ∧A ∧ ¬B.
E3 = X ∧ ¬A ∧B. E4 = X ∧ ¬A ∧ ¬B.
E5 = ¬X ∧A ∧B. E6 = ¬X ∧A ∧ ¬B.
E7 = X ∧ ¬A ∧B. E8 = ¬X ∧ ¬A ∧ ¬B.

b. Show that the desired independence conditions are equivalent to the equations p1p4 = p2p3

and p5p8 = p6p7.

c. Set up the constraints P(X) = x, P(¬X) = 1 − x, P(X | E) = e, P(X | F ) = f , in terms of

the pi.

d. Apply the method of Lagrangian multipliers to set up constraints on the value of the pi that

maximize the entropy −
∑
pi ln pi subject to the constraints derived in (c). Derive the equations in

(b) from these constraints.

Note: This is not a complete proof, since it does not show that this solution is a maximum rather

than a minimum or other point of zero derivative. Do not worry about it.

111


