
Chapter 2

Logic

Let us admit what all idealists admit: that the nature of the world is hallucinatory. Let

us do what no idealist has done: let us look for the unrealities that confirm that nature.

We shall find them, I believe, in the antinomies of Kant and in Zeno’s dialectic.

“The greatest sorcerer [writes Novalis memorably] would be the one who bewitched him-

self to the point of taking his own phantasmagoria for autonomous apparitions. Would

not this be true of us?”

I believe that it is. We (the undivided divinity that operates within us) have dreamed the

world. We have dreamed it strong, mysterious, visible, ubiquitous in space and secure in

time; but we have allowed tenuous, eternal interstices of injustice in its structure so we

may know that it is false.

— Jorge Luis Borges, “Avatars of the Tortoise,” Other Inquisitions

To express knowledge about particular domains, we need to develop languages, to define their

meaning, and to describe what kinds of inferences they allow. It turns out that several basic issues

in defining languages, semantics, and inference techniques are important in many different domains

of application. It makes sense, therefore, to address these questions once and for all abstractly. That

is, we will look first for a general schema for defining languages which handles these common basic

issues elegantly and effectively; we can then use this schema to define a particular language for a

particular domain. Such a schema is called a logic.

The best known logics, and the most often used, are propositional logic and classical first-order

logic. We assume that the reader is familiar with these; sections 2.2 and 2.3 provide a brief review.

Besides these standard logics, however, a number of non-standard logics have been proposed for use

in AI. These non-standard logics typically modify the standard logics in two ways. First, they allow

sentences that say something about other sentences; this is the subject of sections 2.5 through 2.8.

Second, they deal with uncertain and tentative information; this is the subject of chapter 3.

21

2.1 Logical Systems and Languages

A language is a collection of meaningful strings, called sentences. A logical system (or simply logic)

is a method for defining languages and their meanings. A logic consists of

• A set of logical symbols.

• A characterization of the possible non-logical symbols that can be defined, and the types of

meanings they can be given.

• Syntactic rules for constructing meaningful sentences out of logical and non-logical symbols.

• A characterization of proofs.

• Semantic rules for determining the meaning of a sentence, using the syntax of the sentence,

and the meanings of the constituent non-logical symbols.

The structure of a logic is roughly analogous to that of a programming language.1 The logical

symbols correspond to the reserved words or symbols of the programming language. The non-

logical symbols correspond to user-defined identifiers (variable names, function names, and so on).

The syntactic rules for constructing a sentence in a logic are analogous to the syntactic rules for

constructing a program in the programming language. The semantic rules that define the meaning

of a sentence are weakly analogous to semantic rules that define what a program does. Ordinary

programming languages have no analogue of an inference rule or an axiom.

In the logics we will study, symbols are atomic; the particular sequence of characters that compose

them are not significant. (By contrast in natural language, the form of a word often carries semantic

information.) Naturally, we will use symbols that resemble English words of related meaning. When

we need to name an individual object of a particular type, we will often give it a name consisting of

the type followed by a number or letter; thus, a chair might be named by the symbol “chair34” or

“chairb”.

A proof is a syntactic structure; it is made of symbols organized according to specific rules. The

hypotheses and conclusion of a proof are sentences that occupy a distinguished position in the proof;

if there is a proof of a conclusion from a set of hypotheses, then it is legitimate to infer the conclusion

given the hypotheses. Proofs may take many different forms, depending on the particular logic. For

example, in an axiomatic logic, the logic specifies a set of logical axioms and a set of inference rules,

which allow a sentence φ to be derived from a set of sentences Γ. A proof is then a sequence of

sentences such that each sentence is either a logical axiom, or is a hypothesis, or is derivable from

previous sentences via some inference rule.

An interpretation for a language L is a definition of each of the non-logical symbols of the

language in terms of some domain. A semantics for a logic is a definition of the truth (or other

characteristic) of sentences in a language in the logic in terms of the interpretation. If I is an

interpretation of L and φ is a sentence in L that is true in I, we write I |= φ (read “I satisfies φ”

or “I is a model for φ”. The symbol |= is called the “double turnstile”.) Similarly, if Q is a set of

interpretations, and φ is true in all the interpretations in Q, we write Q |= φ. We often identify a

1Historically, of course, programming languages were developed later than logical notation.

22

set of sentences Ψ with the set of all interpretations in which all the sentences of Ψ are true. Under

this identification, we can write Ψ |= φ to mean that, for any interpretation I, if I is a model for

all the sentences in Ψ, then I is also a model for φ.

If φ is true in all interpretations whatever, then we write |= φ; such a φ is said to be universally

valid. A universally valid sentence is thus one which is true purely by virtue of the logic, independent

of what interpretation is given to the language.

The above concept of satisfying a model is a semantic concept; it relates to the meaning of a

sentence. There is an analogous syntactic concept, based on the idea of a proof. If there is a proof of

φ from hypotheses Ψ, then we write Ψ ⊢ φ (read “φ is derivable from Ψ.” The symbol ⊢ is called the

single turnstile.) If φ is derivable without any hypotheses, then we write ⊢ φ. A set of hypotheses

Ψ is inconsistent if, for some sentence φ, both φ and its negation2 can be proven from Ψ.

The semantic concept of validity and the syntactic concept of provability are connected by the

logical properties of soundness and completeness. A logic is sound if its proof theory preserves truth;

if the sentences in Ψ are true in an interpretation I and φ can be inferred from Ψ, then φ is also

true in I. In other words, a logic is sound just if, for all Ψ and φ, Ψ ⊢ φ implies that Ψ |= φ. A

logic is complete if any valid conclusion can be proven; that is, for any Ψ and φ, Ψ |= φ implies

Ψ ⊢ φ. In a complete logic, the proof system is strong enough to derive any conclusions which are

necessarily valid, given a set of axioms. Godel’s completeness theorem proves that the predicate

calculus is complete.

The term “complete” is also used in a different sense in logic. An axiom system is said to be

complete if, for any sentence φ in the language, it is either possible to prove φ or to prove the negation

of φ. Thus, completeness of an axiom system means that the axioms are strong enough to characterize

every sentence as provably true or false. Completeness of a logic means that the proof theory can

extract all the necessary consequences out of a set of axioms. Godel’s incompleteness theorem

proves that the standard axioms of arithmetic are incomplete.(More precisely, Godel’s theorem shows

that any recursively enumerable, consistent, axiomatization of arithmetic is incomplete [Nagel and

Newman, 1958].)

The presentation of an axiom system may enumerate each individual axiom, or it may use an

axiom schema to generate a class (generally infinite and recursively enumerable) of axioms. An

axiom schema is specified by giving some rule which allows us to distinguish members of the class

from non-members. For example, we may specify the axiom schema, “For any sentences φ and ψ,

the sentence ‘φ ∧ ψ⇒φ’ is an axiom.” This axiom schema asserts that any sentences of the given

form is an axiom: thus, “can fly(pigs) ∧ 1+1=2 ⇒ can fly(pigs)” is an axiom. For another example,

the principle of mathematical induction on the integers is an axiom schema.3 It has the following

form: For any formula α(X) with one free variable X, the following is an axiom:

[α(0) ∧ [∀N α(N)⇒α(N + 1)]] ⇒∀N α(N)

Thus, for example, taking α(X) to be X < X + 1, we may construct the axiom

2This definition assumes that the concept of negation is part of the logic. An alternative definition, that avoids
this assumption, is that Ψ is inconsistent if all sentences can be proven from Ψ.

3Strictly speaking, this is not the full principle of mathematical induction, but it is the closest one can come in a
first-order schema.

23

(0 < 0 + 1) ∧ [∀N N < N + 1 ⇒ (N + 1) < (N + 1) + 1] ⇒∀N N < N + 1

Statements about a logical language, whether phrased formally or informally, are said to be meta-

linguistic or to be in a meta-language. For example, any axiom schema, such as the one given above,

“For any sentences, φ and ψ, the sentence ‘φ∧ψ⇒φ’ is an axiom,” is a meta-linguistic statement; it

is a sentence about certain sentences in the formal language; it is is not in the language itself. The

formal language itself is often called the object language. A theory is a collection of sentences in an

object language, together with all the consequences of those sentences. The base sentences of the

theory, from which other sentences are deduced, are called proper axioms, as distinguished from the

logical axioms, which hold for all theories in all languages in this logic.

2.2 Propositional calculus

The proposition calculus (also called “propositional logic” or “sentential logic”) describes how sen-

tences can be combined using Boolean operators. The logical symbols of this theory are the Boolean

operators: ¬ (not), ∧ (and), ∨ (or), ⇒ (implies), ⇔ (if and only if) and ∨̇ (exclusive or).

Parentheses and brackets are used for grouping. The non-logical symbols, called “sentential con-

stants,” denote atomic sentences; we will here use lower-case letters. For example, p might be the

proposition “Hydrogen is lighter than oxygen,” q might be the proposition “All ducks are fish,” and

r might be the proposition “Roger Maris hit sixty-one home runs in 1961.”

A sentence in the propositional calculus is defined recursively as follows:

Definition 2.1: A string φ is a sentence if and only if

a. φ is a sentential constant; or

b. φ has one of the following forms: ¬ψ; (ψ ∧ ζ); (ψ ∨ ζ); (ψ⇒ζ); (ψ⇔ζ); (ψ∨̇ζ); where ψ and ζ

are (recursively) sentences.

Thus, given the sentential constants p, q, and r, sentences include ‘(p∨¬q)’, ‘((p⇔q)⇒(¬p∨̇r))’,

and so on.

(Note on notation: In this book, we will often leave out some parentheses, with the convention

that ¬ has higher priority than ∨, ∧, and ∨̇, which have higher priority than ⇒ or ⇔. Thus

‘¬p ∧ q⇒r’ is interpreted as ‘((¬p ∧ q)⇒r)’. Also we use “running” sequences of ⇔ and ∨̇. Thus

‘p⇔q⇔r’ means that all three sentences p, q, and r have the same truth value, rather than being

equivalent to ‘(p⇔q)⇔r’. Similarly ‘p∨̇q∨̇r’ means that exactly one of p, q, and r is true, rather

than being equivalent to ‘(p∨̇q)∨̇r’. Such sequences of ⇔ or ∨̇ should be considered as constituting

a single operator on the propositions connected, rather than a collection of operators. Thus, strictly

speaking it would be better to write “equivalent(p, q, r)” or “exactly one(p, q, r)”, but the other

notation is standard and more readable.)

The domain of the propositional calculus consists of the two truth values ‘TRUE’ and ‘FALSE’.

Given a set of sentential constants S, an interpretation for S is a mapping from S to the values

24

‘TRUE’ and ‘FALSE’. For example, if S = {p, q, r}, then one interpretation I would be the mapping

I(p)=TRUE; I(q)=FALSE; I(r)=FALSE. The semantics of the propositional calculus then defines

how an interpretation I is extended from the sentential constants to all the constants in the language.

This is done according to the following recursive rule:

Definition 2.2: Let S be a set of sentential constants and let I be an interpretation over S. Then

• I(¬φ)=TRUE if I(φ) = FALSE and TRUE otherwise.

• I(φ ∨ ψ)=TRUE if either I(φ)=TRUE or I(ψ)=TRUE; otherwise it is FALSE.

• I(φ ∧ ψ)=TRUE just if both I(φ)=TRUE and I(ψ)=TRUE;

• I(φ⇒ψ)=TRUE just if either I(φ)=FALSE or I(ψ)=TRUE;

• I(φ⇔ψ)=TRUE just if I(φ) is the same as I(ψ); and

• I(φ∨̇ψ)=TRUE just if one but not both of I(φ) and I(ψ) is TRUE.

At first glance, Definition 2.2 would seem to be no more than a tautologous translation of the

formal symbols for Boolean connectives into the corresponding English words. In fact, however, it is

more than that; it allows us to establish a correspondence between a string of symbols such as ¬(p∨

¬q) and the semantic objects TRUE and FALSE, given the truth of the sentential constants. The

form of the definition establishes important constraints on the meaning of the Boolean connectives;

the truth of a complex sentence depends only on the truth values of its components and on nothing

else. Thus, for example, there is no way in the propositional calculus of expressing relations between

sentences such as ‘φ is the same sentence as ψ’ or ‘φ can be proven from ψ’. In particular, the

material implication ‘φ⇒ψ’ means only that either φ is false or that ψ is true; it signifies no further

connection between the two sentences. Readers who are still unconvinced that there is anything to

the semantic definition 2.3 are asked to suspend judgement until they have seen the more complex

semantics in sections 2.3.2 and 2.7.1.

There are several ways of defining sound and complete inference systems for the propositional

calculus. The easiest method for verifying proofs by hand is to use truth tables. However, to define

this formally as a proof system involves giving a syntactic characterization of a truth table as a

system of symbols, which is messy though not difficult. Table 2.1 shows an axiomatic inference

system for the propositional calculus, and table 2.2 shows some sample proofs.

A universally valid sentence in the propositional calculus is called a tautology; an inference in the

propositional calculus is called a tautological inference.

The propositional calculus is rarely adequate for inference in AI domains. The only inferences it

legitimates are the moving of Boolean operations around fixed sentences. This is sufficient to solve

some combinatorial problems in fixed domains. For instance, the propositional calculus is adequate

for the formulation and solution of puzzles like, “Jones, Smith and Robinson are a fireman, an

engineer, and a conductor, not necessarily in that order. Jones owes the fireman thirty dollars. The

conductor’s wife never allows him to borrow money. Smith is a bachelor. Who has what job?”

But most useful inferences involve applying a general rule to a specific case, which is beyond the

power of the propositional calculus. Nonetheless, it deserves mention because it forms the basis for

25

Axioms: For any sentences α, β, γ, any of the following sentences is an axiom:

PROP.1. α⇒(β⇒α)

PROP.2. (α⇒(β⇒γ))⇒((α⇒β)⇒(α⇒γ))

PROP.3. (¬α⇒¬β)⇒((¬α⇒β)⇒α)

As an aid in reading these axioms, note that α⇒(β⇒γ) means the same as (α ∧ β)⇒γ.

Definitional equivalences: (These axioms serve only to define the other Boolean operators in terms
of implication and negation. They can be omitted, if we restrict our language to have only negation
and implication.)

PROP.4. (α⇔β)⇒(α⇒β)

PROP.5. (α⇔β)⇒(β⇒α)

PROP.6. (α⇒β)⇒((β⇒α)⇒(α⇔β))

PROP.7. (α ∨ β)⇔(¬α⇒β)

PROP.8. (α ∧ β)⇔¬(α⇒¬β)

PROP.9. (α∨̇β)⇔(α⇔¬β)

Rule of inference (Modus Ponens): For any two sentences φ and ψ, ψ may be inferred from the two
sentences φ and φ⇒ψ.

Proof: A proof of theorem φ from hypotheses Ψ is a sequence of sentences ending in φ such that
each sentence is either

• An element of Ψ; or

• An axiom; or

• Inferrable from earlier sentences in the proof via modus ponens.

Table 2.1: Axioms for the Propositional Calculus

26

Note: The proof proper is just the sequence of sentences. The justifications on the side are just
comments, to aid the reader.

Given { }: To prove: p ⇒ p
Step Justification
1. p ⇒ ((p ⇒ p) ⇒ p) PROP.1: α=p; β=(p ⇒ p).
2. (p ⇒ ((p ⇒ p) ⇒ p)) ⇒ ((p ⇒ (p ⇒ p)) ⇒ (p ⇒ p)) PROP.2: α=p; β=(p ⇒ p); γ=p.
3. (p ⇒ (p ⇒ p)) ⇒ (p ⇒ p) Modus Ponens: (1) and (2).
4. p ⇒ (p ⇒ p) PROP.1: α = β =p
5. p ⇒ p Modus Ponens: (4) and (3).

Given { p ∧ q }: To prove: q
Step Justification
1. p ∧ q Given.
2. (p ∧ q) ⇔ ¬(p ⇒ ¬q). PROP.8: α =p, β =q.
3. ((p ∧ q) ⇔ ¬(p ⇒ ¬q)) ⇒ PROP.4: α=(p ∧ q) ⇔ ¬(p ⇒ ¬q)

((p ∧ q) ⇒ ¬(p ⇒ ¬q)) β=(p ∧ q) ⇒ ¬(p ⇒ ¬q)
4. (p ∧ q) ⇒ ¬(p ⇒ ¬q) Modus Ponens: (2) and (3).
5. ¬(p ⇒ ¬q) Modus Ponens: (1) and (4).
6. ¬(p ⇒ ¬q) ⇒ (¬q ⇒ ¬(p ⇒ ¬q)) PROP.1: α=¬(p ⇒ ¬q); β=¬q.
7. ¬q ⇒ ¬(p ⇒ ¬q) Modus Ponens: (5) and (6).
8. ¬q ⇒ (p ⇒ ¬q) PROP.1: α=¬q; β=p.
9. (¬q ⇒ ¬(p ⇒ ¬q)) ⇒ ((¬q ⇒ (p ⇒ ¬q)) ⇒ q) PROP.3: α=q; β=(p ⇒ ¬q).
10. (¬q ⇒ (p ⇒ ¬q)) ⇒ q Modus Ponens: (7) and (9).
11. q. Modus Ponens: (8) and (10).

Table 2.2: Proof in the Propositional Calculus

first-order logic, and because it offers an elementary testing ground for developing logical theories.

When alternative forms of logic are studied, they are generally developed first as extensions to

propositional calculus, and only later as extensions to first-order logic.

2.3 Predicate Calculus

The predicate calculus, also called first-order logic, is by far the most important and commonly used

logical system. We will use this logic for most of our domain theories. It is known that the predicate

calculus is sufficiently powerful for classical mathematics.

The predicate calculus extends propositional calculus in two directions. First, it provides an inner

structure for atomic sentences; these are viewed as expressing relations between things. Second, it

gives us the means to express, and reason with, generalizations; we can say that a certain property

holds of all objects, of some object, or of no object.

2.3.1 Syntax of Predicate Calculus

The logical symbols of predicate calculus are the Boolean operators of propositional logic, the

quantifiers ∀ (for all) and ∃ (there exists), the comma, the open and close parentheses, and an

infinite collection of variable symbols. Non-logical symbols are divided into three kinds: con-

27

stant symbols, function symbols, and predicate symbols. Associated with each function symbol

and predicate symbol is a positive integer, fixing the number of arguments that the symbol may

take. In this book, we will use strings with italicized upper-case letters, such as “A”, “X1”, or

“THE DAY THE WORLD STOOD STILL”, as variables, and strings with lower-case letters,

such as “john”, “father of”, and “impossible to get started”, as non-logical symbols.

The following definitions are used to define the first-order language L with a given set of non-

logical symbols.

Definition 3.1: The string τ is a term if one of the following holds:

a. τ is a constant symbol; or

b. τ is a variable symbol; or

c. τ has the form β(τ1, τ2 . . . τk) where β is a k-place function symbol, and each of the τi is a

term.

Definition 3.2: The string φ is a formula of L if one of the following holds:

a. φ has the form γ(τ1, τ2 . . . τk), where γ is a k-place predicate symbol, and each of the τi are

terms. (These are called atomic formulas.)

b. φ has one of the following forms: ‘¬ψ’; ‘(ψ ∧ ζ)’; ‘(ψ ∨ ζ)’; ‘(ψ⇒ζ)’; ‘(ψ⇔ζ)’; ‘(ψ∨̇ζ)’; where

ψ and ζ are (recursively) formulas.

c. φ has the form ‘∃µψ’ or ‘∀µψ’, where µ is a variable symbol and ψ is a formula.

Definition 3.3: An occurrence of a variable µ within a formula φ is bound if it is within an

occurrence in φ of a formula of the form ∃µψ or ∀µψ. An occurrence which is not bound is free.

(We speak of free occurrences, rather than free variables, because in a formula like

“(female(X) ∨ ∃X male(X))” the first occurrence of X is free, and the second is bound.)

Definition 3.4: A formula φ is closed if every occurrence of a variable in φ is bound. Otherwise it

is open in the variables that appear free. A sentence is a closed formula.

For example, suppose that our language contains the constant symbols “john” and “mary”; the

one-place function “father of”; the two-place function “common ancestor of”; the one-place relations

“male” and “female”, and the two-place relation “married”. Then we can use the above definitions

to classify strings such as the following:

Terms: “john”, “father of(john)”, “common ancestor of(mary,SOMEONE)”,

“common ancestor of(father of(X), common ancestor of(Y ,mary))”

Atomic formulas: “male(X)”, “female(john)”, “married(Y ,father of(Z))”

“male(common ancestor of(X,john))”

Complex formulas: “¬male(john)”, “(female(Y) ⇒ female(mary))”,

“∀PP (married(PP,QQ) ∨ male(father of(PP)))”

Closed formulas: “female(john)”, “(married(john,mary) ∨ ∃X (male(X)))”

“¬∃QQ∀PP (married(PP,QQ) ∨ male(father of(PP)))”

28

Some standard notational conventions will be followed in this book. We will use open formulas

as independent sentences with the convention that free variables are considered to be universally

quantified with the widest possible scope. Variables are displayed subscripted next to the quantifier

that binds them. When the same quantifier occurs several times in succession, they are collapsed

into one. In using mathematical symbols which are standardly written between their arguments

rather than before, (infix, rather than prefix), we will adopt mathematical convention, rather than

insist on forms like +(1,X) or ∈ (X,S). Thus we may write “∃X,Y X+Y < P +Q” as an alternative

notation for “∀P∀Q∃X∃Y < (+(X,Y),+(P,Q))”. Quantifiers are taken to have the lowest possible

priority, and therefore the largest scope possible in the sentence; they apply until the end of the

sentence or until the close of a bracket. For example, the sentence “∃X p(X) ⇒ p(a)” is read as

“∃X [p(X) ⇒ p(a)]” and not as “[∃X p(X)] ⇒ p(a)”.

There are many ways of defining proof systems in the predicate calculus. The most useful of

these, for the purposes of actually writing down proofs, is natural deduction, illustrated in the chapter

appendix. Resolution, with Skolemization, is a proof system that is relatively efficient to implement

and control, but it is complex and unintuitive. Table 2.3 displays an axiomatic proof system for

the predicate calculus. This system is not particularly easy to use, either in hand construction of

proofs or in computation, but it have the advantage of brevity.

Definition 3.5: Let α be any formula. A formula β is a closure of α if (i) β consists of α preceded

by some number of universal quantifiers with variables; and (ii) β is closed. Example: the formula

‘∀A∀B∀C∃X p(X,A) ∨ q(C,A)’ is a closure of ‘∃X p(X,A) ∨ q(C,A)’.

2.3.2 Tarskian Semantics

The semantics for first-order logic is called Tarskian semantics, after the logician Alfred Tarski. As

in propositional calculus, we begin by defining a domain D for the formal language; we then state

how an interpretation can relate the non-logical symbols to the domain; lastly, we describe how the

truth of sentences is built up out of the meanings of the non-logical symbols. The semantics of the

propositional calculus uses only two semantic entities: the truth values TRUE and FALSE. The

predicate calculus, by contrast, needs a richer interpretation, with a universe of objects, tuples of

objects, and sets of tuples of objects. We will interpret relations holding on terms as statements that

a certain tuple of objects is an element of a certain set of tuples. As with the propositional calculus,

the definition of the semantics will at first look almost circular and tautologous, but in fact imposes

substantial and important constraints on the meaning of the language. In particular, the use of set

theory as a basis for the interpretation means that the language is sensitive only to the extensional

properties of its symbols; that is, to the entities or sets that they describe and not to the form of

the description. Moreover, we can use our understanding of set theory to analyze properties of the

logic; for example, to prove that first-order logic is sound and complete.

(Note: the remainder of section 2.3.2 involves rather abstract logic. It may be omitted without

loss of continuity. In the rest of this book, only the end of section 2.7.1 depends on a detailed

understanding of Tarksian semantics.)

A domain D for a first order language is a set of entities or individuals. A constant symbol

denotes an individual in D. A k-place predicate symbol γ denotes an extensional relation Γ, which

29

For any formulas α, β, γ, any closure of any of the formulas FOL.1-FOL.5 is an axiom:

FOL.1 α⇒(β⇒α)

FOL.2 (α⇒(β⇒γ))⇒((α⇒β)⇒(α⇒γ))

FOL.3 (¬α⇒¬β)⇒((¬α⇒β)⇒α)

FOL.4 (∀µ(α⇒β))⇒(∀µα⇒∀µβ)

FOL.5 α⇒∀µα where µ does not appear free in α

FOL.6 Let α and β be formulas that are identical, except that each free occurrence of the variable µ in
α is replaced in β by the term τ . τ is a term that is free of µ in α; that is, no free occurrences
of µ in α are within the scope of any quantifier ∀ν or ∃ν, where ν is a variable occurring in τ .
Then any closure of the formula β⇒∃µα is an axiom.

For example, the sentence “outfielder(mickey mantle) ⇒ ∃X outfielder(X)” is an axiom, with
µ = X and τ =mickey mantle. The condition that τ must be free of µ in α is needed to block
invalid axioms like

∀Y Y < Y + 1 ⇒∃X∀Y Y < X

which is of a similar form, with µ = X and τ = Y + 1

Definitional equivalences: Any closure of the following formulas is an axiom:

FOL.7 (α⇔β)⇒(α⇒β)

FOL.8 (α⇔β)⇒(β⇒α)

FOL.9 (α⇒β)⇒((β⇒α)⇒(α⇔β))

FOL.10 (α ∨ β)⇔(¬α⇒β)

FOL.11 (α ∧ β)⇔¬(α⇒¬β)

FOL.12 (α∨̇β)⇔(α⇔¬β)

FOL.13 (∀µα)⇔(¬∃µ¬α)

Rule of inference (Modus Ponens): For any two formulas φ and ψ, ψ may be inferred from the two
formulas φ and φ⇒ψ.

Proof: A proof of theorem φ from hypotheses Ψ is a sequence of sentences ending in φ such that
each sentence is either

• An element of Ψ; or

• An axiom; or

• Inferrable from earlier sentences in the proof via Modus Ponens.

Table 2.3: Axioms for First-Order Logic

30

is a set of k-tuples of elements in D (a subset of Dk). For example, the predicate “married,” in

its standard interpretation denotes the extensional relation MARRIED which is just the set of all

pairs of married people: MARRIED = { < Douglas Fairbanks, Mary Pickford >, < Mary Pickford,

Douglas Fairbanks >, < Queen Victoria, Prince Albert > . . . } A k-place function symbol β denotes

an extensional total function Θ from Dk to D; a set of k + 1-tuples, whose last element depends

functionally on the first k elements. This condition of functional dependence means that any k-

tuple of elements in D — that is, any element of Dk — appears as the first k elements of exactly

one k + 1-tuple in the set Θ. For example, the function symbols “father of” denotes the function

FATHER OF, which is the set of pairs of each person with his/her father: FATHER OF = { <

Cain, Adam >, < Elizabeth I, Henry VIII > . . . }

An interpretation I for a language L associates each of the constant symbols in L with an element

of D; each of the k-place function symbols with a function from Dk to D; and each of the k-place

predicate symbols with a k-place relation on D, a subset of Dk. For instance, let L contain constant

symbols “john” and “mary”; function symbol “father of”; and predicate symbols “married”. One

interpretation for L would map “john” onto some particular John Doe; “mary” onto Mary Roe;

“father of” onto the actual FATHER OF function; “married” onto the actual MARRIED relation;

and so on. Many other interpretations are possible; for instance, there is an interpretation that

maps “mary” onto Thutmose III, “john” onto Lizzie Borden, “father of” onto the function mapping

each person to the oldest descendant of his paternal grandfather, and “married” onto the relation

between shoe salesmen and their customers. Given a symbol α and an interpretation I, we use the

notation αI to mean the value that I associates with the symbol α. Thus “johnI” is the person

John Doe; “father ofI” is the actual FATHER OF function; and so on.

Defining the semantics of L is a little tricky, because the significance of a variable in a term

depends how the variable is quantified, which is specified in a context external to the term itself.

We therefore cannot use a simple recursive definition, building up the interpretation from inside to

outside, as we did for propositional logic. Rather, our definition proceeds in two stages. First, we

define the meaning of atomic formulas with no variables or quantifiers. This is a straightforward

recursive definition from inside to outside: the denotation of a complex terms is defined in terms

of the denotation of the function symbol and the denotation of its arguments; and the truth of an

atomic formula is defined in terms of the meanings of the predicate and its arguments. Second, we

define the meaning of complex sentences. The truth of quantified sentences is defined in terms of

substitutions: The formula ∀µα is true if α holds for all potential substitutions for µ; the statement

∃µα is true if α is true for some potential substitution for µ. The truth of a Boolean combination

of sentences is defined as a Boolean combination of the truths of its components.

Definition 3.6: A ground term is a term containing no variables. A ground formula is a formula

containing no variables, free or bound.

Definition 3.7: If τ is a ground term in L and I is an interpretation of L, then there is an individual

u ∈ D that is denoted by τ under I. We write u = τI . We determine the denotation of τ as follows:

a. If τ is a constant symbol α, then τ denotes the individual that I associates with the symbol.

τI = αI .

b. Otherwise, τ has the form β(τ1 . . . τk) In this case, the denotation of τ is the result of applying

31

the extensional function which I associates with β to the denotations of τ1 . . . τk.

< τI1 . . . τ
I
k , τ

I > ∈ βI

Definition 3.8: Let φ = γ(τ1 . . . τk) be an atomic ground sentence. φI=TRUE under interpretation

I just if the relation γI holds on the objects τI1 . . . τ
I
k ; that is, if the tuple < τI1 . . . τ

I
k > is an element

of γI . Otherwise, φI = FALSE.

Definitions 3.7 and 3.8 just formalize the natural interpretation of ground terms and formu-

las. For example, let I maps the constant “isaac” onto Isaac (the Biblical patriarch), the func-

tion symbol “father of” onto the real function FATHER OF, and the predicate “male” onto the

one-place relation of being male. Then the denotation of “isaac” is Isaac; the denotation of “fa-

ther of(isaac)” is the image of Isaac under the mapping FATHER OF, namely Abraham; and the

sentence “male(father of(isaac))” is true, because the tuple < Abraham > is an element of the

relation MALE.

We next define the truth of complex closed formulas. Boolean operators are handled just as in

propositional logic:

Definition 3.9: Let I be an interpretation of L, and let φ and ψ be closed formulas in L. Then

a. Let ζ = ¬φ. Then ζI=TRUE just if φI=FALSE; otherwise ζI=FALSE.

b. Let ζ = φ∨ψ. Then ζI=TRUE just if either φI=TRUE or ψI=TRUE; otherwise ζI=FALSE.

The remaining Boolean operators are handled similarly, as in Definition 2.2.

The treatment of quantifiers is trickier, as we mentioned above. Intuitively, we would like to say

that a formula ∃µα is true just if there is some value τ that makes α true when τ is substituted for µ.

For example, the formula “∃XX+X = X ·X” is true because when ‘2’ is substituted for ‘X’, we get

the true sentence “2 + 2 = 2 · 2”. However, it would not be correct to demand that this substituted

value be a ground term in L, since there may be objects in the domain D that are not named by any

term in L. (In fact, L may have no constant symbols whatever, in which case there are no ground

terms.) Rather, what we want to say is that ∃µα is true if there is some object u in D such that, if

u were given the name δ, then the result of substituting δ for µ in α would be a true sentence. That

is what the next two definitions do. Definition 3.10 formalizes the notion of adding a new constant

symbol δ to denote object u. Definition 3.11 then uses that to define the meaning of a quantified

sentence in terms of the sentences in an extended language with new constants substituted

We assume that there exists an infinite collection of symbols that are not used in the language

L, and which are therefore available for use as new constant symbols.

Definition 3.10: Let I be an interpretation of language L with domain D. Let u be any member

of D, and let δ be a symbol not in L. Then we define L∪ δ to be the first order language containing

all the symbols in L and also containing δ, used as a constant symbol. We define I ∪ (δ → u) to be

an interpretation of L ∪ δ with domain D with the following properties:

• For each symbol α ∈ L, αI∪(δ→u) = αI

• δI∪(δ→u) = u

32

EQL.1 For any term τ and variable µ, any closure of the formula ∃µ µ = τ is an axiom.

EQL.2 Let α(µ) be an open formula with free variable µ. Then any closure of the formula
∀X,Y X = Y ⇒ [α(X)⇔α(Y)] is an axiom.

Table 2.4: Axioms of equality

Definition 3.11: Let I be an interpretation of language L with domain D. Let δ be a symbol

not in L. For any formula α, let α(µ/δ) be the formula that is just like α, except that δ has been

substituted for every free occurrence of µ. (This can easily be defined formally by recursion over the

form of α.)

a. Let the closed formula ζ have the form ∃µα. Then ζI=TRUE just if there is some element

u ∈ D such that

α(µ/δ)I∪(δ→u) = TRUE

b. Let the closed formula ζ have the form ∀µα. Then ζI=TRUE just if, for every element u ∈ D,

it is the case that

α(µ/δ)I∪(δ→u) = TRUE

2.3.3 Other issues in first-order logic

Equality: First-order logic is often augmented by the equality relation “X = Y ”. The equals sign

may be considered as just a particular non-logical predicate symbol, described by axioms EQL.1 and

EQL.2 in table 2.4, or it may be considered an additional logical symbol, whose meaning is fixed in

the semantics: if τ1 and τ2 are ground terms, then the sentence τ1 = τ2 is true in an interpretation

just if τ1 denotes the same thing as τ2. Table 2.4 shows the two additional axiom schemas that are

needed to handle inference on equality.

As is standard, we will use the notation X 6= Y to mean that X is not equal to Y , and we will

string equal signs in expressions like X = Y = Z = W as an abbreviation for (X = Y) ∧ (Y =

Z)∧(Z = W). We will also use the k-place predicate “distinct(X1 . . . Xk)” to assert that the objects

X1 . . . Xk are all pairwise distinct. Thus, we have the definition

distinct(X1 . . . Xk) ⇔
∧

i6=j Xi 6= Xj .

Limited quantification: An often useful device in predicate calculus is to qualify a quantified

variable by limiting the class of values that it can take. We would like to express “Every positive

number has a positive square root,” as ∀X>0∃Y >0 Y · Y = X. Such expressions can be incorporated

as simple syntactic sugar4 for ordinary predicate calculus. In general, “Any X satisfying φ(X) also

satisfies ψ(X)”, can be translated “For any X, if φ(X) then ψ(X).” “There exists an X satisfying

φ(X) that satisfies ψ(X),” can be translated “There exists an X such that both φ(X) and ψ(X).”

Thus, the above sentence is equivalent to

∀X X > 0 ⇒∃Y Y > 0 ∧ Y · Y = X

4Syntactic sugar: a departure from or extension of the standard syntax of a language that increases readibility but
not expressive power. “Excessive syntactic sugar leads to cancer of the semi-colons.” (Alan Perlis)

33

Partial Functions: In our definition of the domain of an interpretation, we assumed that all

functions are total; that they were defined on every individual in the domain. Frequently, we would

like to use partial functions which are defined only on certain individuals. For example, in the

domain of family relationships, we might like to define a function “spouse” which maps a married

person to his/her spouse, and which is undefined on unmarried persons. However, this leads to

complications. For example, if Anne is unmarried, we would liked to say “¬∃X X =spouse(anne)”,

which contradicts axiom 6 above.

One way to handle this is to replace all function symbols by relation symbols. For example,

instead of defining “spouse(X)” as a function, we can define “spouse(X,Y)” as a relation, and add

an axiom that for any particular X, there is only one Y who is the spouse.

∀X,Y,Z [spouse(X,Y) ∧ spouse(X,Z)] ⇒ Y = Z

An alternative way to handle this formally is to add an additional element ⊥ (read “undefined”

or “bottom”) to the universe, and to say that all terms that intuitively are undefined formally have

a value of ⊥; any function with argument ⊥ evaluates to ⊥; no predicate holds on ⊥; and any

quantified variable µ is implicitly understood to have the qualification µ 6= ⊥. Thus, the above

sentence translates to “¬∃X 6=⊥X =spouse(anne).”

Sorted Logics: Partial functions are particularly common when a theory must express facts

about many different sorts of things. In such a theory, functions will generally be defined only on

arguments of the proper sort. For example, if we had a theory with times, places, and objects, then

we might have a function “midpoint(X,Y)” which mapped two places X and Y to their midpoint;

a function “where(O, T)” which is the place where O is at time T ; and so on. We would not wish

to apply “midpoint” to an object and a time, or “where” to two places. Most of the theories that

we will discuss use individuals of various sorts in this way.

Sorted logics are helpful in expressing such theories. Sorted logics are very much like typed

programming languages. A fixed set of sorts is defined at the outset. Each constant symbol, and each

quantified variable symbol is declared to be of a particular sort; each relational symbol is declared

to take arguments of a particular sort; each function is declared to take arguments of a particular

sort and to return a value of a particular sort. Formally, this can all be viewed as syntactic sugar,

which can be expanded to pure predicate calculus by adding the function “sort of(X)” mapping an

entity X to its sort; adding names for the sorts as constant symbols; and adding a few new axioms,

and a few new clauses to existing axioms, to reflect the sort declarations. In the example above,

we would add “place” “time”, and “object” as constants representing the separate sorts. We would

express the declaration of the sort of the “where” function with the two following axioms:

sort of(O)=object ∧ sort of(T)=time ⇒ sort of(where(O, T))=place.

[sort of(O) 6= object ∨ sort of(T) 6= time] ⇒ where(O, T) = ⊥.

A function or predicate symbol may be polymorphically sorted; that is, it may take arguments

of different sorts. For example, we will want the predicate X < Y to be defined whenever X and

Y are elements of the same quantitative sort, but not to be defined if X and Y have different

sorts (comparing weights to lengths). This corresponds to type overloading of function symbols in

34

programming languages; it is not a problem as long as the sort of any term can be determined given

the sorts of the arguments.

We will use sorted logics in a fairly informal way. We will define sorts, and we will declare the

sorts of our non-logical symbols. We will declare the sorts of quantified variables implicitly by the

predicates and functions which take them as arguments. (A common habit in AI papers is declare

the sorts of variables implicitly by the first letter of the variable symbol (shades of FORTRAN);

however, we will be using too many different sorts in this book to do that.) However, we will slough

over the difficult issues in developing a full theory of sorts, such as using hierarchies of sorts, and

combining sorts with set theory. The bibliography gives references for systematic studies of sorted

logics.

Common Errors: There are a number of errors in writing first-order formulas that often trap

beginning students.

One common error is to reverse the translations of limited quantification discussed above: to

represent “All crows are black” in the form ‘∀X crow(X) ∧ black(X)’ or to represent ‘Some crows

are black,” in the form ‘∃X crow(X) ⇒ black(X)’. One way to avoid this is to keep in mind what

these incorrect forms actually mean. The first form ‘∀X crow(X) ∧ black(X)’ is equivalent to

‘[∀X crow(X)] ∧ [∀X black(X)]’; i.e. “Everything in the world is both a crow and is black.” The

second form, ‘∃X crow(X) ⇒ black(X)’ is equivalent to ‘∃X ¬crow(X) ∨ black(X)’, which is equiv-

alent to ‘[∃X ¬crow(X)] ∨ [∃X black(X)]’; i.e., “Either there is something that is not a crow, or

there is something that is black,” which is true but uninteresting. Actually, if you ever find yourself

writing a formula of the form ‘∃Xα(X)⇒β(X)’, you have almost certainly made a mistake; this

formula will be true as long as there something in the universe satisfying ¬α(X).

A common error in looking for a representation for a sentence like, “If something is a crow,

then it is black,” is to suppose that the use of the word “something” indicates that an existential

quantifier should be involved. One is thus led to try the representation ‘∃X crow(X) ⇒ black(X)’,

which, as we have seen, means something quite different, or, worse yet, ‘[∃X crow(X)] ⇒ black(X)’,

which is not even a closed formula. (If the free variable is taken to be universally quantified, as in

our convention, then this means, “If there exists a crow, then everything is black.”) The problem

here arises from the English, which is misleading. What this sentence means is “Anything that is a

crow is also black,” or “For all things, if it is a crow then it is black;”, the correct representation is

‘∀X crow(X) ⇒ black(X).’

Another error is to read too much into the material implication ‘p ⇒ q’. Keep in mind that all

this means is that either p is false, or q is true. It does not mean that q can be derived from p; or

that q is true as a result of p; or that q is true after p is true; or that q would be true if p were

true. For example, suppose we wish to represent the rule “A sure sign of appendicitis is that, if you

push on the right side of the abdomen, then there will be pain on release.” The temptation is to

represent this statement as a biconditional between having appendicitis and the implication, “If you

push, then there will be pain on release.”

appendicitis(X) ⇔ [push(rightside(abdomen(X))) ⇒ release pain(X)]

(These primitives are bogus, of course, but the mistake we are discussing can be made even in a

reasonable language that includes the temporal relations involved.) The forward implication here

35

appendicitis(X) ⇒ [push(rightside(abdomen(X))) ⇒ release pain(X)]

is correct. If X has appendicitis, then if you push his abdomen, he will have pain. The backwards

implication, however,

[push(rightside(abdomen(X))) ⇒ release pain(X)] ⇒ appendicitis(X)

is not correct. The antecedent “push(rightside(abdomen(X))) ⇒ release pain(X)” is true whenever

you don’t push on the abdomen. This rule, therefore, states that anyone whose abdomen is not

pushed has appendicitis. The correct form for this implication is that, if the abdomen is pushed and

there is pain, then there is appendicitis.

[push(rightside(abdomen(X))) ∧ release pain(X)] ⇒ appendicitis(X)

The two correct formulas above can be combined into a single rule as follows:

push(rightside(abdomen(X))) ⇒ [release pain(X) ⇔ appendicitis(X)]

If you push on the abdomen, then pain occurs just if there is appendicitis.

The misuse of the implication sign is even more common in modal theories (see section 2.7).

2.4 Standard First-Order Notations and Theories

At this point, we may introduce a number of standard logical and mathematical notations used in

first-order theories. We expect that the reader is familiar with the concepts and notations introduced

below. We go through them to fix notation and to show how they fit into formal first order theories.

Unique existence: The notation ∃1
µ α(µ), where µ is a variable symbol, and α(µ) is a formula

with the free variable µ means “There exists a unique µ for which α holds.” It may translated into

the form

∃µ α(µ) ∧ ∀ν(α(ν)⇒ν = µ)

The definite descriptor: If α(µ) is a first-order formula with a free variable µ which is true

of exactly one individual, then the notation ι(µ)α(µ) is a term that denotes that unique individual.

For example, the tallest building in the world is denoted

ι(X) (building(X) ∧ ∀Y (building(Y) ⇒ height(X) ≥ height(Y)))

We will use expressions of the form ι(µ)α(µ) as ordinary terms in predicate calculus formulas. We

can view the use of this expression in a sentence as syntactic sugar for a more complex sentence

that asserts that some unique object has the property α, and that the rest of the statement is true

of that object. In general, a formula of the form “β(ι(µ)α(µ))”, where α is an open formula, and β

is a predicate symbol (possibly with other arguments as well) is syntactic sugar for

[∃1
µα(µ)] ∧ ∀µα(µ)⇒β(µ)

For instance, the sentence

36

wrote(ι(X) wrote(X,ivanhoe),waverley)

(meaning “The person who wrote Ivanhoe wrote Waverley,”) is syntactic sugar for the sentence

[∃1
X wrote(X,ivanhoe)] ∧

[∀X wrote(X,ivanhoe) ⇒ wrote(X,waverley)]

Note that if no one or more than one person had written Ivanhoe, then the sentence would be false.

In that case, the term “ι(X) wrote(X,ivanhoe)” would be considered to be undefined (equal to ⊥).

Sets: The notations of set theory will often be useful.5 The basic non-logical symbol here is the

membership relation X ∈ S. We also use the standard set constructor notation {X | α(X)} where

α(X) is a first order formula, meaning, “The set of all X such that α(X).” For example {I | I > 1}

is the set of all numbers greater than 1. The notation {X | α(X)} may be defined using the iota

notation above:

{X | α(X)} = ι(S)[∀X X ∈ S⇔α(X)]

The best known axioms for set theory are the Zermelo-Frankel axioms. However, since these use

a universe containing only sets, which are therefore ultimately built up purely from the null set, they

are not quite suitable for describing sets of other kinds of things. We therefore use a modification,

called set theory with ur-elements; an ur-element being any entity that is not a set. We assume that

we start with a universe of ur-elements, and a first-order language L0 for describing ur-elements.

We construct a language Ls, which contains L0 together with the constant symbol ∅ and the two

predicate symbols: X ∈ S (X is an element of S) and set(S) (S is a set.) Table 2.5 shows the axioms

that we shall use in this set theory.

The two critical axioms here are the axiom of extensionality, which asserts that all that matters

to the identity of a set are the elements it contains, and the axiom of comprehension, which (roughly)

states that one can define a set corresponding to any given property. Unfortunately, Russell’s paradox

shows that it is incorrect to state the axiom of comprehension with quite that degree of generality;

rather, the comprehension axiom must be restricted in some way. The restriction chosen here is to

say that given any large set B, we can construct a set containing all the elements of B with any given

property. The remaining axioms SET.3 — SET.5 exist primarily in order to allow us to construct

suitably large sets. Other axioms commonly given for set theory, such as the axiom of infinity, the

well-foundedness axiom, and the axiom of choice, are less important for our purposes.

In order to use the comprehension axiom to construct interesting (infinite) sets of ur-elements,

we must start with some large sets of ur-elements. One possible approach is to postulate that there

is a set containing all ur-elements. In this book, we will assume that for each sort of entity, there is

a set containing all entities of that sort.

We augment our language of sets with the standard union, intersection, and set difference func-

tions, and with the subset predicate. Definitions are given in table 2.6.:

Sets are particularly useful for reifying properties: If it is necessary to treat a property as an

entity in its own right, one can identify the entity as the set of all objects with the property. The

5Of course, we have already been using sets and tuples in defining Tarskian semantics. That, however, was at the
meta-level, where we are describing the language. Here we are dealing with the object-level theory of sets, where we
talk about sets in a first-order language.

37

SET.1 [set(S1) ∧ set(S2) ∧ [∀X X ∈ S1⇔X ∈ S2]] ⇒ S1 = S2.
(Extensionality: A set is determined by the elements it contains.)

SET.2 ¬set(U) ⇒ ¬X ∈ U .
(Ur-elements contain no elements.)

SET.3 ∀X,Y ∃S∀Z Z ∈ S⇔[Z = X ∨ Z = Y].
(Given any two entities X and Y , there is a set S = {X,Y }.)

SET.4 ∀Z ∃W ∀Y [Y ∈W ⇔∃X∈ZY ∈ X].
(Arbitrary union: For any set Z there exists a set W which is the union of all the sets in Z.)

SET.5 ∀Z∃P∀X X ∈ P⇔[∀Y ∈XY ∈ Z]
(Powerset: For any set Z there exists a set P whose elements are just the subsets of Z.)

SET.6 Let α(µ) be an open formula in the language Ls. Then the following is an axiom:
∀B∃C∀X X ∈ C⇔[X ∈ B ∧ α(X)].
(Comprehension: For any property α, there is a set C containing all the elements satisfying α
within some larger set B.)

SET.7 set(∅) ∧ ∀X ¬X ∈ ∅.
(Definition of the empty set.)

Table 2.5: Axioms of set theory with ur-elements

S1 ∪ S2 = { X | X ∈ S1 ∨X ∈ S2 }.
S1 ∩ S2 = { X | X ∈ S1 ∧X ∈ S2 }.
S1 − S2 = { X | X ∈ S1 ∧ ¬(X ∈ S2) }.
S1 ⊆ S2 ⇔∀X [X ∈ S1⇒X ∈ S2]

Table 2.6: Boolean operators on sets

38

comprehension axiom guarantees that such a set exists. Note that this technique does not make it

possible to discriminate between two properties that hold on exactly the same objects. (Lambda

abstraction is often used for this purpose instead of set theory. The expressive power is essentially

the same.)

Tuples: The k-tuple of the individualsX1 . . . Xk is written “tuple(X1 . . . Xk)” or “< X1 . . . Xk >.”

Various functions on tuples, such as appending two tuples, will be introduced as needed.

Operators with arbitrarily many arguments: The “tuple” function just defined and the

“distinct” predicate defined in section 2.3.3, technically violate the definition of the predicate calcu-

lus, which requires that every function and predicate symbol takes some fixed number of argument.

Such operators may be fitted into first-order logic in either of the following two ways:

1. Redefine the syntax and semantics of the predicate calculus to allow it.

2. For each such operator O, define a collection of operators O1, O2 . . ., each with a specific

number of arguments. Consider any use of the operator O to be syntactic sugar for the

appropriate specialized operator Ok; and consider any general axiom stated for the operator O

with any number of arguments to be an axiom schema for each separate specialized operator.

For example, we would replace the predicate “distinct(X1 . . . Xk)” by the separate predicates

“distinct 2(X1,X2)”, “distinct 3(X1,X2,X3)” . . .

Recursive Definitions: Recursive definitions of relations and functions are common in math

and computer science. For example, the predicate “ancestor(X,Y)” meaning X is an ancestor of Y

might be defined as the transitive closure of the relation “parent(X,Y)” in the following rules:

ancestor(X,X).

Everyone is (in a trivial sense) his own ancestor.

ancestor(X,Y) ∧ parent(Y,Z) ⇒ ancestor(X,Z).

If X is an ancestor of Y and Y is a parent of Z then X is an ancestor of Z.

Such recursive definitions of relations do not completely characterize the relation; they permit

many different possible alternative interpretations. For instance the axioms above are consistent

with interpreting “ancestor(X,Y)” as a predicate which is true if X is an ancestor of Y or if X is

Cary Grant and Y is Queen Elizabeth I (who had no children). It is still true of this new relationship

that everyone is an ancestor of themselves, and that if X is an ancestor of Y and Y is a parent of

Z then X is an ancestor of Z.

Some of these false interpretations can be ruled out by turning the recursive definition into a

biconditional. We can say “X is the ancestor of Y if and only if X = Y or X is the ancestor of some

Z who is the parent of Y .”

ancestor(X,Y) ⇔ [X = Y ∨ [∃Z ancestor(X,Z) ∧ parent(Z, Y)]]

This new axiom rules out the interpretation of “ancestor(X,Y)” as ANCESTOR ∪

{ < Cary Grant, Elizabeth I > }. However, it does not rule out all false interpretations. For in-

stance, assuming that everyone has a parent, it is consistent with the interpretation that “ancestor(X,Y)”

39

holds between all pairs of people, or with the interpretation that “ancestor(X,Y)” holds if either X

is an ancestor of Y , or X is Cary Grant and Y is an ancestor of Elizabeth I.

Intuitively, we want to impose the condition that the predicate holds only in the cases where it

has to hold, by virtue of the definition.6 This cannot be done using just first-order axioms connecting

“parent” and “ancestor”. It can be done using set theory. We consider sets of pairs of people. We

define set S to be “ancestor-like” if it satisfies the recursive condition: S contains every pair of a

person with himself, and, if S contains the pair < A,B >, and B is the parent of C, then S contains

the pair < A,C >. We then define the relation ancestor(X,Y) as holding just if the pair < X,Y >

is an element of all ancestor-like sets.

ancestor(X,Y) ⇔

[∀S [[∀A < A,A >∈ S] ∧

[∀A,B,C [< A,B >∈ S ∧ parent(B,C)⇒ < A,C >∈ S]] ⇒

< X,Y >∈ S]

However, this precise characterization of recursive definitions is, in practice, too complicated to

be useful in a mechanical theorem prover.

2.5 Operators on Sentences

The predicate calculus gives us great facility to make all kind of statements about individuals. It

does not give us a framework in which to make statements about sentences; the only things one can

do with sentences are to combine and negate them with Boolean operators, and to close a formula

containing a variable by adding a quantifier. By contrast, in English there are many ways in which

one sentence can contain another:

“It is doubtful whether the project will succeed.”

“I believe that Ford was one of our greatest Presidents.”

“If the burglar had been a stranger, the dog would have barked.”

“I knocked at the door because the bell was broken.”

The relations between the embedded sentences, “The project will succeed,” “Ford was one of

our greatest Presidents,” “The burglar was a stranger,” “The dog barked,” “I knocked at the door,”

and “The bell was broken,” and the complete sentences that contain them are different from those

provided by the predicate calculus. An attempt to express these directly in the predicate calculus

leads to trouble. If the sentence, “The ball is on the table” is expressed as “on(ball1, table1)”, using

“on” as a predicate, then it will be syntactically incorrect to express “I believe that the ball is on

the table” as “believe(me,on(ball1,table1))” using a predicate “believe”, since predicates can take

as an argument only a term, not a sentence like “on(ball1,table1)”.

6Looking ahead to the non-monotonic logics to be presented in chapter 3, we may observe that applying the
closed-world assumption to the predicate “ancestor” will not give the correct results; we should like our definition
to make it possible to deduce that Cary Grant was not a descendant of Elizabeth I, but to remain agnostic on the
unknown question of whether Cary Grant was a descendant of Homer. Rather, we wish to circumscribe the predicate
“ancestor”, holding “parent” fixed.

40

Therefore, a formal language that expresses sentences such as these must either eliminate the

embedding of sentences by using a structure substantially different from the English; or provide a

system in which some or all sentences may be systematically associated with primitive individuals;

or extend the predicate calculus by providing additional operators on sentences. Each of these

approaches may be useful under different circumstances.

Our aim in this section is to discuss general techniques for dealing with operators on sentences.

The detailed analysis of particular operators will be left to the chapters dealing with their particular

domains. In particular, temporal operators will be discussed further in chapter 5 and the belief

and knowledge operators will be discussed further in chapter 8. We use as illustrations operators

which are important in commonsense reasoning, rather than those which have been most studied in

logic and philosophy. In particular, we do not use the operators “Necessarily φ” and “Possibly φ”,

since these have not been much used in AI domain theories. We will restrict attention to operators

which have only one sentential argument (though possibly other arguments that are not sentences).

Thus we will here exclude operators, like “φ because ψ” or “φ until ψ” that take two sentences as

arguments.

There are a number of important formal properties of an operator O(φ), which largely determine

the general properties of the representation.

1. Is it potentially necessary to apply the operator to all types of sentences, or only to some limited

type of sentences? In particular, is the operator self-embedding; that is, is it sometimes necessary to

apply the operator to sentences involving the operator itself? For example, the operator “X believes

that φ” can potentially applied to any kind of sentence; virtually any kind of sentence (except those

that are necessarily false) can be believed. In particular, this operator is self-embedding; “Sue

believes that Jim believes that she wants to go home,” is the simplest way to express that particular

fact. By contrast, it is reasonable to restrict the range of the operator, “At time t, φ” to sentences

φ that express the occurrence of an event, or the state of the world. This operator is not directly

self-embedding; “On January 1, 1976 it was true that on November 22, 1963 Oswald shot Kennedy,”

is either meaningless or equivalent to “On November 22, 1963 Oswald shot Kennedy.”

2. Does the operator commute with the existential and universal quantifiers? That is, is

O(∃Xα(X)) equivalent to ∃XO(α(X)) and likewise for ∀X? If so, then any sentence can be trans-

formed to one in which the operator O is applied only to quantifier-free formulas, which, as we shall

see, is a substantial simplification. For example, the operator “X knows that φ” does not commute

with the quantifiers: “John knows that some people live in Schenectady,” is not the same as “There

are some people who John knows lives in Schenectady.” The operator “At time t, φ,” does commute

with the existential quantifier, if the world is restricted so that things do not come in and out of

existence. For example, if the set of objects in a domain is fixed, then “At 5:00, some object was

inside the box,” is equivalent to “There exists some object which was inside the box at 5:00.”

If an operator O does not commute with the existential operator, then the rule “α(τ)⇒∃µα(µ)”

may not hold if α is a formula involving O and τ is a complex term. For example, we do not wish

the statement “John knows that the oldest inhabitant of Schenectady lives in Schenectady” to imply

the statement “There is some person who John knows lives in Schenectady.”

3. Does the operator commute with the Boolean operators? That is, is O(φ ∨ ψ) equivalent to

O(φ) ∨ O(ψ), and is O(¬φ) equivalent to ¬(O(φ))? For example, the operator “X knows that φ”

41

does not commute with the Boolean operators; “John knows that it is not raining” is not equivalent

to “It is false that John knows that it is raining.” (The first implies the second but not vice versa.)

The operator “At time t, φ” does commute with the Boolean operators. “On January 1, 1979, Bush

was not President” is equivalent to “It is false that on January 1, 1979, Bush was President.” Note

that any operator that commutes with the Boolean operators must obey the rules of contradiction

and of excluded middle: for any sentence φ, either O(φ) or O(¬φ), but not both.

4. Can equal terms be substituted for one another? That is, if X = Y and O(α(X)), is it

necessarily true that O(α(Y))? A context where such substitutions may be made is said to be

“referentially transparent”; one where substitution may fail is said to be “referentially opaque.” For

example, “X knows that φ”’ is referentially opaque: “Oedipus knows that he is married to Jocasta,”

is not equivalent to “Oedipus knows that he is married to his mother,” even though Jocasta is

Oedipus’ mother. “It is true that φ” is referentially transparent: “It is true that Oedipus is married

to his mother,” follows necessarily from “It is true that Oedipus is married to Jocasta,” and “Jocasta

is Oedipus’ mother.”

5. Is the operator closed under the rules of inference? That is, if O(φ1), O(φ2) . . . O(φk) and ψ is

a consequence of φ1 . . . φk, is it necessarily true that O(ψ)? (This property is called “consequential

closure”). For example, “At time t, φ”, is consequentially closed; if, on September 15, all members

of the Cabinet met with the President, and, on September 15, Henry Kissinger was a member of

the Cabinet, then it follows that, on September 15, Kissinger met with the President. The operator

“X said ‘φ’ ” is not closed under inference; from the facts “John said ‘All members of the Cabinet

are meeting with the President,’ ” and “John said ‘Kissinger is a member of the Cabinet,’ ” it does

not follow that “John said ‘Kissinger is meeting with the President.’ ” Note that, if an operator is

referentially transparent and commutes with the quantifiers and the Boolean operators, then it is

necessarily closed under inference.

6. How useful is it to quantify over sentences? That is, is there problem-specific information7

which is most naturally expressed in the form ∃φ α(φ) or ∀φα(φ), where α is a formula involving

O? For example, it is often useful to quantify over sentences in the context, “John said ‘φ’ ”, as in

“John gave a speech,” or “All of John’s answers were correct.”

In evaluating these properties for a particular operator in a particular problem domain, it is

advisable to be somewhat forgiving, and to ask, “Can the logical system give useful results despite

having such and such properties,” rather than, “Ideally, should the operator have such and such

properties.” For example, it is clear that in a complete theory, belief would not be closed under

inference; it simply is not true that people believe all the logical consequences of their beliefs.

However, as we shall discuss in section 8.2.1, for many purposes it is acceptable and useful to take

belief as closed under inference; in many applications it leads to a simple, powerful theory with many

desirable properties and only a few unnatural consequences.

7Problem-independent information of this form can be expressed in the meta-language as axiom schemas.

42

2.6 Extensional Operators

An operator O on sentences is said to be extensional if the answers to questions (1) through (5) all

indicate a simple structure: that is, O applies only to a limited class of sentences, and, in particular,

does not self-embed; it commutes with the quantifiers and the Boolean operators; it is referentially

transparent; and it is closed under inference. There are a number of straightforward techniques for

expressing facts involving extensional operators in first-order logic.

Probably the most important extensional operator in commonsense domains is the temporal

operator “At time t, φ”. We have discussed each of the required properties of this operator in the

previous section, except referential transparency. Referential transparency, the principle that equal

terms may be substituted one for another, is somewhat problematic for the temporal operator. If

we are not careful applying the principle, we may legitimate such erroneous inferences as “Bush is

the President; in 1965, the President was a Democrat; therefore, in 1965, Bush was a Democrat.”8

The problem here is the term “the President”, which denotes different things at different times.

Therefore, we will begin our discussion by considering only time-invariant terms like “Bush”, which

signify the same thing under all circumstances. Further on, we will see how time-varying terms, like

“the President” can be handled.

Let us start with a fact like “At 12:00, either the ball was on the table, or everything was in the

box.” The naive translation to a logic-like notation

true in(t1200, on(ball1, table1) ∨ ∀X in(X, box1))

is not correct in the syntax of predicate calculus. However, we can translate the sentence to a

more tractable equivalent form using the fact that all logical operators commute with the temporal

operator. Thus, the above English sentence is equivalent to “Either the ball was on the table at

12:00 or, for all X, X was in the box at 12:00”, which we might write

true in(t1200, on(ball1, table1)) ∨ ∀X true in(t1200, in(X, box1))

In general, we can always move the temporal operator “inside” sentences so that it is always applied

directly to atomic formulas. (Note: this translation is being done purely at the conceptual level,

not at the formal level. We do not yet have any formal notation. We are massaging our concepts so

that they can be easily expressed in a formal notation.)

We do not yet have first-order logic. In first-order logic, the expression “true in(t1200, on(ball1,

table1))” is not a valid sentence if “on” is a predicate symbol. There are two natural approaches.

The first is to change symbols such as “on” to be predicates with three arguments: the two objects

and the time. “on(X,Y, T)” will mean that X is on Y at time T . Thus we can write our initial

sentence

8The use of English sentences here is confusing, because English can use the same term to denote either a constant
or a time-varying object. The clues for disambiguation are often subtle or non-existent. For example, “In 1965, the
President was a Democrat,” is (in its default reading) a true sentence about Lyndon Johnson, while “The President
was a Democrat in 1965” is a false statement about George Bush (as of the time of writing.) An interesting case is the
difference between “the King”, which may refer either to the time-varying office-holder or to a constant individual,
and “His Majesty”, which always refers to the individual.

43

on(ball1, table1, t1200) ∨ ∀X in(X, box1, t1200)

This is legitimate predicate calculus.

The other approach legitimates the notation “true in(t1200, on(ball1, table1))”, by positing that

“on” is a function symbol, rather than a predicate symbol, so that “on(ball1, table1)” is a term

rather than a sentence. The problem here is semantics: what does the term “on (ball1, table1)”

denote? To answer this, we introduce a new type of individual, a “state of affairs”, into our ontology.

The term “on(ball1, table1)” then denotes the state of affairs of ball1 being on table1. The predicate

“true in(T, S)” thus relate a time T to a state of affairs S, and asserts that the state of affairs S

obtains at time T . We can therefore write the original sentence

true in(t1200, on(ball1, table1)) ∨ ∀X true in(t1200, in(X, box1))

If a concrete definition is desired, we can use the device of extensionalizing, and say that a “state

of affairs” is a set of times: namely, the set of times when (conceptually) the state of affairs obtains.

For example, “on(ball1,table1)” denotes the set of times when ball1 is on table1. Under this reading,

“true in(T, S)” is just notation for T ∈ S.

The most obvious difference between the two approaches is aesthetic. The “extra argument”

approach forces us to add a somewhat unappealing extra argument to every predicate in the language

describing a state of affairs or event. The “state of affairs” approach requires a somewhat mysterious

extension of the ontology.

The “state of affairs” approach has the technical advantage that it makes it possible to quantify

over states, to predicate properties of states, and to construct more complex terms involving states.

As we shall see in chapters 5 and 9, this expressive power can be useful for more complex temporal

reasoning. For example, it allows us to express a plan like, “Hammer the nail until the head is

flush with the board” as the first-order term “repeat(hammer(nail1), flush(head(nail1),board7))”.

This representation depends critically on the state of affairs “The head of the nail is flush with the

board,” being a first-order entity. (See section 5.11.)

So far, we have excluded time-varying terms, whose values change with time, such as “the

President of the US”. We cannot yet express the statement “In 1965, the President of the US was

a Democrat,” using “President of the US” as a term. There are two ways to extend our system to

fix this. The first is to add a time argument to time-varying functions. Thus, we would define the

function “president(C, T)” as mapping a country C and a time T onto a person. We can then write

in party(president(usa, t1965), democrat, t1965)

using the predicate “in party” with an extra time argument, or we can write

true in(t1965, in party(president (usa, t1965), democrat))

using “in party” as a function to states of affairs. Similarly, the fact “The current (1990) President

was a Republican in 1965,” may be expressed

in party(president(usa, t1990), republican, t1965)

44

or as

true in(t1965, in party(president(usa, t1990), republican))

The second technique explicitly uses terms that denote a “time-varying individual” or fluent;

that is, a function from time to individuals. In this system, “president(usa)” denotes the conceptual

function that maps points of time into the person who was President at that time. A general function

“value in(T, F)” takes a instant of time T and a fluent F and denotes the value of F at time T . In

this approach, the fact “In 1965, the President was a Democrat,” could be written

in party (value in(t1965, president(usa)), democrat)

or as

true in(t1965, in party(value in(t1965, president(usa)), democrat))

Note that, in any of the above notations, once we have defined a concept like “on” or “in party”

or “president” to designate a time-dependent relationship or thing, we cannot ever use the same

concept in a time-independent way. The connection to time is built into the semantics. Thus, for

instance, we cannot express “The ball is on the table” timelessly as “on(ball1, table1)”; we must

include an explicit mention of the time or times referred to. Similarly, “Bush is the President”

is not correctly represented as “bush = president(usa)” but as “bush = president(usa, t1990)” or

“bush = value in(t1990, president(usa)).” This explicit reference to time blocks erroneous inferences

like, “Bush is the President; in 1965, the President was a Democrat; hence, in 1965, Bush was a

Democrat.” “The President” in the first clause is represented “value in(t1990, president(usa)),”

while “the President” in the second clause is represented “value in(t1965, president(usa)).”

These techniques can be used with any extensional operator, not just with the temporal operator.

Let O(X1 . . . Xk, φ) be an extensional operator with sentential argument φ and non-sentential argu-

ments X1 . . . Xk. The arguments X1 . . . Xk enter into representations of O in exactly the same way

as the time variable enters into the representations discussed above. Let φ have the form α(τ1 . . . τm);

for example, if φ were “on(ball1, table1)”, α would be “on”, τ1 would be “ball1”, and τ2 would be

“table1”. A sentence involving O can be represented in a first-order language in two ways:

i. Change α so that it takes X1 . . . Xk as extra arguments in addition to τ1 . . . τm.

ii. Construe α(τ1...τm) as a term A whose value is a “state of affairs” over the Xi. Construe the

formula O(X1 . . . Xk, A) as asserting that the state A holds on the tuple < X1 . . . Xk >. In

the temporal example, X1 would be the time instant, and A would be a temporal state, such

as “on(ball1,table1)”.

The definition of “fluents” over the parameter X1 . . . Xk is analogous.

2.7 Modal Logic

In some commonsense domains, virtually all facts can be expressed in terms of extensional operators.

When this is possible, as it is in physical domains, then the “first-orderizing” techniques of the

45

previous section yield straightforward and tractable representations. Unfortunately, it seems that

some types of commonsense knowledge, particularly commonsense theories of mind, unavoidably

require operators that are not extensional: operators that do not commute with quantifiers, or are

referentially opaque. Incorporating these in a logic requires more powerful tools; how much more

powerful depends on whether quantification over sentences is allowed. Information that does not

require quantification over sentences can be expressed using modal logic or structures of possible

worlds, the subjects of this section. Quantification over sentences requires the use of syntactic

operators, the subject of section 2.8.

A modal logic augments predicate calculus (sometimes propositional calculus) with a number of

operators, called modal operators, that take sentential arguments. As usual, the logic defines the

syntax of sentences using these operators, a set of logical axioms, a set of inference rules, and a

semantics. We will first discuss the syntactic aspects of typical modal logics, and then discuss their

semantics.

We will confine our discussion in this section to logics that contain a single modal operator

L(φ) and its dual M(φ) ≡ ¬L(¬φ). L and M have only the one sentential argument φ and no other

arguments. (Later in this book, we will look at more complicated modal operators and at logics which

combine several modal operators.) In the most extensively studied modal logics, L(φ) is the operator

“φ is necessarily true” and M(φ) is the operator “φ is not necessarily false” or, equivalently, “φ is

possible”. However, necessity and possibility have not been extensively applied to commonsense

reasoning. Instead, we will use some less abstract operators as examples of L, particularly “I now

know that φ”, “I now believe that φ”, and “φ is true at all times.” The duals of these may easily

be seen to be “I do not now know that φ is false,” “I do not doubt φ”, and “There is some time

when φ is true.” (In the context of the operator “φ is true at all times”, we will here interpret the

simple sentence φ as meaning “φ is true now.” In section 5.12, we will study a temporal modal logic

which gives a different interpretation to sentences without temporal operators.) Our aim here, as

throughout this chapter, is to study logical techniques rather than to analyze specific domains; we

will study theories of knowledge and belief in greater depth in chapter 8.

The syntax of modal logic is the same as the syntax of ordinary predicate calculus, except that

modal operators may be applied to any formula.

Definition 7.1: A formula in a language with modal operators L and M is one of the following:

i. A predicate calculus atomic formula;

ii. Either ¬φ, φ ∨ ψ, φ ∧ ψ, φ⇒ψ, φ⇔ψ, φ∨̇ψ where φ and ψ are formulas.

iii. Either ∃µφ or ∀µφ where µ is a variable and φ is a formula.

iv. Either L(φ) or M(φ) where φ is a formula.

Definition 7.2: A sentence is a formula with no free variables.

The following are sample sentences:

∀X∃Y loves(X,Y).

L [on(ball1, table1) ∧ ∀X (in(X,box1) ⇔ X =top1)]

46

L(¬∃X L(spy(X)))

The first is simply predicate calculus; our language includes all predicate calculus sentences. If

L(φ) is taken to be the operator “I know that φ”, then the second means, “I know both that the

ball is on the table and that the top is the only thing in the box.” The third means, “I know that

there is no one whom I know to be a spy.”

Different modal operators satisfy different sets of axioms. However, most modal logics which

have been studied draw their axioms from a fairly small set of standard axioms. Table 2.7 lists some

of these axioms.

We will discuss each of these axioms and inference rules in turn.

Axioms MODAL.1, MODAL.2, and MODAL.3 together with modus ponens bring all of predicate

calculus with equality into modal logic. Axiom MODAL.1 also ensures that tautologies of the

propositional calculus still holds, even when the propositions contain modal operators. These axioms

always hold, whatever the modal operators.

Axiom MODAL.4 states that existential abstraction can be performed in modal contexts if the

term being abstracted is a constant symbol. For example, we can infer “There is some particular

person who John knows lives in Schenectady,” from “John knows that Clyde lives in Schenectady.”

Axioms MODAL.3 and MODAL.4 thus do not allow the application of existential abstraction to

complex terms in modal contexts. For instance, we cannot infer “There is someone that John knows

lives in Schenectady” from “John knows that the mayor of Schenectady lives in Schenectady” (see

exercise 10).

Axioms MODAL.5 and MODAL.6 allow all standard inferences (all inferences not involving the

rule of Necessitation) to be carried out within the scope of the modal operator. MODAL.5 asserts

that L applies to all the logical axioms, and MODAL.6 asserts that the inference rule modus ponens

can be performed within the scope of the modal operator. From these two axioms follows the

general principle of consequential closure; if L(φ1), L(φ2) . . . L(φk) and ψ is a logical consequence

of φ1 . . . φk then L(ψ) must hold. In particular, L applies to all logical and mathematical theorems.

This principle is plausible for operators like “Necessarily φ” or “At all times, φ”; all logical truths are

necessarily true, and true at all times. It is not plausible for operators “I know that φ” or “I believe

that φ”; people do not know all the logical consequences of their knowledge and they do not know

all mathematical theorems. (More on this point in section 8.2.) Despite this implausibility, axioms

MODAL.5 and MODAL.6 are part of virtually every modal logic, since it seems to be impossible to

get either interesting logical conclusions or a coherent semantics without them (see section 2.7.1.)

Axioms MODAL.7 and MODAL.8 relate the strengths of L(φ), φ, and M(φ). Axiom MODAL.7

requires that L(φ) implies φ, from which it follows logically that φ implies M(φ). Axiom MODAL.8

is weaker, requiring only that L(φ) implies M(φ), with no connection to the truth value of φ. Axiom

MODAL.7 is appropriate to operators like “I know that φ”, “Necessarily φ”, “φ is true at all times”;

it is reasonable to posit that anything that is known is true, that anything that is necessarily true

is in fact true, and that anything that is always true is true at the current moment. The equivalent

form φ⇒M(φ) gives the assertions that anything that is true cannot be known to be false, that

anything that is true must be possible, and that anything true at the current moment is true at

47

MODAL.1 (Predicate Calculus) Axiom schemas FOL.1 through FOL.5, FOL.7 through FOL.13, and
EQL.1 of first-order logic with equality are axiom schemas of modal logic. Where these schemas
refer to “sentences” or “formulas”, all the sentences or formulas of the modal language are
included.

MODAL.2 (Existential abstraction, in non-modal contexts): Any instance of axiom schema FOL.6, where
the sentences have no modal operators, is an axiom of modal logic.

MODAL.3 (Substitution of equals): Any instance of axiom schema EQL.2 is an axiom of modal logic.

MODAL.4 (Existential abstraction of constants in modal contexts: Let a be a constant or variable symbol,
let µ be a variable, let α(µ) be a formula, and let α(µ/a) be a formula identical to α(µ), except
that a is substituted for every free occurrent of µ. Any closure of the formula α(µ/a)⇒∃µ α(µ)
is an axiom. Note that this axiom applies when the formula α contains modal operators, but
it does not apply to substitution of complex terms, other than constant symbols.

(In theories that allow constant symbols to be non-rigid designators, this axiom must be
restricted to constants that represent rigid designators. See section 2.7.1.)

MODAL.5 If φ is a logical axiom, then L(φ) is an axiom.

In the remaining axioms, let φ and ψ be formulas, and let µ be a variable. Then any closure
of the following formulas may be an axiom:

MODAL.6 (Consequential Closure) (L(φ) ∧ L(φ⇒ψ)) ⇒ L(ψ).

MODAL.7 (Veridicality) L(φ) ⇒ φ.

MODAL.8 L(φ) ⇒ M(φ).

MODAL.9 L(φ) ⇒ L(L(φ)).

MODAL.10 M(φ) ⇒ L(M(φ)).

MODAL.11 (Barcan axiom). ∀µ L(α) ⇒ L(∀µα)

MODAL.12 L(∀µα) ⇒ ∀µ L(α)

MODAL.13 (Definitional equivalence) M(α) ⇔ ¬L(¬α)

There are two rules of inference generally used:
Modus Ponens: From φ and φ⇒ψ, infer ψ.
Necessitation: From φ infer L(φ).

Table 2.7: Axioms of Modal Logic

48

some time. Axiom MODAL.8 is appropriate to operators like “I believe that φ”, “It is obligatory

that φ” or “φ will be true at all future times”. It is reasonable to posit that, if φ is believed true, it

is not believed false; that if it is obligatory that φ be true, then it cannot also be obligatory that φ

be false; and that, if φ is true at all future times, then it cannot be false at all future times.

MODAL.9 and MODAL.10 relate to iterated modalities. MODAL.9 states that L(φ) implies

L(L(φ)), or, equivalently, that M(M(φ)) implies M(φ). With knowledge, this is the principle, “If I

know φ then I know that I know φ.” MODAL.9 is plausible for knowledge and for most other modal

operators. In combination with MODAL.6, MODAL.9 implies that iterated L’s are equivalent to a

single L and that iterated M’s are equivalent to a single M. MODAL.10 together with MODAL.6

implies that any string of iterated modal operators is equivalent to the innermost; for example,

L(M(L(L(M(φ))))) is equivalent to M(φ). This principle is plausible like an operator like “It is

always true that φ”; if the statement “At all times, it is true that at some times it is true that

φ,” means anything at all, it can only mean the same thing as “At some times it is true that φ.”

The rule “If I do not believe φ then I believe that I do not believe it,” is often plausible (though

note that, combined with the rule of consequential closure, it leads to very strong results); the rule,

“If I do not know φ, then I know that I don’t know it” is much less plausible, but occasionally

useful. MODAL.10 is demonstrably false for the operator “Provably φ”; it is known that there are

statements that are unprovable, but which cannot be proven to be unprovable.

Axiom MODAL.11 (known as the “Barcan” axiom, after the philosopher Ruth Barcan Marcus)

asserts that, if a modality applies to every instance of a proposition, then it applies to the universal

generalization. For example, let L be the operator “John knows that φ” and let α be the formula

“If X is a rhinoceros then X has a horn.” Then the Barcan formula ∀XL(α)⇒L(∀Xα) means that,

if you know about each X in the world that either it is not a rhinoceros or it has a horn, then

you know the proposition “For all X, if X is a rhinoceros, then it has a horn.” For psychological

operators, such as “know” or “believe” this seems to be a safe inference for most α, since it is very

rare to know something about every individual in the world without knowing the general rule. (This

argument may not be valid in a sorted logic.) However, there are a few exceptions. Let α(N) be the

formula, “If N is an integer, then T does not halt after N steps” where T is a Turing machine which

never halts. Then it follows from the law of consequential closure that one knows every instance of

α(N); however, it may not be true that one knows the general rule.9

MODAL.12 is the converse of MODAL.11. It states that if L holds on a general rule, then it holds

on every instance. It follows from consequential closure that L(∀µα(µ)) ⇒ L(α(τ)) for any ground

term τ . Axiom MODAL.12 is a slightly stronger statement. MODAL.12 is taken as axiomatic in any

system that accepts consequential closure. (Many modal logics allow formulas with free variables

to be axioms in their own right, and adopt the inference rule of universal generalization, “Infer ∀µφ

from φ. In such a logic, MODAL.12 follows directly from consequential closure.)

MODAL.13 is just the definition of the modal operator M in terms of L. It is an axiom in all

modal logics.

The inference rule Necessitation, “From φ infer L(φ)” is rather curious. The intention is, es-

sentially, to replace axiom MODAL.5 with a slightly stronger statement; all logical theorems are

necessarily true. In a theory without proper axioms, φ can be inferred as true only if it is a logical

9Thanks to Larry Manevitz for pointing out this example to me.

49

theorem, so this rule will be legitimate. It is not, of course, legitimate in a theory with proper

axioms; we do not want to infer “Necessarily, John is bald,” from the proper axiom, “John is bald.”

Modal logics are often formulated without considering proper axioms; AI, however, is primarily

concerned with theories that do have proper axioms.

Thus, the original motivation behind this inference rule disappears in the AI context. Nonethe-

less, the inference rule is still useful for some operators even in theories with proper axioms. For

example, it is reasonable to infer either “I know that φ” or “I believe that φ” from φ. That is, if you

have somehow gotten φ into your knowledge base, then you can infer that you know φ or that you

believe it. On the other hand, there are many operators where the inference rule is obviously false,

for proper axioms; for instance, there is no inference from “φ is true now” to “φ is always true.”

It should be noted that the logical literature on modal logic generally accepts the necessitation

rule without question. This does not invalidate the use of modal logics for operators where the rule

does not apply, but it does mean that standard theorems must be used with some caution.

The necessitation rule φ ⊢ L(φ) is by no means equivalent to the implication “φ⇒L(φ)”, which

is never true for a useful operator L. “φ⇒L(φ)” is the truth-value relation “Either φ is false or L(φ)

is true”; applied to the “Know” operator, for example, it would state “I know all true sentences.”

In general, if φ⇒L(φ), then, since L(φ)⇒φ, by MODAL.7, it follows that φ is equivalent to L(φ);

i.e. the L operator is useless. The difference between the implication and the inference rule is that

the implication φ⇒ψ means that ψ is true whenever φ is true, while the inference φ ⊢ ψ means only

that ψ is true whenever φ may be inferred, a much stronger condition.

The use of the necessitation rule and the restrictions placed on existential abstraction (axiom

MODAL.4) make the construction of proofs in modal logic substantially different than in first-order

logic. In general, one has to be careful using intuitions built up in ordinary logic; they may lead to

invalid results. In particular the following standard proof techniques of FOL are not valid in modal

logic:

• Discharging: If φ ⊢ ψ — that is, ψ may be proven from the hypothesis φ — then infer φ⇒ψ.

• Splitting: If φ ⊢ ψ and ζ ⊢ ψ, infer that φ∨ ζ ⊢ ψ. An example where this fails in modal logic:

For any sentence “p”, p ⊢ L(p) (Necessitation), so p ⊢ (L(p) ∨ L(¬p)) (MODAL.1). Similarly

¬p ⊢ L(¬p) and so ¬p ⊢ L(p) ∨ L(¬p) . But it is not the case that (p ∨ ¬p) ⊢ L(p) ∨ L(¬p).

As mentioned above (section 2.3.3), in modal contexts it is particularly easy to over-interpret

material implication p⇒q as meaning more than just “p is false or q is true”; such a mistake can

lead to bad trouble. For example, let L(φ) be the modal operator “φ is provable,” and suppose we

wish to express the statement, “If ψ follows from φ and φ is provable, then ψ is provable.” The

temptation is to express the first clause of this rule “ψ follows from φ” as the implication “φ⇒ψ”,

and so to express the rule as the axiom schema

[[φ⇒ψ] ∧ L(φ)] ⇒ L(ψ)

But this rule is wrong. The sentence “φ⇒ψ” does not mean “ψ follows from φ”; it means only that

ψ is true or φ is false.

50

Various sets of the above axioms on modal logics have been singled out for study by logicians.

The best known are the systems “T”, which contains MODAL.1-8 and the rule of necessitation;

“S4”, which adds MODAL.9 to T; and “S5”, which adds MODAL.10 to S4.10

A sample proof in modal logic is given in Table 8.3, at the end of section 8.2.2.

2.7.1 Possible Worlds Semantics

The meaning of a first-order language is defined in terms of a Tarskian semantics. An interpretation

for the language is an association of each constant, function, and predicate symbol in the language

with an individual, mapping, or set in the world. The semantics then specifies the meaning of every

term in the language, and the truth conditions for every sentence.

There is no simple way to extend a Tarskian semantics to define the meaning of modal operators.

A Tarskian semantics is inherently incapable of distinguishing between two terms that refer to the

same object, or between two sentences with the same truth value. For example, there is no way of

defining a Tarskian semantics so that “He knows that the shortest spy is the shortest spy,” and “He

does not know that Ralph Ortcutt is the shortest spy,” are both true, given Ralph Ortcutt is indeed

the shortest spy. “Ralph Ortcutt” and “The shortest spy” will both map to the same individual,

and either term can be substituted for the other in any sentence. It is not even possible to fix things

so that “He knows that snow is white,” and “He does not know that President Harding’s middle

name was Gamaliel,” are both true, given that both embedded sentences are true.

The semantics for modal languages requires a more complex type of model, known as a Kripke

structure (after Saul Kripke). A Kripke structure consists of a collection of possible worlds, connected

by accessibility relations. Each possible world represents one way that the world could possibly be;

it is one complete model of the language without modal operators. Thus, each world specifies the

truth or falsehood of every non-modal sentence in a consistent way. The real world is one particular

possible world.

The modalities are incorporated in the accessibility relations. There is a separate accessibility

relation for each modal operator with non-sentential arguments. Thus, there is an accessibility

relation corresponding to the modal operator “John believes φ”; a relation corresponding to the

operator “Mary believes φ”; a relation corresponding to the operator “John knows φ”; and so on.

The semantics for the modal operators L and M are given by the following rules:

• L(φ) is true in a world W iff φ is true in all worlds accessible from W.

• M(φ) is true in a world W iff φ is true in some world accessible from W.

For example, let L(φ) be the operator “John believes φ.” We define the following accessibility

relation A between possible worlds: W1 is accessible from W just if W1 is consistent with all the

beliefs that John holds in W. One can imagine taking John, as he is in the world W, and showing

him other worlds one by one. If he finds something in a world that violates his beliefs, then that

10This nomenclature is purely historical. “T” was introduced in [Feys, 37], and given its name in [Sobocinski, 53].
“S4” and “S5” were introduced and named in [Lewis and Langford, 32]. Lewis and Langford also introduced systems
named S1, S2, and S3, and subsequent papers have defined and named slews of other systems; but none of these has
become as popular.

51

world is not accessible; if everything in the world looks reasonable, then the world is accessible.

When we are done, any statement which John believes true will be true in all accessible worlds; any

statement which he believes false will be false in all accessible worlds; any statement about which he

has no opinion will be true in some worlds and false in others. Thus, the statements that are true

in all worlds are just those that he believes, as stated in the rule above. (Figure 2.1)

Using the above rule, we can translate iterated modal operators into chains of accessibility

relations. For example, “Mary knows that John believes that taking vitamin C prevents cancer,”

translates to, “If a world W1 is accessible from the real world via Mary’s knowledge, then in W1 it

is true that John believes that taking vitamin C prevents cancer.” This, in turn, translates to, “If

W1 is accessible from the real world via Mary’s knowledge, and W2 is accessible from W1 via John’s

belief, then it is true in W2 that taking vitamin C prevents cancer.”

This kind of semantic definition helps clarify where the formal properties of the modal logic

“come from”. In this semantics, the operator L(φ) is essentially a universal quantifier over accessible

worlds, and M(φ) is an existential quantifier; and their formal properties in the logic are similar to

the properties of the quantifiers. Thus, for example, the facts that L(φ) does not commute with

negation, disjunction, or existential quantification — “John knows that it is not raining” is not

equivalent to “It is false that John knows that it is raining;” “John knows that it is either raining

or sunny” is not equivalent to “Either John knows it is raining or he knows that it is sunny;”

“John knows that there are citizens of Mozambique,” is not equivalent to “There are people who

John knows are citizens of Mozambique;” — are explained by the corresponding facts about the

universal quantifier: ∀µ ¬α(µ) is not equivalent to ¬∀µ α(µ); ∀µ (α(µ) ∨ β(µ)) is not equivalent to

(∀µ α(µ)) ∨ (∀µ β(µ)); ∀µ∃ν α(µ, ν) is not equivalent to ∃ν∀µ α(µ, ν).

(Note: the remainder of section 2.7.1 involves rather abstract logic. It may be skipped without

loss of continuity. It is necessary to read section 2.3.2 before reading this section.)

To express this semantics formally, we change the interpretation function to take two parameters:

the sentence or term being interpreted, and the possible world referred to. A constant symbol always

refers to the same entity in all possible worlds (see section 2.7.3), but function and relation symbols

may change their extension. For example, if Rosamond is married to Lenny in one possible world

but not in another, then the extension of the relation “married to” includes the pair < rosamond,

lenny > in the first, but not in the second. We will write I(γ,Wi) to mean the meaning of the

non-logical symbol γ in the world Wi under interpretation I; this is an individual, function, or

relation, depending on whether γ is a constant symbol, function symbol, or relation symbol. We

then define the concept “φ is true in world Wi under interpretation I.” If φ is a sentence without

a modal operator, φ is true in Wi just if it satisfies the usual Tarskian definition, relative to the

interpretations of its symbols in Wi. If φ is a sentence of the form L(ψ), then φ is true in a world

just if ψ is true in all accessible worlds. Correspondingly, a sentence M(φ) is true in world Wi just

if φ is true in some accessible world Wj . The truth value of a compound sentence is defined in the

usual way.

We will now give a formal definition of the semantics of modal logic with dual modal operators

L(φ) and M(φ).

Definition 7.3: A Kripke structure consists of four elements:

52

P,P, Q Q

P,QP,QW0 W1

W2 W3

WI WJ

WJ is consistent with John’s beliefs in WI

WJ is consistent with Mary’s beliefs in WI

In W0: John believes P.
John neither believes Q nor believe ¬Q.
Mary believes Q ⇒ P.
John believes that Mary believe ¬Q.
Mary believes that John believes P.

Figure 2.1: Possible worlds

53

a. A set of possible worlds, W.

b. A binary relationship on the worlds A(Wi,Wj), read “Wj is accessible from Wi”. A has the

property that, for any world Wi, there exists at least one world Wj such that A(Wi,Wj). This

condition is called “seriality.”

c. A distinguished world W0 ∈ W (the real world).

d. A domain of individuals D.

Definition 7.4: Let L be a modal language, let Γ be the set of non-logical symbols in L, and let

K =<W,A,W0,D > be a Kripke structure. An interpretation I of L over K is a function with two

arguments: a symbol γ ∈ Γ and a world Wi ∈ W. The function I has the following properties:

a. If γ is a constant symbol, then there exists some individual d ∈ D such that, for all worlds

Wi ∈ W, I(γ,Wi) = d.

b. If γ is a k-place function symbol, then for each world Wi ∈ W, I(γ,Wi) is an extensional

function from Dk to D.

c. If γ is a k-place predicate symbol, then for each world Wi ∈ W, I(γ,Wi) is an extensional

relation from Dk to D.

Note that this definition creates a strong distinction between constant symbols, which always

represent the same individual, and 0-place function symbols, which may denote different individuals

in different possible worlds.11 What exactly is meant by “the same individual in different possible

worlds” is a subtle issue, that we will address in section 2.7.3.

We extend the interpretation I to complex terms and sentences using the following definitions.

Definition 7.5: Let τ be a complex ground term in L of the form β(τ1 . . . τk). Let I be an

interpretation of L, and let Wi be a possible world. I(τ,Wi), read “the denotation of τ in world

Wi” is the image of the denotations of τ1 . . . τk under the function I(β,Wi).

< I(τ1,Wi) . . . I(τk,Wi), I(β(τ1 . . . τk),Wi) > ∈ I(β,Wi)

Definition 7.6: Let φ be a ground atomic formula γ(τ1 . . . τk) in L, where γ is a predicate symbol.

I(φ,Wi)=TRUE just if the relation I(γ,Wi) holds on the objects I(τ1,Wi) . . . I(τk,Wi); that is, if

< I(τ1,Wi) . . . I(τk,Wi) > ∈ I(γ,Wi)

Definition 7.7: Let φ be a sentence in L of the form “¬ψ” or “ψ op ζ”, where “op” is a Boolean

operator. I(φ,Wi)=TRUE if the truth-value conditions associated with the Boolean operator in

definition 2.2 hold for the two truth values I(ψ,Wi) and I(ζ,Wi).

Definition 7.8: For any interpretation I, object u ∈ D, and symbol δ 6∈ L, define Iδ→u as in

definition 3.10:
11Some formulations of possible-worlds semantics (e.g. [Moore, 1980], [Genesereth and Nilsson, 1987]) allow constant

symbols to be specified as either rigid designators, which denote the same individual in all possible worlds, or as non-
rigid designators, which may denote different things in different possible worlds. I am not aware of any advantages of
this approach.

54

a. Let φ be a sentence in L of the form ∀µα(µ).

Then I(φ,Wi)=TRUE just if Iδ→u(α(µ/δ),Wi)=TRUE for every u ∈ D.

b. Let φ be a sentence in L of the form ∃µα(µ).

Then I(φ,Wi)=TRUE just if Iδ→u(α(µ/δ),Wi)=TRUE for some u ∈ D.

Definition 7.9:

a. Let φ be a sentence in L of the form L(ψ).

Then I(φ,Wi)=TRUE just if I(ψ,Wj)=TRUE for every Wj such that A(Wi,Wj).

b. Let φ be a sentence in L of the form M(ψ).

Then I(φ,Wi)=TRUE just if I(ψ,Wj)=TRUE for some Wj such that A(Wi,Wj).

Definition 7.10: A sentence φ in L is true (simply) if it is true in W0.

All of the modal axioms MODAL.1 - MODAL.13, except MODAL.7, MODAL.9, and MODAL.10

follow necessarily from this possible worlds semantics. Consider, for example, MODAL.6, the law

of consequential closure, L(φ) ∧ L(φ⇒ψ) ⇒ L(ψ). In a possible-worlds semantics, this amounts to

saying, “If φ is true in all accessible worlds, and φ⇒ψ is true in all accessible worlds, then ψ is true

in all accessible worlds.” φ⇒ψ is true in a world just if either φ is false or ψ is true. Thus, the

axiom is clearly true. Similar simple arguments can be made to justify the other axioms. Moreover,

this collection of axioms, together with the inference rules of modus ponens and necessitation, is

complete for this possible worlds semantics; that is, if a sentence is true in all structures of possible

worlds then it is provable from the axioms [Kripke, 1963a].

The truth of MODAL.7, MODAL.9, and MODAL.10 depends on particular constraints placed

on the accessibility between worlds. MODAL.7, the axiom L(φ)⇒φ, states that if φ is true in all

worlds accessible from a world Wi, then it is true in Wi itself. This is justified if every world is

accessible from itself; i.e. if the accessibility relation is reflexive. To interpret MODAL.9, the axiom

L(φ) ⇒ L(L(φ)), we observe that L(φ) means that φ is true in all worlds accessible from Wi, and

that L(L(φ)) means that L(φ) is true in all worlds Wj accessible from Wi, and hence that φ is true

in any world Wk such that Wk is accessible from Wj and Wj is accessible from Wi. Hence, the

axiom L(φ) ⇒ L(L(φ)) will be true if A(Wi,Wj) and A(Wj ,Wk) imply A(Wi,Wk); that is, the

accessibility relation is transitive. In a similar way, axioms MODAL.10 and MODAL.7 are together

justified if the accessibility relationship is an equivalence relation.

2.7.2 Direct Use of Possible Worlds

Thus far, we have used possible worlds as a meta-level theory, to give a coherent semantics to a

modal language. However, it is often possible to eliminate the modal language altogether, and to

use a object-level language that directly refers to possible worlds and their accessibility relations.

This allows us to capture the content of modal sentences in a first-order language, to which we

can apply standard computational techniques for first-order inference.12 The resultant language

12The construction described in this section was first developed in [Moore, 1980]. Moore used an “extra argument”
notation, while we shall use a “state of affairs” notation.

55

looks very much like the extensional languages discussed in section 2.6, with the addition of the

“accessibility” relation. However, the relation of the representation to the original sentence operator

is more complex here. In the theories discussed in section 2.6, the “possible worlds” entered as

a simple argument. “The ball was on the table at noon” was represented as “on(ball1, table1,

t1200)” or “true in(t1200, on(ball1, table1)).” In the theories we will discuss here, we capture

modal operators such as “believe” using quantification over accessible worlds. “John believes that

the ball is on the table,” becomes “The ball is on the table in all worlds accessible via John’s belief.”

Introducing a first-order predicate “bel acc(A,W0,W1)”, meaning that world W1 is accessible from

world W0 relative to the beliefs of A, we can represent this either as,

∀W1 bel acc(john,w0,W1) ⇒ on(W1, ball1, table1)

or

∀W1 bel acc(john,w0,W1) ⇒ true in(W1, on(ball1, table1))

where w0 is the real world.

For example, consider the sentential operator “X believes that φ”. Let L be a modal language

with some non-logical symbols and the modal operator “X believes that φ”. Let L0 be the first-order

language over domain D0 with all the non-logical symbols of L. The equivalent language of possible

worlds Lp will involve the following:

i. The individuals in the universe must include

a. People (the first argument of the “believes” operator).

b. All individuals in D0

c. Possible worlds. The symbol w0 represents the real world.

d. States of affairs over possible worlds. Extensionally, we can view a state of affairs as just

a set of possible worlds; those in which the state obtains.

e. Fluents over possible worlds. Extensionally, we can view a fluent as a function from

possible worlds to individuals in D0.

ii. The non-logical symbols of Lp include the following:

a. All constant symbols of L0 are constant symbols of Lp.

b. Any function symbol of L0 is a function symbol of Lp. Its meaning, however, is changed.

The value of the term “father of(john)” is no longer a person; it is the fluent that

denotes, in each world, the father of John in that world. The father of John in a

particular world W is value in(W ,father of(john)). In particular, John’s real father is

value in(w0,(father of(john)). The function “father of(X)” thus represents a function

whose argument X is either a person (such as “john”) or a fluent from possible worlds to

persons (such as “mother of(bob)”), and whose value is a fluent from possible worlds to

persons.

56

c. Each relation symbol of L0 becomes a function symbol of Lp. An atomic formula of L0,

like “on(block1,table)”, is a term of Lp. It denotes the state of affairs in which the block

is on the table. To say that the block is on the table in some particular world W , we

write “true in(W ,on(block1,table)).” In particular, to say that the block is really on the

table, we write “true in(w0,on(block1,table))”.

d. The function “value in(W,F)” takes a fluent F from possible worlds to entities, and a pos-

sible worldW , and returns the value of F inW . For instance, “value in(W ,father of(john))”

is John’s father in world W .

e. The relation “true in(W,A)” means that the state of affairs obtains in possible world W .

For instance, “true in(W ,on(block1,table))” means that the block is on the table in world

W .

f. The relation bel acc(P,W1,W2) is the relation, “W2 is accessible from W1 in the beliefs

of P .”

g. The constant symbol “w0” represents the real world.

Any statement in the modal logic can be translated into this new language, using the possible

worlds semantics for the modal logic. For example, the statement, “John believes that Mary believes

that all tall people have tall fathers,” becomes

∀W1,W2 bel acc(john,w0,W1) ∧ bel acc(mary,W1,W2) ⇒

∀X [true in(W2,tall(X)) ⇒ true in(W2,tall(value in‘(W2,father of(X)))]

2.7.3 Individuals and Modality

The difficult and dubious parts of modal logic lie in the treatment of constant symbols and quantified

variables inside the scope of modal operators. A thorough treatment of this topic involves many

difficult technical and philosophical issues. Within the scope of this chapter, we can only point out

some of the important issues involved.

Cross World Identification: One strength of a possible worlds semantics is that it greatly

clarifies the interrelation of quantifiers and modal operators. “John believes that someone wrote

Waverley,” means “In each accessible world, there exists a person who wrote Waverley.” “There is

someone whom John believes to have written Waverley,” means “There exists an individual who, in

every accessible world, wrote Waverley.” The difference between the two reduces to a difference in

the ordering of quantifiers. In the first form, often called “de dicto” modality, the author of Waverley

may vary from one world the next; in the second, called “de re” modality, the same person wrote

Waverley in all worlds.

This notion of “the same entity in all possible worlds” is a fundamental part of the possible

worlds semantics. In particular, our definition of an interpretation required that any constant

symbol represent a fixed entity in all possible worlds. This is necessary if we are to perform existential

abstraction over constant symbols, to deduce “There is someone whom John believes to have written

Waverley,” from “John believes that George IV wrote Waverley.”

But, though the formal properties of the idea are clear, it is not at all clear what it means. It can

be hard enough, even in principle, to identify “the same thing” over time and circumstance; how are

57

we to do so over the range of imaginable universes? Indeed, one can easily dream up situations in

which the question of identity becomes obviously unanswerable or meaningless. If Mrs. Bonaparte’s

oldest child had been a girl, would she have been Napoleon? If France had invaded Germany in

1938 in response to the Anschluss, would that have been World War II? If the Founding Fathers

had decided to place the national capital on the banks of the Connecticut River, would that city be

Washington, D.C.? These problems seem silly, but they are hard to avoid in developing this kind of

logic.

There is another, more subtle kind of problem with this notion. If objects are to be identified

across possible world, then we must distinguish between rigid designators, terms whose denotation

does not change from one world to the next, and non-rigid designators, terms which denote different

objects in different possible worlds. For example, in the sentence “John believes that Scott wrote

Waverley,” the term “Scott” is a rigid designator. Therefore this sentence implies the de re modal

statement, “There is someone whom John believes wrote Waverley,” which we are glossing as “Wa-

verley was written by a single person in every world consistent with John’s belief,” that single person

being Scott. By contrast, in the sentence “John believes that the author of Waverley wrote Waver-

ley,” the term “the author of Waverley” is a non-rigid designator. Therefore, this sentence does not

imply the above de re sentence; John’s beliefs (as far as we have specified them) are consistent with

any of a number of people having written Waverley. The sentence “John believes that the author of

Waverley wrote Waverley,” implies only the de dicto sentence, “John believes that someone wrote

Waverley.”

However, in practice, this distinction between rigid and non-rigid designators seems to be very

hard to make, and, often, not worth making. Consider the following scenario: One morning you get

an anonymous letter, threatening to publish compromising photographs. The letter is followed by a

phone call. You meet with the blackmailer face to face, and make appropriate arrangements. Some

months later, you see a photograph of the blackmailer, identified as Ralph Norbertson, in the paper.

The question is, at what point can you claim to have a rigid designator that denotes this man? That

is, at what point can you make statement of de re knowledge about him, like, “There is someone

who I know sent me a blackmailing letter?” It seems clear that there is no dividing line, no clear

criterion for distinguishing how much and what kind of contact is needed for de re knowledge. But,

unfortunately, it makes a great deal of difference in terms of the logic. If we grant that you have de

re knowledge of the blackmailer after seeing him face to face, and that you have de re knowledge of

your long lost brother, and it happens that the blackmailer is your brother, then it follows logically

that you know that the blackmailer is your brother.

Changing Domains: It is often desirable to make the very existence of objects subject to modal

operators. It seems natural to represent, “I don’t know whether the United States has a Prime

Minister,” or “The Eiffel Tower has not always existed,” as “¬ L(∃X X =prime minister(usa)),” and

“M(¬∃XX =eiffel tower).”

In other words, we would like to allow different worlds to contain different objects. The Prime

Minister of the USA does not exist in the real world, but she exists in worlds consistent with my

knowledge. The Eiffel Tower exists in the possible worlds of the 1980’s but not in the possible

worlds of the 1780’s. However, in our semantics, we required that all possible worlds have the same

domains. The formula M(¬∃XX = τ) is provably false for any term τ .

58

It is fairly easy to change the semantics of modal logic to allow varying domains. In the new

semantics, each world has associated with it a particular domain of individuals, which is a subset

of the universe of individuals. An interpretation maps a constant symbol a onto an individual u.

In any particular world Wi, a denotes u if u is an element of the domain of the world; otherwise, a

has no denotation in the world. In each world a function symbol represents a partial function over

the domain of that world. Terms involving non-existent objects are non-existent; atomic formulas

involving non-existent objects are false. Quantified formulas are true in a world if they are true of

each individual in that world. However, the axiomatization needed for this logic is more complex

than that of table 2.7 above.

2.8 Syntactic Theories

There are facts in commonsense domains that seem to involve quantifying over sentences. For

example, one would like to express the fact “John knows something that Bill doesn’t,” in the form

“∃P know(john, P) ∧ ¬ know(bill, P),” or the fact “George said something about taxes” as “∃P

said(george, P) ∧ about(P , taxes).” Quantification of this kind is beyond the expressive power

of first order modal logic and possible worlds semantics. Certain kinds of quantification can be

expressed within “higher order” logics, which we will not discuss. (See, for example, [Andrews,

86].) The most general and powerful technique for dealing with facts of this kind is the use of a

syntactic theory, a first-order theory incorporating strings that represent sentences and other meta-

level entities.13 Syntactic theories, however, have a severe drawback: it can be hard to give them a

consistent axiomatization. Section 2.8.2 will discuss this difficulty.

Besides allowing quantification over sentences, syntactic theories are also useful for expressing

meta-level properties of descriptions of entities, such as computational properties. For example, we

must use a syntactic theory to express facts such as, “Archie knows the primes up to 200,” where

what is meant is that he knows some explicit enumeration of the primes, expressed as sequences of

digits.

The difference between syntactic theories and modal theories is roughly analogous to the dif-

ference between direct quotation (“John said, ‘I am hungry’ ”), and indirect quotation (“John said

that he was hungry.”). Any kind of sayable or writable string may be embedded in direct quotation,

while only meaningful sentences may be embedded in indirect quotation. “John said ‘Arglebargle

glumph’ ” is meaningful, while “John said that arglebargle glumph,” is not. Purely syntactic predi-

cates, which relate only to the form of the utterance may be used of the object of a direct quotation;

one can say “John said something that that began with an ‘I’ and ended with a ‘y’.” As we shall see,

similar things can be done in syntactic theories. However, there is one important difference between

quotation and other operators on sentences which weakens this analogy. Any fact about an indirect

quotation acquires its truth by virtue of some fact about a direct quotation. If “John said that he

was hungry” is true, then there is some particular string that John said; there is some sentence φ

such that “John said ‘φ’ ” is true. There is no reason to believe that this property holds of other

13In logic texts, it is common to use numbers to represent sentences rather than strings, so that meta-theoretic
statements can be interpreted as statements of integer arithmetic. The mapping of sentences to numbers was in-
troduced by Kurt Godel, in proving the incompleteness of arithmetic. Where the meta-theory of arithmetic is not
involved, the string representation of sentences is considerably more readable than the numeric representation.

59

operators on sentences such as “believes.” (See sections 8.2 and 9.4.)

2.8.1 Strings

We start with some finite alphabet of characters. We will denote a single character by prefixing a

colon; thus :a, :b, :X, :∃, and :: are constant symbols which denote the particular character. The

alphabet includes all the characters we use in constructing first-order sentences: the upper and

lower case letters, the digits, the logical symbols, the parentheses, and also the colon itself. Other

standard characters can be added to the alphabet as desired. A string is a finite tuple of characters;

for example tuple(:C, :a, :t) is the string “Cat”. A syntactic theory (also called a theory of quoted

strings) is a first-order theory that allows strings as a sort of individual, provides certain standard

functions and relations on strings characterized by standard axioms, and provides some axioms or

axiom schemas that relate the strings that represent sentences to the sentences they represent.

We abbreviate tuples of characters using the symbols ≺ ≻ as string delimiters. For example,

≺Cat≻ is an alternate notation for tuple(:C, :a, :t). It should be emphasized that this is merely a

notational convenience (syntactic sugar) and that it can always be expanded to the “tuple” notation.

Quotation marks can be embedded; in this case, the meaning of the inner quotation is derived by

expanding it into “tuple” notation. For example, the string ≺length(≺Cat≻)=3≻ is equivalent to

≺length(tuple(:C, :a, :t))=3≻ which is equivalent to the tuple of 25 characters

tuple(:l, :e, :n, :g, :t, :h, :(, :t, :u, :p, :l, :e, :(, ::, :C, :,, ::, :a, :,, ::, :t, :), :), :=, :3)

Quotation marks create a context which is completely opaque as regards substitution under equal-

ity. For example, from the statements length(≺bush≻)=4 and bush=president(usa), we are certainly

not entitled to deduce length(≺president(usa)≻) = 4; the length of the string ≺president(usa)≻ is

14. Substitutivity fails because the sentence “length(≺bush≻) = 4” contains no reference to Bush,

and, in fact, no use of the symbol “bush”, merely uses of the characters :b, :u, :s, and :h, as can be

seen if we rewrite it

length(tuple(:b, :u, :s, :h)) = 4

Our interest is in strings that spell out first-order terms or formulas; these we will call meaning-

ful strings. Meaningful strings are built up by combining meaningful symbols. We define a string

as symbolic if it spells out a non-logical symbol (constant function, or predicate symbol), a vari-

able symbol, a Boolean operator, or a quantifier. Thus, ≺mary≻, ≺X2≻, ≺ ∧ ≻, and ≺∃≻ are

symbolic; the strings ≺X ∧ ∃≻, ≺)≻, and ≺f(X)≻ are not symbolic. We introduce the function

“apply(O,A1, . . . , Ak)”, which constructs a meaningful string expressing the application of operator

symbol O to meaningful strings A1, . . . , Ak. It is possible for O to be a function or predicate symbol

and A1 . . . Ak to spell out terms; or for O to be a Boolean operator and for A1 and A2 to spell out

sentences; or for O to be a quantifier, A1 to be a variable symbol, and A2 to spell out a formula.

Table 2.8 gives some examples of the use of the “apply” function. Table 2.9 enumerates a number

of non-logical symbols useful in a syntactic theory.

The operators “is symbol,” “is meaningful,” “is constant,” “is term,” “is sentence,” “apply,” and

“subst” are called syntactic operators. Their truth can be computed merely from knowing the forms

60

apply(≺parent≻, ≺marion≻, ≺X2≻) = ≺parent(marion,X2)≻.
apply(≺ > ≻, ≺1000≻, apply(≺ + ≻, ≺200≻, ≺34≻)) = ≺1000 > 200 + 34≻.
apply(≺ ∧≻, ≺p(A)≻, ≺¬q(b)≻) = ≺p(A) ∧ ¬q(b))≻.
apply(≺∃≻, ≺X≻, ≺ father(marion, X)≻) = ≺∃X father(marion,X)≻.

Table 2.8: Use of the “apply” function

of the arguments, and the non-logical symbols of the language. They can be fully axiomatized in a

standard way. The operators “denotes,” “true,” and “name of” are semantic operators. Determining

their truth requires knowing the meaning of the language and the state of the world.

In addition to these object level relations, a central concept is that of an object-level string spelling

out a meta-level construct. We will not give a formal definition, as that would require formalizing

the meta-language, but the meaning should be obvious: The object level string ≺father of(john)≻

(= tuple(:f, :a, :t . . .)) spells out the meta-level term “father of(john)”; the object level string

≺X=f(X)≻ spells out the meta-level formula “X=f(X)”, and so on.

We can now add any operator on sentences that we like by treating it as an operator on strings.

The properties of the operator are specified in terms of particular axioms for that operator; no

particular properties are imposed a priori. The result is a very flexible language for talking about

sentences.

For example, we can introduce the operator “know(A,S)” meaning that person A knows sentence

S. We can then express “John knows something that Bill doesn’t” as

∃S know(john,S) ∧ ¬know(bill,S)

This is now legitimate, since S ranges over strings.

We can express the fact, “John knows the name of the capital of Massachusetts” as

∃S is constant(S) ∧ know(john,apply(≺ = ≻, ≺capital(massachusetts)≻, S))

This is true, because for the value S=≺boston≻, which is a constant symbol, the value of the “apply”

term becomes ≺capital(massachusetts)=boston≻, which John knows to be true. The requirement

that the string be a constant means that the statement would not be true if John only knew the

statement ≺capital(massachusetts) = capital(massachusetts).≻ (A more readable notation will be

introduced in section 8.2.3.) Constant strings thus play a role in syntactic theories similar to the role

of rigid designators in modal theories (section 2.7.3). The problems connected with rigid designators

can be directly addressed in syntactic theories by using a variety of syntactic predicates, depending

on the circumstance.

In this way, we can express operators on sentences, where the sentences may be quantified over

with any definable criterion. In some ways, this often feels like too much power; the language is so

expressive that it gives no constraints. In possible world semantics, the interpretation of an operator

on a sentence is related to the meaning of the sentence; the operator is true if the sentence is true

in certain accessible worlds. In a syntactic theory, there is not any necessary relation between the

interpretation of operators and their meaning. We can perfectly well define operators on strings that,

61

• is symbol(S) is a predicate meaning that string S is a symbolic string.

• is meaningful(S) is a predicate meaning that string S is meaningful (a term or sentence).

• is constant(S) is a predicate meaning that the string S is a constant symbol in the language.
For example, is constant(≺john≻) is true; is constant(≺father of(john)≻) is false.

• is term(S) is a predicate meaning that the string S is a term in the language. For example,
is term(≺father(X)≻) is true, while is term(≺)∃cat≻) is false.

• is sentence(S) is a predicate meaning that the string S is a sentence in the language. For ex-
ample, is sentence(≺elephant(clyde)≻) is true while is sentence(≺father of(John)=≻) is false.

• apply(O,A1, . . . Ak) is a function that gives the string consisting of the operator O applied to
arguments A1 . . . Ak.

• subst(SNEW,SV AR,SOLD) is a function that gives the result of substituting the term string
SNEW for every genuine occurrence of the variable string SV AR (that is, every occurrence
outside embedded quotation marks) in the formula string SOLD. For example,

subst(≺john≻, ≺X≻, ≺loves(X,father of(X))≻) = ≺loves(john, father of(john))≻

It is straightforward to define “subst” in terms of “symbolic” and “apply”.

• dbl quote(S) is a function that adds a level of quotation to a string. For example,

dbl quote(≺cat≻) = dbl quote(tuple(:c, :a, :t)) = ≺≺cat≻≻ = ≺tuple(:c, :a, :t)≻
=
tuple(:t, :u, :p, :l, :e, :(, ::, :c, :, ::, :a, :, ::, :t, :))

Note that the argument to dbl quote must be a string. If “bill” is a constant symbol de-
noting the person Bill, then “dbl quote(bill)” is a meaningless expression. We cannot have
dbl quote(bill) be the string ≺bill≻, because, since “bill” is an ordinary constant symbol,
it can always be replaced by equal terms. That is, if “dbl quote” were a function that ap-
plied to bill and bill=father of(john) were true, then dbl quote(bill) would have to be equal to
dbl quote(father of(john)).

• denotation(S) is a function mapping a string expressing a ground term S into the object that
S denotes. Thus, if John’s father is Bill, then all of the following are true:

denotation(≺bill≻) = bill
denotation(≺father of(john)≻) = bill
denotation(≺bill≻) = father of(john)
denotation(≺father of(john)≻) = father of(john)

• true(S) means that the string S is a true sentence. For example, true(≺1+1=2≻) is true.

• name of(X) maps an object X onto a constant denoting X.

constant(name of(X)) ∧ denotation(name of(X)) = X

Table 2.9: Non-logical symbols for a syntactic theory

62

by themselves, are completely meaningless. For instance, we can define an operator “shmow(X,P)”

which is true just if X knows P written backwards, and, moreover, the letters occurring in P are in

alphabetical order. Moreover, it can be argued that using a logic grounded in the theory of strings

eliminates one of the major advantages of defining an extensional semantics. A Tarskian or possible

worlds semantics for a domain without quotation allows us to forget about the syntactic structure

of proofs, and reason about the objects, functions, and relations of the domain directly. By using a

theory of quotation, we must return to worrying about the details of string manipulation.

Others find syntactic theories more intelligible than modal theories. The concepts of possible

worlds and of accessibility are rather metaphysical, in the pejorative sense; and the reduction of

modality to possible worlds often seems strained. It seems strange (to me) to say that John knows

that Clyde is an elephant by virtue of the nature of Clyde in other possible worlds, rather than

by virtue of something about John in this world. (By contrast, it seems reasonable to say that

“Yesterday, it rained” is true by virtue of the state of the world at a different time, or that “If Barney

had known French, he would have understood the lecture,” is true by virtue of a hypothetical world

(or worlds) in which Barney did knew French.) The idea that John knows that Clyde is an elephant

by virtue of a relation between John and the string ≺elephant(clyde)≻ seems comparatively clear:

the string is somehow encoded in his brain. (See section 8.2.)

2.8.2 Paradoxes of Self-Reference

Syntactic theories suffer from a very serious problem. It is easy to construct contradictions in them.

These contradictions arise from the combination of self-referential sentences and terms — sentences

and terms that refer to strings that embed them — with axioms that relate strings to their meanings.

The axioms are, in themselves, very plausible. We would like to say that the predicate “true”

applies to the quoted form of a sentence just if the sentence is true. For example the sentence

“true(≺parent(john,bill)≻)” is true just if “parent(john,bill)” is true. This is, after all, what we

mean by “true”. We can express this as follows:

Axiom Schema of Truth: Let P be a string that spells out the sentence φ. Then

true(P) ⇔ φ

is an axiom. Thus, for example,

true(≺parent(john,bill)≻) ⇔ parent(john,bill)

is an axiom.

In the same way we would like to assert that the quoted forms of terms denote the object that

the terms mean. That is, if T is a string that spells out term τ , then “denotation(T)=τ” is an

axiom. For example,

denotation(≺father of(john)≻) = father of(john)

is an axiom.

63

The problem is that we can construct sentences that assert that their own quoted form is false,

and terms that are described in terms of their own failure to denote. Standard examples of these in

English are “This sentence is false,” and “The smallest number not describable in fewer than twelve

English words.” The first of these is called the Liar sentence. It is not consistent, either to suppose

that the sentence is true or to suppose that it is false.

We cannot directly translate the above liar sentence into first-order logic, since logic has no

equivalent of the demonstrative “this”, used self-referentially. However, a syntactic theory does

allow us to construct a term τ that denotes a string that spells out a sentence containing τ . In this

way, we can construct a sentence φ that can be shown to be equivalent to ¬true(φ). A syntactic

notation allows us to create such a sentence; a sentence φ that asserts ¬true(P), where P spells out

φ. The sentence below is an example.

¬ true(subst(≺≺¬ true(subst(dbl quote(X1),≺X1≻, X1))≻≻,

≺X1≻,

≺¬(true(subst(dbl quote(X1),≺X1≻,X1))≻))

Using the axiom schema of truth and the definitions of subst and quote, one can easily derive a

contradiction. If the Liar sentence above is true, then it must be false; if it is false, it must be true.

(The casual reader may take this on faith. The more intense reader may enjoy working out how this

works (exercise 2.9).)

Sentences of similar structure can be created for any operator on sentences. We can construct a

sentence that says, in effect, “John believes that he does not believe this,” “John knows that he does

not know this”, “John says that he does not say this”, and so on. If sufficiently strong axioms are

asserted about the operator, it may be possible to use these to derive a contradiction. It should be

noted that the paradoxes rely as much on the axioms governing the operator as on the self-referential

sentences. There is, for instance, nothing paradoxical about someone standing up and saying, “I am

not speaking this sentence;” he is simply obviously lying. No contradiction can be derived because

there are practically no axioms whatever that govern what a person can speak.

(Digression: A more interesting example is the predicate ‘φ is provable’. Let T be a first-order

theory of quoted strings containing syntactic operators such as concat and subst, but no semantic

operators. Then, since proof is a purely syntactic notion, it is possible to define the predicates

“proof(P,A)”, meaning “String P is a proof of string A in T ,” and the predicate “provable(A)”

meaning “String A can be proven in T ”. Using a construction like that above, it is possible to

construct a string P such that

a. P spells out a sentence φ

b. The sentence ‘φ⇔¬provable(P)’ is provable in T .

Furthermore, we can prove in the meta-theory that if string A spells out sentence α and A is

provable, then α is true. However, the sentence, “provable(A) ⇒ α,” need not be provable in T .

Thus, since in the meta-theory we have shown that φ⇔¬provable(P) and that provable(P) ⇒ φ, we

can conclude that φ is true but not provable in T . There is no contradiction, since this argument is

a proof in the meta-theory, not in T .

64

The argument above is the second part of Godel’s incompleteness theorem., The first, and more

difficult, part is the number theory necessary to show that the syntactic definitions we need to

define provability and to construct the self-referential sentence can all be mirrored in the language

of arithmetic. End of digression.)

These contradictions can only be resolved either by dropping the axiom of truth or, more ex-

tremely, by abandoning two-valued logic. Various ways of doing these have been proposed. (See

References). A natural proposal is to say that the axiom schema only applies to ordinary sentences,

not to paradoxical sentences. The problem is that it is not, in general, possible to determine which

sentences are paradoxical; it may, in fact, depend on external facts about the world. For example,

the sentence “Either this sentence is false or Paris is the capital of France” is not paradoxical, but

true; while the sentence “Either this sentence is false, or Rome is the capital of France” is paradoxi-

cal. For another example, “THE FIRST QUOTED SENTENCE PRINTED IN BLOCK CAPITALS

IN REPRESENTATIONS OF COMMONSENSE KNOWLEDGE IS FALSE,” is paradoxical, but it

would not be if we had inserted an innocuous sentence in block capitals earlier. Thus, we cannot,

in general, determine whether a sentence is an instance of the axiom of truth, or whether it is an

invalid attempt to apply this schema to a paradoxical sentence. We could restrict the axiom schema

so that it applies only to sentences that can be easily determined syntactically not to be paradoxical,

but this results in a very limited theory.

In practice, this may not make very much difference to AI programs. An AI program might

plausibly run for a long time applying the axiom of truth without worrying and never run into

self-referential sentences. However, this is not very satisfying. There is no useful way to define

logical consequence in an inconsistent logic; hence, there is no way to use this logic to verify that an

inference engine is behaving reasonably. Having a fundamental flaw like this in a logic is worrisome,

like carrying a loaded grenade; you never know when it might go off. Moreover, sentences that, taken

literally, are self-referential do come up, from time to time, even in the most innocuous contexts.

An magazine article on pasta contained the following sentence: “Once you have made pasta that is

neither mushy nor rubbery and you have experimented with the ways different shapes and thicknesses

combine with different sauces . . . the end of this sentence is not ‘you’ll never accept substitutes.’ ”

Or they may be brought up with malice aforethought. There was an episode of Star Trek in which

a malignant computer suffered a nervous breakdown when it was presented with the Liar Sentence.

We would wish our programs to be immune to this sad fate.

2.9 Appendix A: Natural Deduction

Natural deduction is a proof system for first-order logic that generates proofs that are, in their

structure, relatively close to the kinds of proofs written by human theorem provers, and therefore

relatively readable. Numerous minor variants of natural deduction exist. The one presented below

is adapted from [Mates, 1972]; it contains nine rules of inference and no logical axioms.

Two features of natural deduction are particularly notable. First, in a natural deduction proof

it is possible to assume one fact φ, deduce a new fact ψ from φ, and then conclude the material

implication φ⇒ψ from the fact that that φ ⊢ ψ. This inference is formalized in the rule of discharging.

Such an argument can be used, for example, in proofs by contradiction: To show that φ is true,

65

assume ¬φ, show that that leads to a contradiction, and conclude that φ must be true. Second, it is

possible in natural deduction to use a new constant symbol “locally” to represent an object with a

given property. This reflects such forms in informal proofs as “Let p be a prime number.” In natural

deduction, we can make assumptions such as “p is a prime number” and see where it leads us. If

we can conclude some other property of p — for example, that Xp ≡ X mod p for all X, — then

we can conclude that this property holds for all prime numbers. Moreover, if we know that there

exist prime numbers, then we can conclude that there are numbers with the above property. To do

this, we must, of course, use constants that are not used elsewhere in the proof. Moreover, we may

need arbitrarily many constants. We therefore assume that the language has an infinite collection

of constants that we can draw on. These types of inference are formalized in the rules of universal

generalization and existential specification.

The structure of a proof in natural deduction is more complicated than in the axiomatic proof

theory considered earlier. In order to carry out the discharging inference, in which we assume φ,

derive ψ, and infer φ⇒ψ, we must keep track of all the assumptions that underlie any given step of

the proof. We therefore define a proof step as follows:

Definition A.1: Let L be a first-order language. A proof step S over L is a triple consisting of

i. A sentence in L, denoted “content(S)”.

ii. A label of the step, denoted “label(S)”. We will use integers as labels, but any type of symbol

may be used.

iii. The set of the labels of the assumptions underlying S, denoted “assumptions(S)”.

Definition A.2: A proof structure is a sequence of proof steps, no two of which have the same

label.

We now define the various types of inference. In all the definitions below, S, I,J ,K are proof

steps and P is a proof structure.

Definition A.3: Axiom. S can be inferred in proof structure P from hypotheses Γ as an axiom if

i. content(S) ∈ Γ.

ii. assumptions(S)=∅.

Definition A.4: Assumption. S can be inferred in P as an assumption if assumptions(S) =

{ label(S) }. Note that there is no constraint on the content of S; any sentence can be taken as an

assumption.

Definition A.5: Tautology. S can be inferred from steps I1 . . . Ik in P by the rule of tautology if

i. Steps I1 . . . Ik precede S in P.

ii. content(S) is a tautological (propositional calculus) consequence of content(I1) . . . content(Ik);

iii. assumptions(S) = ∪i=1...k assumptions(Ii).

66

Definition A.6: Discharge. S can be inferred from I and J in P through the rule of discharge

(conditionalizing) if the following hold:

i. P contains I, J , and S in that order (though not necessarily consecutively).

ii. Let content(I)=φ and content(J)=ψ. Then content(S)=φ⇒ψ.

iii. assumptions(S) = assumptions(J) − { label(I) }.

Definition A.7: Universal Specification. S can be inferred from I in P by the rule of universal

specification if the following hold:

i. I precedes S in P.

ii. There is an open formula α, a variable µ, and a ground term τ such that content(I) = ∀µ α(µ)

and content(S) = α(µ/τ).

iii. assumptions(S) = assumptions(I).

Definition A.8: Universal Generalization. S can be inferred from I in P by the rule of universal

generalization if there is an open formula α, a variable µ, and a constant symbol β such that the

following hold:

i. I precedes S in P.

ii. content(I) = α(µ/β); content(S)=∀µ α(µ).

iii. assumptions(S)=assumptions(I).

iv. The constant β does not appear in α(µ) or in the content of any assumption of I.

v. The constant β does not appear in the content of any axiom in P.

Definition A.9: Existential Generalization. S can be inferred from I in P by existential

generalization if

i. I precedes S in P.

ii. content(I) = α(µ/τ) and content(S) = ∃µ α(µ), for some formula α, variable µ, and term τ .

iii. assumptions(S) = assumptions(I).

Definition A.10: Existential Specification. S can be inferred from I,J ,K in P by existential

specification if there is a formula α, a constant symbol β, and a variable symbol µ such that

i. I,J ,K,S occur in that order (not necessarily consecutively) in P.

ii. content(I) = ∃µ α(µ); content(J) = α(µ/β).

iii. content(S) = content(K)

67

iv. β does not appear in content(I), in content(K), or in the content of any assumption of K other

than J .

v. β does not appear in the content of any axiom in P.

vi. assumptions(S) = assumptions(I) ∪ assumptions(K) − { label(J) }

Definition A.11: Quantifier exchange: S can be inferred from I in P by quantifier exchange if

i. I precedes S in P.

ii. There is a formula α and variable µ such that either

a. content(S) = ∀µ α; content(I) = ¬∃µ ¬α;

b. content(S) = ∀µ ¬α; content(I) = ¬∃µ α;

c. content(S) = ∃µ α; content(I) = ¬∀µ ¬α; or

d. content(S) = ∃µ ¬α; content(I) = ¬∀µ α.

iii. assumptions(S) = assumptions(I)

Finally we can define a proof.

Definition A.12: A proof of conclusion φ from hypotheses Γ is a proof structure in which every

step can be inferred either as an axiom of Γ, as an assumption, or via one of the rules of tautol-

ogy, discharge, universal specification, universal generalization, existential specification, existential

generalization, or quantifier exchange.

Strictly speaking, the rules of existential specification and existential generalization are redun-

dant; any theorem can be proven without recourse to these rules.

Table 2.10 shows an example of a proof.

2.10 References

[Turner, 1984] surveys many of the logics used in AI.

[Genesereth and Nilsson, 1987] contains an excellent introduction to first-order logic addressed to

the student of AI. As a textbook for further study of first-order logic I recommend [Mates, 1972]. (In

particular, [Mates, 1972] has an extensive discussion of the translation of English sentences to first-

order logic.) The axioms given here for propositional and predicate calculus are slightly modified

from [Genesereth and Nilsson, 1987]. The definition of Tarskian semantics and the natural deduction

system described in appendix A are adapted from [Mates, 1972].

Sorted logics are discussed in [Cohn, 1985] and [Walther, 1985].

[Halmos, 1960] is a readable introduction to set theory. The only discussion of set theory with

ur-elements that I have found is [Barwise, 1975]; this, however, is an advanced text requiring a great

deal of background. [Zadrozny, 1989] presents a new, less constraining set theory that he argues is

more suitable to commonsense reasoning.

68

Givens:

∀P vegetarian(P) ⇔ [∀X eats(P,X) ⇒ ¬meat(X)]
(A vegetarian is someone who does not eat any meat.)

∃P ∀X eats(P,X) ⇒ [tomato(X) ∨ carrot(X)]
(There is someone who eats only tomatoes and carrots.)

∀X tomato(X) ⇒ ¬meat(X).
(Tomatoes are not meat.)

∀X carrot(X) ⇒ ¬meat(X).
(Carrots are not meat.)

To prove: ∃X vegetarian(X). (There exists a vegetarian.)
Label Content Assumptions Justification
1. ∃P ∀X eats(P,X) ⇒ [tomato(X) ∨ carrot(X)] { } Axiom.
2. ∀X eats(p1,X) ⇒ [tomato(X) ∨ carrot(X)] { 2 } Assumption.
3. eats(p1,x1) ⇒ [tomato(x1) ∨ carrot(x1)] { 2 } Universal Spec. (2)
4. eats(p1,x1) { 4 } Assumption.
5. tomato(x1) ∨ carrot(x1) { 2,4 } Tautology (3,4).
6. ∀X tomato(X) ⇒ ¬meat(X) { } Axiom.
7. tomato(x1) ⇒ ¬meat(x1) { } Universal Spec. (6).
8. ∀X carrot(X) ⇒ ¬meat(X) { } Axiom.
9. carrot(x1) ⇒ ¬meat(x1) { } Universal Spec. (8).
10. [tomato(x1) ∨ carrot(x1)] ⇒ ¬meat(x1) { } Tautology (7,9)
11. ¬meat(x1) { 2,4 } Tautology (5,10)
12. eats(p1,x1) ⇒ ¬meat(x1) { 2 } Discharge (4,11)
13. ∀X eats(p1,X) ⇒ ¬meat(X) { 2 } Universal Gen. (12).
14. ∀P vegetarian(P) ⇔ [∀X eats(P,X) ⇒ ¬meat(X)] { } Axiom.
15. vegetarian(p1) ⇔ [∀X eats(p1,X) ⇒ ¬meat(X)] { } Universal Spec. (14)
16. vegetarian(p1) { 2 } Tautology (13,15).
17. ∃P vegetarian(P). { 2 } Existential Gen. (16)
18. ∃P vegetarian(P). { } Existential Spec. (1,2,17)

Table 2.10: Proof in Natural Deduction

69

Extensional operators have been used in AI logics of time since [McCarthy, 1959]. [Hobbs, 1985c]

is a general discussion of extensional operators; Hobbs proposes that it should be possible to create

an entity corresponding to any atomic sentence.

[Hughes and Cresswell, 1968] is a standard text on modal logic. Unfortunately, the logic presented

there uses neither constant symbols nor proper axioms, so it required some modification for its

presentation here. (The uninterest of modal logicians in theories with proper axioms is indicated by

the fact that modal logic with proper axioms was first proven complete in [McDermott, 1982b]. I do

not know whether the axioms MODAL.1 through MODAL.12 are complete for the modal logic with

equality.) Possible worlds semantics for modal logic was introduced in [Kripke, 1963a and 1963b];

these used a possible worlds semantics in which different worlds could have different domains of

individuals. Higher order modal logics are discussed in [Gallin, 1975]. Modal logics of knowledge

and belief were developed in [Hintikka, 1962]. Hintikka’s logic of knowledge was extended in [Moore,

1980] to incorporate a representation for action. Moore also introduced the idea of translating the

modal logic into a first-order logic over possible worlds. Other AI applications of modal logic include

[Appelt, 1982] and [Shoham, 1988].

For higher-order logics, see [Church, 1956] and [Andrews, 1986], chapter 5.

There is a large philosophical literature dealing with the status of de re modalities and rigid

designators. The best known work is probably [Kripke, 1972]; see also [Burge, 1977] [Dennett, 1981],

[Goodman, 1961], [Kaplan, 1968], [Moore, 1980], and [Quine, 1969]. Possible worlds interpretations

for counterfactual sentences are discussed in [Lewis, 1973]. [Ginsberg, 1986] discusses applications

of counterfactuals to AI.

The theory of quoted strings is discussed in [Genesereth and Nilsson, 1987 chap. 10], though in

the context of the meta-language rather than in the object language. AI theories that have used

syntactic operators include [Perlis, 1985], [Konolige, 1982], [Haas, 1983], and [Morgenstern, 1988].

[Tarski, 1956], [Kripke, 1975], [Gupta, 1982], and [Barwise and Etchemendy, 1987] are analyses of

the Liar Paradox. [Hofstadter, 1979] and [Hofstadter, 1985] are entertaining popular books which

explore problems of self-reference and related issues. [Smullyan, 1978] is one of a number of collection

of puzzles on the same theme. [Kaplan and Montague, 1960] discuss analogues of the liar paradox

with the operators “know” and “believe”.

Situation logic, presented in [Barwise and Perry, 1982], is an alternative approach to the problems

discussed in this chapter.

2.11 Exercises

2.1. Express the “Jones, Smith, and Robinson” puzzle on section 2.2 in the propositional calculus.

2.2. a. Given the hypothesis ¬¬p, prove p, using axioms PROP.1 — PROP.7 of the propositional

calculus.

b.* Given the hypothesis p, prove p ∨ q, using axioms PROP.1 — PROP.7.

2.3. Consider a domain consisting of people, books, and copies of books (volumes). Let L be a

sorted first-order language with “person”, “book”, and “volume” as sorts, and with the following

70

non-logical symbols:

Constants: sam, barbara, tolstoy, joyce.

Predicates: owns(P, V) — Person P owns volume V .

author(P,B) — Person P wrote book B.

copy(V,B) — Volume V is a copy of book B.

Express each of the following statements as a sentence in L: (You need not include the conditions

to enforce correct sorting.)

i. Sam owns a copy of every book that is either by Tolstoy or Joyce.

ii. All the volumes that Barbara owns are copies of books by Tolstoy.

iii. If Barbara owns a copy of a book, then Sam owns a copy of the same book.

iv. There is some book that Sam owns but Barbara doesn’t.

v. Every author owns a copy of each of his own books.

2.4. Consider the following “proof” of sentence (iv) in problem 2.3 from (i) and (ii): Sam owns all

books by Joyce (from (i)) and Barbara owns only books by Tolstoy (from (ii)). Therefore any book

by Joyce is owned by Sam but not by Barbara. Therefore Sam own some book that Barbara doesn’t.

a. What background assumptions does this proof rely on? Express these as sentences in L.

b. Using the natural deduction system described in appendix A, give a proof of (iv) from (i),

(ii), and the additional assumptions in (a).

2.5. Define the modal operator, “knows(X,φ)”, to mean “X knows that φ.” In a modal language

containing this operator, the language defined in ex. 2.3, and the constant “ulysses” (the name of a

book), express the following sentences.

a. Sam knows that Joyce is the author of Ulysses.

b. Barbara knows that Sam owns a copy of every book by Joyce.

c. There is a book B by Tolstoy such that Barbara knows that she owns a copy of B.

d. Everyone knows that there is no book by Tolstoy with no copies owned by anyone.

e. Sam knows that everyone knows that Joyce is the author of Ulysses.

f. Someone knows that Sam owns a copy of a book that he himself (the someone) wrote.

2.6. Express each of the sentences in ex. 2.5 in terms of a possible worlds semantics

2.7.* Express each of the sentences in ex. 2.5, treating “know(X,φ)” as a syntactic operator. (Note:

This exercise will be much easier after chapter 8 has been covered.)

2.8. Show that axiom MODAL.10 (section 2.7) is true in any Kripke structure in which accessibility

of possible worlds is an equivalence relation.

71

2.9.* Show that the Liar sentence in section 2.8.2 asserts its own falsehood. Note the difference

between the term dbl quote(X1) which contains the symbol X1, and is therefore changed by the

subst, and the term ≺X1≻, which does not contain the symbol X1, only the characters :X and :1,

and is therefore unchanged by the subst.

2.10 a. Show that ∀X,Y X=Y ⇒ L(X = Y) is a consequence of axiom MODAL.3.

b.* Explain why the false conclusion “sid=mayor(schenectady) ⇒ L(sid=mayor(schenectady))”

does not follow from the formula in (a).

72

