Chapter 9
Plans and Goals

Groucho: You say you're going to go to everyone in this house
and ask them if they took the painting. Suppose nobody in the
house took the painting. «

Chico: Go to the house next door.
Groucho: That’s great. Suppose there isn’t any house next door.

Chico: Well, then, of course, we got to build one.

Animal Crackers

At the bottom line, knowledge and reasoning are valuable insofar as
they enable a creature to accomplish its goals through appropriate
action. Finding such appropriate actions in a complex world often re-
quires forethought; the creature must think through a course of action
before executing it. Carrying out such forethought effectively under a
range of circumstances requires the ability to represent and reasoning
about one’s plans and goals explicitly. Similarly, understanding or pre-
dicting the behavior of another intelligent creature requires reasoning
about its plans and goals.! Accordingly, plan construction, the task of
finding a plan to accomplish a goal, has been the most extensively
studied application of commonsense reasoning. Motivation analysis,
the task of inferring an agent’s goals and plans from his actions, has
also been much studied as a major component of understanding nar-
rative text.

1These statements may seem to be truisms, but they have been debated. The be-
haviorists [Skinner 1971], of course, rejected them entirely. More recently, Agre and
Chapman [1987] have argued that intelligent behavior consists largely of “situated ac-
tivity,” actions performed in direct response to situations, with little long-term planning.

395

396 Plans and Goals

Humans deal with many different types of plans and goals, and they
reason about them in many different ways. The following examples
illustrate some of these issues that a complete theory of plans and
goals must address:

1. It is raining outside, and you have to bring a book home from
the library without getting it wet. Infer that you can do this by
carrying the book inside a plastic bag. This is a problem of plan
construction. The goal is a conjunction of the physical state, “The
book is at home,” with the physical constraint, “At no time is the
book wet.” The plan is a description of a physical action. Note that
an efficient planner will not plan the route home step by step; it
will use general knowledge that it will be able to get home on foot
while keeping the book protected.

2. Elly tells you that she is planning to travel to Bosnia via Herzo-
govinia. You know that the two countries went to war this morning
and that there is no way of getting into Bosnia. Infer (a) that Elly
does not know about the war; and (b) that Elly will have to drop
or postpone her goal of going to Bosnia."

3. Joe is at his workshop. He has to build a desk, but his only record
of the dimensions is at home. His customers, who are the only
people who know the dimensions, are out of town. Infer that Joe
will have to go home to get the dimensions. The problem here is
to infer the actions of an agent from his goals. It is similar to plan
construction, but, while the problem in plan construction is to find
some plan satisfying the goal, here the problem is to characterize
all plans that satisfy the goal. (All such plans involve going home.)
The constraint here arises because of an informational requirement
of a plan. In order to build the desk properly, he must know the
desired dimensions.

4. The only thing that you know how to cook is oatmeal, and it is
getting monotonous. Infer that one possible plan is to buy yourself
a cookbook and learn some recipes. This is a plan-construction
task. The goal has a complex structure: to satisfy your hunger at
regular intervals in the future, subject to the constraint that the
types of food vary sufficiently. To carry this out, it is necessary to
know many different ways of preparing food. This requirement can
be satisfied by using a cookbook.

5. Ed is driving at a leisurely pace up a one-lane highway. Matilda
drives up close behind him and honks. Ed pulls over to the shoul-
der. Infer that Ed has inferred that Matilda is in a hurry and wants
to pass, and that he has courteously cooperated. This is a problem

9.1 Plans as Sequences of Primitive Actions 397

of motivation analysis: Given an agent’s actions, infer his motives.
Note that this problem involves reasoning about communication
and cooperation between agents.

6. On a dark night, your horse refuses to cross a familiar bridge. Infer
that the horse may sense that there is something wrong with the
bridge. Here we are inferring something about the mental state of
an agent in order to connect its actions with its goals. The goal-
plan structure here has some particular points of interest. The
underlying goal is one of preventing, or at least postponing, a state
(death) rather than achieving one. The plan inferred consists of
not doing an action rather than doing it. The plan is adopted in
response to a particular circumstance (the bridge being washed
out) rather than generated when the goal is adopted.

Most of the work on planning in AI has focused on problems of
search, particularly the problem of finding a successful plan given a
starting state and a goal. This search problem has generally been
studied in the context of rather simple ontologies for plans, in order
to concentrate on the search problems. By contrast, we will focus in
this chapter on the ontological and representational issues that arise
in reasoning about plans and goals.

-

9.1 Plans as Sequences of Primitive Actions
Many AI planners operate under the following assumptions:

1. The situation calculus model of time as a branching, discrete struc-

~ ture is appropriate. That is, only one primitive event occurs at a

time, and the states of the world in the middle of events are unim-
portant.

2. There is only one agent, and the only events are his actions.
3. A goal is a desired state of the world.

4. All relevant aspects of the world are known to the planner from
the start.

Under these circumstances, the execution of a plan will consist of
the performance of a sequence of primitive actions. A plan is a com-
plex event type. A complete plan description specifies a sequence of
particular primitive actions; a partial plan description is a set of con-
straints on sequences of actions. A planning program is given a goal
and a description of a starting situation; its task is to find a sequence

398 Plans and Goals

of actions that will be feasible in the starting situation and will ter-
minate in a situation satisfying the goal.

Figure 9.1 illustrates three plans that accomplish the goal “Send Mr.
Jones his bill.” In plan A the sequence of actions is fully determined.
In plan B the order is underdetermined; the printing of the bill can
come before or after the printing of the address label, the sticking of
the address label, or the stamping of the envelope. In plan C both the
order of the actions and the binding of certain variables is underde-
termined. A is a complete plan description; B and C are partial plans.
B and C can be converted to complete plans by finding some total or-
dering obeying the partial ordering and some binding of the variables
satisfying the restrictions.

There are two significant advantages to using partial plans. First,
it may be worthwhile to leave certain decisions until execution time,
since the best choice may be determined by minor considerations that
do not arise until execution. For example, there is probably no point
in deciding in advance which envelope or which label to use; one may
as well just let the agent pick up the most convenient one. Second,
in forming the plan, it is often easier to control a search through the
space of partial plans than through a space of complete plans. By
looking at partial plans, one can concentrate on constraints on the
plan that are known to hold, thus avoiding arbitrary choices that are
later found to be incorrect. Such a planner, which searches through
a space of partial plans, is known as a “nonlinear” planner. We will
present the details of one particular nonlinear planner in Section 9.2.

We introduce three fundamental predicates on plans and goals in
this restricted model. A plan may be feasible in a given situation; it
may lead to a given goal; and it may be a valid way to accomplish
a given goal in a situation. These can be easily defined for complete
plans using a branching temporal ontology. Plan P is feasible in situ-
ation S if P occurs in some interval starting in S. P leads to G if G is
true following any execution of P. P is a valid plan to accomplish G
in S if P is feasible and P leads to G.

PL.1. true_in(S, feasible(P)) < Js, occurs([S, S2], P).
PL.2. true_in(S,leads_to(P, G)) &

[Vsq occurs([S, S2], P) = true_in(52,G) 1.
PL.3. true_in(S,valid(P, ()) <

[true_in(S,feasible(P)) A true_in(S,leads_to(P, G))l.

However, these definitions PL.1, PL.2, and PL.3 can lead to coun-
terintuitive results when applied to partial plans. Consider, for exam-
ple, the partial plan shown in Figure 9.2, consisting of two unordered

9.1 Plans as Sequences of Primitive Actions 399

print (print (insert (stick (stick (
address (jones), &= bill_of (jones), ™ bill_form_ 82, |e{label 23, f&=1st101
label 23) bill_form 82) env36) env 36) env 36) \J

L seal (env 36) & mail (env 36)

A: Complete Plan

print (insert (
bill_of (jones), |p={ bill_form_ 82, i~ seal (env 36)
bill_form 82) env 36)

print (stick (
address (jones), =1 label 23, mail (env 36)
label 23) - env 36)

stick (/

st101

env 36)

B: Partially Determined Order

Constraints:

rint (bill_form (B)
bil of (jones), je-| insert (B,E) || seal (E) label (L)

B) ' ' stamp (S)

envelope (E)

print (
address (jones), > stick (L,E) mail (E)
L

stick (S,E) /

C: Partially Determined Bindings

Figure 9.1 Partially determined bindings

400 Plans and Goals

stick (
E1: st101
env 36)

E2: mail (env 36)

Figure 9.2 Invalid partial plan

events: (E1) Put stamp ST101 on envelope ENV36; (E2) Mail enve-
lope ENV36. We would like to say that this is not a valid plan for the
goal of having the envelope posted because if E2 is executed first, then
there is no way to execute E1. However, it does satisfy our definition
of validity; it can occur in the starting situation, and, if it does occur,
then the goal is satisfied. In fact, if we view plans as event types and
event types as sets of intervals, then this plan is exactly equivalent to
the plan “First put the stamp on; then mail the envelope,” sinice there
are no intervals in which the reverse order occurs. In other words, ax-
iom PL1 characterizes whether it is possible that events corresponding
to the plan occur. With partial plans, this is not a sufficient condition
to establish that the plan is feasible.

The simplest way around this difficulty is to change the way in
which the causal theory treats impossible events. Rather than say
that an event cannot occur if its preconditions are unsatisfied, we will
say that if it does occur, it results in a distinguished impossible state,
which we will call “twilight_zone.” The following changes must be
made to the causal theory to accommodate this approach:

e Replace each precondition axiom, “Event E can only occur if its
preconditions are satisfied,” with the weaker axiom “If E' occurs
and its preconditions are unsatisfied, then E leads to the twilight
zone.” For example, in the blocks-world axioms of Table 5.2, we
would replace axiom BW13 by the new axiom

[occurs(Z,pickup) A —true_in(end(I),twilight_zone)] =
[true_in(start(I),clear(hand)) A
Ix true_in(start(l),under_hand(X)) 1.

9.1 Plans as Sequences of Primitive Actions 401

e For each causal axiom governing event type E, add the precondi-
tions of £ and the statement that the start state is not the twilight
zone to the antecedents of the axiom, and add the statement that
the final situation is not the twilight zone to its consequences. For
example, axiom BW15 would be changed to

loccurs(Z,pickup) A truein(start(I),clear(hand)) A
true_in(start(7),under_hand(X)) A
—true_in(start(l),twilight_zone)] =

[true_in(end(Z),beneath(hand, X)) A
—true_in(end(I),twilight_zone) 1.

e Add the rule that one cannot escape the twilight zone.
true_in(start(l),twilight_zone) = true_in(end(I),twilight_zone).

e Add the rule that the twilight zone cannot really come about.
S ereal_chronicle = —true_in(S,twilight_zone).

We can now modify our definition of feasibility to apply to partial

plans in a more reasonable way: A plan is feasible if it does not lead

to the twilight zone. (Note: For certain powerful representations of
partial plans, this definition leads to counter-intuitive results.)

PL1.a. true.in(S feasible(P)) S
[Vs2 occurs([S, 52],P) = —true_in(S2,twilight_zone)].

A complete plan can be verified by chaining forward in time, step by
step. Beginning with the starting situation S, for each action of the
plan in turn, verify that the preconditions of the action are satisfied in
the situation where the action is to be done, and use the causal theory
to predict the situation that will follow the action. When the effects of
the last action have been computed, verify that the goal holds in the
final situation. ‘

Reasoning about partial pians can be more difficult. This is the
subject of the next section.

9.1.1 TWEAK—a Nonlinear Planner

David Chapman’s TWEAK program [1987] is a nonlinear planner. It
is simple and somewhat limited in scope, but its construction is excep-
tionally clean and well analyzed. We present it here as an example of
the use of nonlinear representations for plans in plan construction.

402 Plans and Goals

TWEAK uses a representation of action slightly modified from the
STRIPS representation (see Section 5.7). A state type is represented
either in the form p(c; ...cx) or in the form ~ p(c; ...cx), where pis a
state function, c; ...c; are constants, and ~ represents state negation.
The only state-coherence axiom is that p(c;...cx) and ~ p(cy...cx)
cannot hold simultaneously. The causal structure of an event type is
defined by its effects and its preconditions, each of which is a set of
state types. For example, the event type “puton(a,b,c)” (Put a onto b
from c) would have effects { clear(c), on(a,b), ~clear(b) ~on(a,c)} and
preconditions { clear(a), clear(b), on(a,c) }. An event template is like
an event except that free variables may be used instead of constants.
An event template may also contain constraints stating that two vari-
ables are unequal. For example, the event template “puton(X,Y, Z)”
is defined to have effects { clear(Z), on(X,Y), ~clear(Y), ~on(X, Z) },
preconditions { clear(X), on(X, Z), clear(Y) }, and constraints { X # Y,
Z+Y,X#2}.

The definition of the event template corresponds to a causal axiom
that, if the preconditions and constraints hold in the starting situa-
tion, and the event takes place, then the effects will hold in the final
situation. Also implicit is a frame axiom, stating that any state not on
the effects list is not changed by the action. For example, the above
definition of the event type “puton(X,Y, Z)” corresponds to the axioms

Vs,s1,x,v,z [truein(S,clear(X)) A truein(S ,on(X, Z)) A
true_in(S,clear(Y)) A
XAYAZAYAX#Z A
Sl=result(S,puton(X,Y,2)) 1 =

[true_in(S1,clear(Z)) A truein(S1,on(X,Y)) A
—true_in(S1,clear(Y)) A —true_in(S1,on(X, 2))].

Vs xv,z.4 [—truein(S, A) A

true_in(result(S,puton(X,Y, 7)), A)] =
[A=clear(Z) V A=on(X,Y) V A=~clear(Y) V
A=~on(X, Z)]

~ (In the second formula above, the variable A ranges over primitive
state types and their negations.)

A trace of a plan is a linear sequence of variable-free events. Let
AA; be the set of states that hold at the start of event Ej; let EE;
be the set of effects of E;, and let ~ EE; be the set of negations of
states in EE;. Then AA;; 1, the set of states that hold at the end of
E;, may be computed as AA; 1 = (A4; UEE;)— ~ EE;. For uniformity
of description, we treat the starting situation of a planning problem
as the effects of an initial event *START* with no preconditions, and
treat the goal as the preconditions of a final event *GOAL* with no

9.1 Plans as Sequences of Primitive Actions 403

effects. A trace is feasible if every precondition of each event E; is
satisfied at its start; that is, each precondition of E; is an element of
AA;.

A plan in TWEAK consists of a collection of partially or fully instan-
tiated event templates, called steps. The plan structures the steps in
a partial temporal ordering and records constraints on the bindings of
the variables in the steps (Figure 9.3). A variable can be constrained
to be equal or to be unequal to another variable or to a constant. Con-
stants with distinct names are assumed to be unequal.

A plan subsumes a trace if the events in the trace correspond to
the templates in the plan for some linear ordering consistent with
the partial ordering of the plan and for some binding of variables
consistent with the constraints in the plan. A plan is consistent if it
subsumes at least one trace. (The ordering constraints must constitute
a partial ordering, and the binding constraints must be consistent.) A
plan is feasible if every trace subsumed by the plan is feasible. Given a
consistent plan, it is possible to find a trace that it subsumes by finding
bindings for the variables that satisfy the constraints, and by doing
a topological sort on the steps. (We assume that all variables range
over an infinite set of possible values. If so, it is trivial to satisfy the
binding constraints, using a greedy algorithm. If variable bindings are
restricted to a finite set, then the problem of satisfying the bindings
becomes NP-complete, and the conditions for the correctness of the
plan, below, are no longer necessary and sufficient.)

The central question in evaluating TWEAK plans, then, is what is
needed to guarantee that a given precondition of an event is satisfied
at its starting situation. In order to answer this, we introduce some
additional technical terms. A step E1 achieves a state A under a
binding if some effect of E1 is equal with 4 under the binding. E1
necessarily achieves A if it achieves A under all bindings consistent
with the constraints. E1 possibly achieves A if it achieves A under
some binding consistent with the constraints. A step E1 necessarily
establishes a precondition A of step E if E1 necessarily achieves A4,
and E1 is constrained to occur before E. E1 possibly establishes a
precondition A of step E if E1 possibly achieves A, and E1 is allowed to
occur before E. A step E1 (necessarily / possibly) clobbers precondition
A of step E if E1 (must / may) occur before E and E1 (necessarily /
possibly) achieves the negation of A.

Chapman shows in his analysis that the following conditions are

necessary and sufficient to guarantee that a precondition A4 of step £
will be satisfied:

404 Plans and Goals

Effects are shown under the event.
Preconditions are shown above the event.
0. v(ra,1).v(rb,0)

*START" *GOAL*

v(ra,0).v(rb,1).v(rc,2)

1. v(ra,VP1).v(RS1,1) v(ra,1).v(rb,0)
el:
*START" »1 load (ra, RS1, = *GOAL*
1, VP1)

v(ra0) (b, 1) v(re,2) v(ra,1).~v(ra,VP1)

2. v(ra,VP1).v(RS1,1)
el:
load (ra, RS1,
1, VP1) v(ra,1).v(rb,0)
START v(ra,1).~v(ra,VP1)

GOAL -

b,VP2).v(RS2,0)
v(ra,0).v(rb,1).v(rc,2) e2:

load (rb, RS2,
0, VP2)

v(rb,0).~v(rb,VP2)

el

3,4. v(ra,0).v(rb,1)
; i el:

| load (ra, rb,
1, 0) v(ra,1).v(rb,O)
v(ra,1).~v(ra,0)

START < *GOAL*

v(rb,1).v(RS2,0)
v(ra,0).v(rb,1).v(rc,2) e2:

load (rb, RS2,
0, 1)

v(rb,0).~v(rb,1)

Figure 9.3 Successive states of the TWEAK planner

9.1 Plans as Sequences of Primitive Actions 405

RS2xrb
5,6. v(ra,0).v(rb,1) v(rb,1).v(RS2,0 v(ra,1).v(rb,0)
el: e2:
START »1 load (ra, rb, s load (rb, RS2,|—=| *GOAL*
1, 0) 1,0)
v(ra,0).v(rb,1). v(ra,1).~v(ra,0) v(rb,0).~v(rb,0)
v(rc,2) '
v(ra,0).v(rb,1)
el:
load (ra, rb,
7.8. 1,0) v(rb,1).v(rc,0) v(ra,1).v(rb,0)
v(ra,1).~v(ra,0) e2:
START load (b, rc, —»=1 *GOAL*
v(ra,0).v(rc,2) 0,1) ’
v(ra,0).v(rb,1). e3: v(rb,0).~v(rb,1)
v(rc,2) load (rc, ra,
0,2)
v(re,0).~v{rc,2)
S. v(ra,O).'v(rc,2) v(ra,0).v(rb,1) v(rb,1).v(rc,0) v(ra,1).v(rb,0)
e3: el: e2:
START [+ load (rc, ra, |+ load (ra, rb, |+ load (rb, rc,;»{ *GOAL*
0,2) . 1,0) 0,1) .
v(ra,0).v(rb,1). v(rc,0).~v(rc,2) v(ra,1).~v(ra,0) v(rb,0).~v(rb,1)
v(re,2) :

Figure 9.3 Successive states of the TWEAK planner (Continued)

406 Plans and Goals

Precondition A of step E is satisfied in all traces of the plan iff:
i.) There exists a step E1 that necessarily establishes A.

ii.) For each step C that possibly clobbers A, there exists a
step W (called a white knight) that comes between C and E
such that, for any allowable binding, if C achieves ~ A4, then W
achieves A.

Using this condition, Chapman presents the following algorithm for
constructing TWEAK plans:

Algorithm 9.1: TWEAK Algorithm

Input: The effects of step *START* and the preconditions of step *GOAL*.
START is constrained to precede *GOAL*.

Output: A feasible TWEAK plan including *START* and *GOAL*.

repeat until no changes occur in an iteration
for each step E do
for each precondition A of E do
begin (1) if A is not established then either

(1.2) Find some step E1 in the plan that possibly
establishes A. Add temporal constraints so that
E1 precedes E and binding constraints so that
E'1 necessarily achieves A; or ’

(1.b) Find an event template E'1 that possibly achieves A.
Add F1 to the plan, constrained to precede E,
with bindings constrained so that F'1 achieves A4;

(2) for each possible clobberer C of A do either

(2.a) constrain C to follow E; or

(2.b) Add binding constraints so that C does not
achieve ~ A; or .

(2.c) Find a step W in the plan that possibly achieves A.
Constrain W to come between C and E.
Add binding constraints so that W achieves A
for every binding under which C achieves ~ A; or

(2.d) Find an event template W that possibly achieves A.
Constrain W to come between C and E.
Add binding constraints so that W achieves A
for every binding under which C achieves ~ A.

Chapman gives the following namesto the various plan operators:

Tl K IAUD a5 DCYUTLIUTD Vi & L IULIVA VS LAV vAvLLS av e

1.a: Simple establishment

1.b: Step addition

2.a: Promotion

2.b: Separation of variables

2.c: White knight insertion

2.d: White knight addition

For each precondition of every step, either (1.a) or (1.b) must be

performed, if it is not established, and either (2.2), (2.b), 2.¢), or
(2.d) must be accomplished for each of its clobberers, if any. The
choice between different possible modifications is performed nondeter-
ministically, either by backtracking or by parallel search. (In Chap-
man’s implementation, it was performed using breadth-first search
with data-dependency maintenance, so as to achieve completeness and
efficiency.) It can be shown that this algorithm is complete. That is,
given any feasible trace T' with no pointless steps — i.e,, where ev-
ery step satisfies some precondition of a later step — there is a plan
subsuming T that the above algorithm will find for some choice of
modification operators.

In general, there may be several ways of carrying out the operation
“Add binding constraints so that I achieves A for every binding under
which C achieves ~ A” in (2.c) and (2.d). For example, suppose that
A is the state p(a), that C achieves ~p(X), and that W achieves p(Z).
The condition can be achieved either by adding a constraint that Z =a
or by adding a constraint that X = Z. (It can also be achieved by
adding a constraint that X #a, but that case reduces to separation of
variables; the white knight is unnecessary.)

For example, consider register swapping, a problem that is beyond
the capacity of the STRIPS planning system. The primitive states
in this system have the form “value(R,V)”, meaning that register R
has value V. The events have the form “load(RD, RS,V N,V P)”, the
action of loading new value VN from source register RS to destina-
tion register RD, overwriting the previous value VP in RD. The pre-
conditions of the event “load(RD, RS,V N,V P)” are { value(RS,VN),
value(RD, VP) }. The effects of the event are { value(RD,V N), ~value
(RD,V P) }. There are constraints RS # RD,VP # VN. Let *START*
have the effects { value(ra,0), value(rb,1), value(rc,2) } and let *\GOAL*
have the preconditions { value(ra,1), value(rb,0) }. Table 9.1 shows one
series of operations that brings TWEAK to success (Figure 9.3).

Note that the only links between components of this plan are binding
constraints between variables and precedence relations between steps.
In particular, the concept of one state being a subgoal of another plays
no significant part in this view of planning.

408 Plans and Goals

Table 9.1 Register Swapping in TWEAK

1. To achieve the precondition value(ra,1) of *GOAL*, add the step
el=load(ra,RS1,1,V P1) between *QTART* and *GOAL*. (Step ad-
dition)

9. To achieve the precondition value(rb,0) of *GOAL*, add the step
e2=load(rb,RS2,0,V P2) between *QTART* and *GOAL*. (Step ad-
dition)

3. To achieve the preconditions value(RS 1,1) and value(ra,V P1) of el,
use the effects of *START* by binding RS1 to rb and VP1 to 0.
(Simple establishment)

4. To achieve the precondition value(rb,V P2) of €2, use the effects of
START by binding V P2 to 1. (Simple establishment)

5. The effect ~value(rb,1) of e2 is now a potential clobberer of pre-
condition value(rb,1) of el. Therefore, promote e2 to come after el.
(Promotion) .

6. The effect ~value(ra,0) of el now potentially clobbers the I;recondi-
tion value(RS2,0) of e2. Therefore, impose the constraint RS2 #ra.

7. To establish the precondition value(RS2,0) of €2, add the step
e3=load(RS2,RS3,0,V P3) before e2. (Step addition)

8. To achieve the preconditions value(RS2,V P3) and value(RS3,0) of
e3, use the effects of *START* with the bindings RS2=rc,VP3=2,
RS3=ra. (Simple establishment)

9. The effect ~value(ra,0) of el now potentially clobbers the precon-
dition value(ra,0) of e3. Therefore, promote el to come after e3.
(Promotion)

The plan is now complete. It contains the three actions, load(re,ra,0,2),
load(ra,rb,1,0), load(rb,rc,0,1), in sequence.

9.2 Extensions 409

9.2 Extensions

We now consider a number of simple extensions to the theory de-
veloped so far. These extensions involve only fairly straightforward
changes to the ontology, the representation, or the axiomatics of plan-
ning, but they may make the search problem very much more difficult.

Goals of maximizing an objective: Many natural goals, such as
“Build a tower as high as possible” or “Make as much money as possi-
ble,” have no fixed criterion of success, but can be achieved to greater
and lesser degree. Such a goal may be represented by a fluent rather
than a state. A plan achieves a goal to degree D if the goal has value D
when the plan is complete. We replace the Boolean state “valid(P, G)”
with the fluent “success(P, G)”. Formally, P is guaranteed to succeed
to degree D in goal G in situation S if D is the minimum value of G
after P occurs starting in S. We replace axiom PL2 above by the new
rule:

PL2A. value_in(S,success(P,G)) > D «
[true_in(S feasible(P)) A
Vr S=start(I) A occurs(Z, P) = value_in(end(I),G) >D].

Many complex goals can be handled in this format, by encoding the
entire goal in a single complex fluent. For example, the goal “Bring
all the blocks to L1 as quickly as possible” can be expressed as maxi-
mizing a fluent whose value is —co if the blocks are not all at L1, and
—clocktime if the blocks are all at 1.

Interaction with external events: Events other than the agent’s own
actions may be relevant to the achievement of the goal. These external
events may either aid or hinder the agent. Consider, for example, the
following plan for preparing tea:

Fill the kettle with water;

Put the kettle on the stove;

Turn on the burner;

Get the tea cup from the shelf:

Put the tea bag in the cup;.

Turn off the burner;

Put on a kitchen glove;

Pour the water from the kettle into the tea cup.

The success of this plan depends on the event of the water becoming
hot while it is on the stove. The need to put on a glove before pouring
the water is due to the event of the kettle becoming hot. Representing
such plans requires a model in which external events can occur.

410 Plans and Goals

Once external events are admitted, it becomes important for an
agent to distinguish his own actions, which are dependent on his
will, from other events, which are not. A plan can contain only the
agent’s own actions; these may give rise to other significant events,
such as the water becoming hot in the above example. (Multiagent
plans will be discussed in Section 10.2.) We introduce the function
“actor_of(E)” mapping an event E onto the agent, if any, who per-
forms E. The actions of agent A are often represented in the form
“do(A, ACT),” where ACT is an action type. For example, the term
“do(linda,puton(kettlel,stove8))” would be the event of Linda putting
the kettle on the stove. We have the general axiom “actor_of{do(4, ACT))
= A”.

An integral part of such plans is waiting for external events to
bring about a desired result. We introduce three waiting actions:
“wait_until(Q),” the action of waiting until state @ becomes true;
“wait_while(E),” the action of waiting while event E takes place; and
“wait(T),” the action of waiting for a time duration of length T. These
may be defined as follows:

occurs(],do(A4,wait_until(Q))) <
[Vser truein(S, Q) < S=end(I) 1.

occurs(Z,do(A,wait_while(E))) & .
3;; end(I1)=end(I) A occurs(I1, E).

occurs(l,do(A,wait(T))) <
value_in(end(I),clock_time) — value_in(start(I),clock time) = 7'

These axioms do not by themselves specify that the actor do any-
thing or abstain from doing anything while he is waiting. Therefore,
to reason deductively about the effect of a plan containing a “wait” ac-
tion, it will generally be necessary to add axioms that assert that the
only actions executed by the agent concurrently with a “wait” are those
specified as concurrent in the plan. (See Section 5.11 for a discussion
of how this is done.)

Goals over chronicles: Some natural goals, such as “Eat a turkey
dinner,” “Travel by boat to the Orient,” or “Talk to everyone at the
party,” are not states or fluents that hold in a single final situation,
but, rather are characteristics of a whole chronicle or interval. Such
goals can be viewed as complex event types. We assert that goal G is
accomplished in interval I in the formula “occurs(Z, G).” Therefore, a
plan P is valid for goal G in situation S if P is feasible in S and, for
each interval I starting in S in which P occurs, there is an interval
I1 with the same ending time as I in which G occurs.

9.2 Extensions 411

P2B. true.in(S,valid(P, () <
[truein(S,feasible(P)) A
Vr [start(]) = S A occurs(Z, P)] =
371 [end(I1)=end(I) A occurs(1,G) 1.

A planner that reduces a goal involving complex events to a plan
consisting of primitive events is known as a task-reduction planner.
Such a planner constructs plans by combining task-reduction rules
— rules stating how one action can be carried out in terms of other
actions — with the techniques discussed in Section 9.1 for achiev-
ing precondition states. For example, the task “Give A a medical
checkup” can be reduced to the conjunction of the tasks “Check A’s
temperature,” “Check A’s blood pressure,” “Check A’s weight,” with
no particular temporal ordering (Table 9.2). Each of these subtasks
can be further reduced; for example “Check A’s temperature” can be
reduced to the sequence of steps “Sequence: (1) Place thermometer
in A’s mouth; (2) Wait three minutes; (3) Remove thermometer from
mouth; and (4) Read temperature from thermometer.” These substeps
have preconditions and effects that the planner must reason about in
the same way as the state-achievement planners discussed in Sections
9.1 and 9.2. For example, the step “Place thermometer in A’s mouth”
has preconditions that both the thermometer and A are available. It
has the effect that A’s mouth is occupied by a thermometer. The plan-
ner must be able to reason that it is not possible to have the patient
drink or speak in between steps (1) and (3) of the temperature taking.

The operation of task reduction starts with relatively abstract de-
scriptions of tasks and gradually makes the descriptions more con-
crete, ending with primitive robotic operations. However, the planner
cannot as a whole consistently move down through levels of abstrac-
tions because achieving a precondition to a concrete goal may involve
much planning at more abstract levels. Consider, for example, the
planning involved in achieving the concrete goal “Walk on the moon”
or, often, in achieving the goal “Make love to X.”

Note that once planning is complete execution can proceed using
only the primitive operations at the bottom level of the reduction; no
reference to the higher-level tasks is needed. The task-reduction struc-
ture is now needed only in case of something unexpected occurring,
which requires replanning. (See Section 9.3.3.)

Goals of prevention: In a world with external events, many of the
most important goals are those of preserving a state rather than
achieving it, or, more generally, of preventing a harmful state or event.
The archetype of such goals is the goal of avoiding death or destruction
(strictly speaking, this goal is one of postponement rather than of pre-

412 Plans and Goals

Table 9.2 Task-Reduction Axioms

Define the predicate “occurs.in(Z ,E)” (E occurs some time during I)
By the axiom '

occurs.in(l, E) < 3nicr occurs(I1, E).

occurs_in(J,checkup(A4)) <

[occurs_in(I,temperature_check(4)) A -
occurs.in(I,blood_pressure_check(4)) A
occurs_in(I,weight_check(A)) 1.

occurs(I temperature_check(4)) <
3y thermometer(TH) A
occurs(l,sequence(insert(TH ,mouth(A)),
wait(3 - minute),
remove(T H ,mouth(4)),
read_temperature(TH))).

vention). Formally, these are a type of goal over chronicles; however, it
is worthwhile to consider them independently on account of their fre-
quency and importance. Some of these goals, such as “Stay alive,” are
always present, and plans are constructed to guarantee them when-
ever it seems that they will be jeopardized by the expected course of
events. Others, such as “Avoid going to sleep (during a lecture)” are
temporally limited; they arise in response to certain circumstances,
and may disappear after time. The axioms that govern these goals
are, on the whole, more concerned to describe the circumstances that
threaten the goals and the actions that remove these threats, rather
than the actions that achieve the goals and their preconditions.

Resource and timing constraints: Plans must often be carried out
within constraints on resources and time. For example, carrying out
a building project might involve constraints such as “The cost for sup-
plies must not exceed $700,” “At any instant, the total electric power
used by active machines must not exceed 1250 watts,” “It is necessary
to wait a day between applying coats of paint to an object,” “Power
tools can only be used in the daytime,” and so on. Formally, these can
all be expressed as properties of the chronicle involved so that these
constraints can all be incorporated as part of a goal over a chroni-
cle. Computationally, even very simple constraints of this kind tend to-

ek o))

9.3 Plans and Goals as Mental States 413

make the difficulties of finding a satisfactory plan much greater. Tech-
niques for dealing with such constraints have been studied within op-
erations research; the problem of incorporating these techniques into
Al planners is a subject of current research.

Repeated goals: If it is expected that a goal, or a collection of sim-
ilar goals, will often be repeated in the future, it may be worthwhile
performing a relatively expensive operation that simplifies the perfor-
mance of all the goals together. For example, an agent who knows
that he will have to travel 30 miles every day may decide to invest in
a car. Such planning is known as goal subsumption [Wilensky 1978].

Concurrent actions: If an agent is capable of performing more than
one action at once, then he should be able to take advantage of this
capacity in his plans. However, unless the actions are physically quite
independent, it is not, in general, possible to predict either the feasi-
bility or the effects of performing two actions together from knowing
their properties singly. Rather, a rich physical model must be used
that describes the interactions of the two activities. Little work has
been done on such models.

9.3 Plans and Goals as Mental States

In the previous section we considered plans and goals purely as ab-
stract physical constructs. Such a view is appropriate as a model for
a single agent who is given a single goal from on high, and who must
find a plan to accomplish his goal using just the information in his
knowledge base. To go beyond this limited scenario, we must view
plans and goals as mental constructs: aspects of an agent’s mental
state. Such a view will allow an intelligent creature to represent facts
about the plans and goals of other creatures, and about his own plans
and goals at different times. Such representations are needed to ex-
press theories that address questions like the following:

o How are beliefs and knowledge related to plans and goals? In
particular, what information is required in order to carry out a
specified plan?

e What is the life cycle of a goal or a plan? How are goals and plans
adopted, maintained, achieved, modified, or abandoned?

e What goals are characteristic of humans?

The first problem in formalizing plans and goals as mental states is
that, like knowledge and belief, having a plan P or a goal G is not an

414 Plans and Goals

extensional operator. In particular, the goal and plan operators are
referentially opaque. Consider the following three sentences:

1. Oedipus has the goal of killing the traveler who is attacking him.
9. The traveler attacking Oedipus is his father.
3. Oedipus does not have the goal of killing his own father.

It is possible for all three statements to be true, as long as Oedipus
does not know that the traveler is his father.

We will get around these problems by treating goals and plans as
operators over quoted strings. We introduce three primitives. The
predicate “goal(4, G, S)” means that, in situation S, agent A has the
goal denoted by the quoted string G. The predicate “plan(4, P, S)”
means that in situation S, A plans to carry out plan P. The function
“deliberate(A, E)” denotes the event of agent A carrying out the action
described by string E deliberately. (Like “plan” and “goal”, “deliberate”
is an opaque operator. Oedipus deliberately killed the stranger but
did not deliberately kill his own father, even though the two were the
same.) Thus, the statement that, in situation s0, Oedipus had the
goal of being king of Thebes is represented

goal(oedipus,<eq1(oedipus,kjng_of(thebes))>,sO)

The statement that Oedipus had the goal of knowing who killed Laius
is represented

goal(oedipus,
<{ S | 3x know(oedipus, <37 end(I) < sO A
occur(I kill(@X @,laius))>, S)
b,
s0).
(Note: The @ signs around X in the above formula are scoped to the
inner set of string delimiters.)

The statement that Oedipus deliberately married Jocasta is repre-
sented as

occur(iO,deliberate(oedipus,<do(oedipus,marry(jocasta))%)).

An alternative solution to the problem of referential opacity is to
treat a goal as a state ranging over possible worlds, and to treat a
plan or a deliberate action as an event type ranging over possible
chronicles. Thus, the statements “Oedipus deliberately married Jo-
casta,” “Oedipus did not deliberately marry his mother,” and “Jocasta
was Oedipus’ mother,” are represented

9.3 Plans and Goals as Mental States 415

3; occur(Z,deliberate(oedipus,do(oedipus,marry(jocasta)))).
—3; occur(l,deliberate(oedipus,do(oedipus,

marry(mother_of{loedipus))))).
jocasta = value_in(w0, mother_of{oedipus)).

These three statements are mutually consistent because the “mother_of”
function is made dependent on the possible world; Jocasta is Oedipus’
mother in this world, but not in every possible world.

These primitives, together with the primitives of knowledge and be-
lief, are the basic concepts in the theory of plans and goals as mental
states. We will develop this theory in four parts. The first part de-
scribes what an agent knows or believes about his own plans and goals.
The second describes what an agent needs to know in order to carry
out his plans. The third describes how an agent gains, carries out,
and abandons goals and plans. The last part of the theory describes
what goals a human agent is likely to have.

9.3.1 Knowledge of Plans and Goals

A number of plausible axioms governing an agent’s knowledge of his
own plans and goals may be proposed: .

KPG.1. Positive introspection: If A has a plan or a goal then he
knows about it. If A performs a deliberate action, then he
knows that he has done it when it is complete.

(a) goal(4, G, S) = know(4,<goal(@AQ, !G!,@5Q@):-,5)
() plan(4, P,S) = know(A,<plan(QAQ, 1P, @S@)%,S)
(c) occur(I,deliberate(4, E)) =

know(4,<occur(@I@, deliberate(@AQ@, EY)>,end(1)).

KPG.2. Negative introspection: If A does not have a plan or a goal
then he knows that he doesn’t. If A does not perform a
deliberate action, then he knows that he has not performed
the action deliberately. '

(a) —goal(4,G, S) = know(A,<~goal(QAQ, IG!, @5@)~,S)

() —plan(4, P, S) = know(4,<-plan(QAQ,!P!,@5Q@)>,5)

(¢) —occur(l,deliberate(4, E)) = -
know(A,<—occur(@I@, deliberate(@AQ, !E"))>,end(1)).

KPG.3. A can deliberately perform only his own acts. (Of course,
he can deliberately trigger other events, but only by per-
forming an act of his own.)
occur(I deliberate(4, E)) = A=actor_of(denotation(E)).

416 Plans and Goals

(Keep in mind that “deliberate” takes a string as argument,
while “actor_of” takes an actual event as argument.)

KPG.4. The deliberate performance of an action is an occurrence of
the action. A
token_of(K ,deliberate(4, E)) = token_of(K ,denotation(E)).
KPG.5. If A plans to perform P, then he believes that he will de-
liberately perform P.
plan(4, P, S) =
believe(4,<3; precede(@S@,start()) A
occur(l,deliberate(@A@, ! P!)) A
I Creal_chronicle>,
S).
KPG.6. If A plans to perform P, then A believes that P will be a
valid plan to accomplish one of his goals.
plan(4, P, S) =
believe(4, <3¢,s1 precede(@SQ@, S1) A
goal(@A@, G, S1) A
true_in(S1,valid(@A@, | P|,))>-,
S).
KPG.7. Knowledge of the axioms: If 4 is an instance of one of the ax-
ioms in this chapter, and P spells out ¢, thén “know(4, P, S)”
is an axiom. '

Axioms KPG.1 and KPG.2 state that an agent knows what are and
are not his own goals, plans, and deliberate actions. These are plausi-
ble as long as we exclude unconscious goals from consideration. This
exclusion is justifiable since robots presumably do not have two levels
of goals, and the effect of humans’ unconscious goals on their behavior
and mental states is hard to characterize in any theory, let alone a for-
mal one. See Section 10.3.3 for an example of a proof that uses KPG.2
on deliberate actions. Axioms KPG.3 and KPG.4, that an agent is
the actor of his own deliberate actions and that the deliberate perfor-
mance of an action is an occurrence of that action, are basic necessary
properties of deliberate actions. Axiom KPG.5 states that an agent
believes that he will deliberately execute his plans. The converse,
that any deliberate action of the agent is part of some plan, likewise
seems plausible, and is important for motivation analysis. However,
it seems to be tricky to state this rule correctly; it would not be correct
to say that if A performs E deliberatély, then E is part of some plan P
that A is performing deliberately, since A may end up not being able
to execute later parts of P. Axiom KPG.6, that an agent only adopts
plans that he believes to be valid for some future goal, is obviously an
approximation. A more accurate statement would be that the agent

9.3 Plans and Goals as Mental States 417

believes that the plan has some reasonable chance of forwarding his
goals as a whole; however, this would be difficult to represent. Note
that we have added the agent 4 as an argument to the state function
“valid.” Similarly, we will add the agent A as an argument to “fea-
sible.” Axiom KPG.7, that an agent knows the axioms of plans and
goals, allows us to infer that the agent can reason about plans and
goals; it is analogous to axiom KNOW.4 from Chapter 8.

~ These axioms can be used to justify inferences like example 2.a in
the chapter introduction, in which we infer that Elly believes that the
border between two countries will be open from the fact that she is
planning to do so. Table 9.3 shows a precise statement of the inference.

9.3.2 Knowledge Needed for Plan Execution

In many cases, an agent is initially ignorant of information that he
needs to achieve a given goal, but he knows how to acquire the infor-
mation. In that case, he may plan to acquire the necessary information
and then to use that information in further steps of planning. For ex-
ample, if Debby wants to read Moby Dick but does not know where her
copy is on her bookshelf, then she can form the plan “Look through
the bookcase; take the book from its place; read it.” Here the purpose
of the first step of looking though the shelf is to determine the place
of the book, a datum needed for the second step of the plan, grasping
the book.

A theory of such plans must address the following issues:

e What information is necessary to carry out a primitive action? This
is known as the knowledge-preconditions problem for actions.?

e What information is necessary to carry out a complex plan? This
is the knowledge-preconditions problem for plans.

‘e What actions of the agent provide him with information? This is
the information-acquisition problem.

In this section we will discuss the knowledge-preconditions prob-
lems for actions and plans. We have considered information acqui-
sition through perception in Section 8.7; we will discuss information
acquisition through communication in Section 10.3.

It should be noted, at the outset, that the failure of a knowledge
precondition has different consequences than a failure of a physical -

2This term was introduced in [McCarthy and Hayes 1969]

418 Plans and Goals

Table 9.3 Inferring Beliefs from Plans

Given:

e In situation s0, Elly plans to cross the border from Bosnia to Her-
zogovina.
plan(elly,<cross(elly,bosnia,herzogovina)-,s0).

e Elly believes that it is only possible to cross from X to Y if the
borders are open.

believe(elly, <Vs1 4,x,y true_in(S1(feasible(cross(4,X,Y))) =
true_in(S1,open(border(X,Y)))>,s0).

Conclude:

e Elly believes that the border between Bosnia and Herzogovina will
be open at some future time.
believe(elly,<3s; precede(s0,51) A
true_in(S1, open(border(bosnia,herzogovina)))>,s0).

Proof: From axiom KPG.5, Elly believes that she will eventually cross
from Bosnia to Herzogovina deliberately. By axiom PL.1, this can only
occur if crossing is feasible; and by axiom KPG.7, Elly knows that it
can only occur if it is feasible. By hypothesis, Elly believes that the
crossing is feasible only if the border is open. Using axioms KPG.7,
KPG.4, KB.1, and consequential closure on belief (BEL.1), it follows
that Elly believes that, at the time when she crosses, the border will
be open.

precondition, and the logical treatment must therefore take a differ-
ent form. If a physical precondition to an event is not satisfied in a
situation, then the event cannot occur. If the event is perceived to oc-
cur, then we can infer that the physical precondition was satisfied at
the start. If the knowledge preconditions of an action are not satisfied,
the action may still occur, though it cannot be deliberately performed.
For instance, an agent who does not know which-U.S. city is largest
can nonetheless perform the action of going to the largest city, but he
cannot deliberately go to the largest city. Thus, knowledge precon-
ditions, like deliberate actions, are properties of action descriptions
rather than the actions themselves.

9.3 Plans and Goals as Mental States 419

We will use the predicate “kp_satisfied(4, P, S),” meaning that the
knowledge preconditions for action or plan description P (a quoted
string) are satisfied for agent 4 in situation S. An agent can perform
an action deliberately only if its knowledge preconditions are satisfied.

KPS.1. occurs(Z ,deliberate(4, E)) = kp_satisfied(4, E,start(I)).

Two general types of axiomatizations have been proposed for knowl-
edge preconditions for primitive actions. The first is simply to enu-
merate the knowledge preconditions for each type of action description.
We would express the statement “To move to a place described as P,
one must know where the place is” in the form

kp_satisﬁed(A,<travel_to(LPJ,)>—,S) < know_val(4, P, S).

The statement “To grasp the object denoted by string O, one must
know where that object is located” can be expressed in the form

kp_satisﬁed(A,-<grasp(lOl)>,S) =S
know_val(4, <value.in(@S@,place(|0]))>, S).

A second solution is that an agent knows how to perform a primitive
action E if E is “directly executable”; that is, £ can be used as a direct
call to a robotic control system. For example,’if the agent can execute
an action routine “tap(N)”, to tap the ground N times, then the action
“tap(14)” is directly executable, and the agent knows how to do it. An
agent A knows how to perform an action description E that is not in
the form of a direct robotic call if he knows that £ can be carried out
by doing E1, where E1 is directly executable. For example, A knows
how to perform the action el = tap(cardinality({ S | planet(S) D) if
he knows that el is carried out through the action “tap(9),” but not if
he is unsure whether el is the action “tap(9)” or “tap(5)”. In general,
agent A knows how to perform a primitive action described as <f(t1
---tk)>~ if f is a primitive routine for A and A knows the value of t1
...tk3

KPS.2. kp.satisﬁed(A,«lACTl(lTll,‘. ATk])-,8) &
primitive_routine(ACT, 4) A -
know_val(4,71,5) ... know_val(4, Tk, S).

Thus, we have reduced the problem of knowledge preconditions for
action to the problem of knowing: the values of terms. This solution

3This account follows [Morgenstern 1988]. The theory was originally proposed by
Moore [1980] in the context of a possible-worlds theory of knowledge. In that context,
an executable description of an action was considered to be a rigid designator for the
action. The proposal in [McCarthy and Hayes 1969] pointed in a similar direction.

420 Plans and Goals

eliminates the need for many specialized knowledge precondition ax-
ioms: the knowledge preconditions can be derived directly from the
syntactic form of the action description. It also provides an intuitive
justification of the knowledge preconditions; they require just that the
actor know precisely what action it is that he wants to do. The solution
has its costs, however. First, knowing the value of a term is generally
a less precise concept than knowing enough to perform an action; to a
degree, we have reduced a relatively well-defined problem to a much
vaguer one. Second, as we have seen in Section 5.2, the concept of a
robotic primitive is not absolute. There are levels of descriptions of
actions, and a primitive at one level may involve a number of steps,
including the gathering of knowledge, at a lower level. This analysis
of knowledge preconditions, therefore, must be considered as relative
to a given level of robotic primitives. (The dependence of the repre-
sentation on the level chosen for robotic primitives is an implicit issue
throughout the analysis of planning, but it appears in a particular
direct form here.)

Waiting actions require a separate definition. The knowledge pre-
condition for “wait_until(A)” is that the robot knows that A will even-
tually hold and that he will know when it holds. The knowledge pre-
condition for “wait_while(E)” is that the robot knows that E will even-
tually occur and that he will know when it ends. The action “wait(T)”
is handled by axiom KPS.2; the knowledge precondition for “wait(T)”
is that the value of T' be known. (We assume that the robot has an
internal clock.)

KPS.3. kp_satisfied(4,<do(A,wait_until(|Q|))>, S) <
know(4, <3rstart()=@5@ A
occurs(/,do(A4,wait_until(|Q|))) A
Vsierknow_fluent(4, !Q!, S1)s>-,
S).

KPS.4. kp_satisfied(4,<do(4,wait_while(| E]))>, S) <
know(4, <3; start(I)=@S@ A
occurs(Z,do(A,wait_while(| E|))) A
Vsier know_whether(4,
<3r; end(I1)=@S1@ A
occurs(I1, [|E|])>, S)s,
S)

(Note: In the third line of KPS.4, the doubly imbedded antiquotes
of @51@ are scoped to the internal string delimiters. The double an-
tiquotes of || E|| are scoped to the external string delimiter.)

9.3 Plans and Goals as Mental States 421

We now define the knowledge preconditions for a complex plan, with
sequence and conditional operations. (Knowledge preconditions for
plans with loops can be defined analogously) An agent will be able
to carry out a physically feasible plan if the knowledge preconditions
for each primitive action are satisfied at the time when he has to
perform it and he knows the value of each conditional when he has
to compute it. Therefore, the knowledge preconditions for the plan
at its start are that the agent must know now that he will know the
knowledge preconditions for each primitive action by the time he must
take it, and that he will know the value of each conditional. For
example, the knowledge preconditions for performing the sequence
“sequence(E1, E2)” are satisfied in S if the knowledge preconditions
of E1 are satisfied in S, and it is known in S that the knowledge
preconditions of E2 will be satisfied after £1 has been executed.

KPS 5. kp_satisﬁed(A,<sequence(lE11, 1E2])-,5) &
[kp_satisfied(4, E1, S) A
know(4,<Vg- occurs([@S@, 52, | F1]) =
kp_satisfied(@A4@, | E2], S2)>,5) 1.

The knowledge preconditions for 4 performing the conditional action
“cond(P, E1, E2)” are satisfied in situation S if the following conditions
are satisfied: (i) A knows whether P is true or false in situation S; (ii)
If P is true in S then the knowledge preconditions for E1 are satisfied;
if P is false, then the knowledge preconditions for £2 are satisfied.

KPS.6. kp_satisfied(4,<cond(| P|, 1E1],|E2])-,S) <
[know_fluent(4, P,S) A [true_in(S,denotation(P)) =
kp_satisfied(4,E1,8) 1 A [—true_in(S,denotation(P) =
kp_satisfied(4, £2,S) 1 1.

To employ these definitions in a nontrivial way, it is necessary that
the agent have a theory allowing him to predict what he will know at
future times. For example, suppose that, in situation s0, Leo is in room
1, heknows that block B is either in room 2 or in room 3, and he has the
goal that block B should be in room 4. Leo has two primitive actions:
The action “move(R)” moves himself and anything he is holding to
room R. It has no preconditions. The action “pickup(X)” has the effect
that Leo is holding X, and the precondition that Leo and X be in the
same room. Leo knows all relevant physical and epistemic axioms.
He also knows that, for any object, he knows whether the object is in
the same room as himself. This last fact can be stated as follows:

know(leo, <V¥s; x know_fluent(leo,
<eql(place(leo), place(@X @))>-,51)>, s0).

422 Plans and Goals

(Note: in the above formula, the doubly imbedded antiquoted ex-
pression @X@ is scoped to the internal string delimiters.)

Leo then knows that he can achieve his goal by executing the fol-
lowing plan:

sequence(move(room?2),
cond(eql(place(leo),place(blockb)),
sequence(pickup(blockb),move(room4)),
sequence(move(room3),pickup(blockb),
move(room4)).

The physical axioms are sufficient to show that the plan is physically
feasible and that if it is carried out, then the goal will be achieved.
The conditions that Leo knows the physical axioms and knows that
he will know whether the block is in the same room are needed for
the knowledge preconditions, to guarantee that Leo will know which
branch to take when he comes to the conditional.

An agent A is able to perform a plan P if he knows that P is feasi-
ble and that P’s knowledge preconditions are satisfied. He is able to
achieve goal G if there is a plan P that he is able to perform and
that he knows will lead to G. Formally, we define the predicates
“can_do(4, P, S),” meaning that A can perform plan P in situation S,
and “can_achieve(4, G, S),” meaning that A can achieve goal G in sit-
uation S, using the following axioms:

KPS.7. can_do(A4, P, S) <
know(A,<truein(@S@,feasible(QA@, | P])) A
kp_satisfied(@AQ@, | P!, @S@)s,S).

KPS.8. can_achieve(4, G, S) &
can_do(4, P, S) A
know(A4,<true_in(@S@,lead_to(| P|, |G]))s, S).

Note that the condition that A knows of the feasibility and success
of the plan is a separate requirement than that the knowledge precon-
ditions are satisfied. Consider, for example, the following example:*
Nicholas has received two packages. He knows that one is a bomb and
the other is innocuous, but he does not know which is which. He also
knows that the bomb can be deactivated by putting it in the toilet,
but unfortunately he has only one toilet available, and it will not hold
both packages. We would like to be able to conclude that Nicholas is
not able to deactivate the bomb, and indeed the above definition of

*This example is a modification of a problem proposed by Bob Moore, cited in [Mc-
Dermott 1987a].

9.3 Plans and Goals as Mental States 423

“can_achieve” will support that conclusion. There does exist a valid
plan whose knowledge preconditions are satisfied; namely, either the
plan “Put package A in the toilet” or the plan “Put package B in the
toilet.” However, Nicholas does not know which of these plans is valid.
Conversely, there is a plan that Nicholas knows will work — the plan
“Put the package with the bomb in the toilet” — however, the knowl-
edge preconditions of this plan are not satisfied.

(It is possible to design a planner that solves this problem without
explicitly reasoning about knowledge and knowledge preconditions;
see [Pednault 1988]. However, such a planner implicitly uses meta-
level (syntactic) categorizations of the plan involved. Certainly, in any
theory that treats plans as event types rather than as descriptions of
event types, it must be possible to prove the result, “There is a plan
with a single action that defuses the bomb.”)

9.3.3 Planning and Acting

All the planning we have discussed so far has been suitable for a set-
ting -where a top-level goal is presented in a starting situation, and
the planner can find a plan, complete or partial, described entirely in
terms of constraints on sequences of primitive actions, that is prov-
ably valid for the goal. Executing the plan then requires only finding a
particular sequence of primitive actions that satisfies the constraints.
In reality, it is only in rare, tightly controlled environments that it is
possible or practical to plan with this degree of detail and certainty.
Rather, a plan is partially developed at the start. Its full expansion
into primitive actions is interspersed with its execution. Thus, the
planner plans only primitive actions that will be executed soon; later
parts of the plan are sketched only dimly. For example, an agent who
is planning to go to a destination will not plan out every individual
step, but only the basic outlines of his route; the individual steps will
be planned only as they have to be taken. This is partly because in-
dividual steps must be chosen in response to circumstances that are
unknown but very unlikely to affect the larger plan, and partly be-
cause even if all future steps could be planned with certainty, to do so
is just a waste of computational resources. Interleaving planning with
execution also makes it possible for the agent to respond more flexibly
to errors — unanticipated obstacles or opportunities — discovered in
his world model during execution.

This kind of planning has proven to be hard to implement and even

harder to formalize. Here, we will only describe some of the central
issues involved.

424 Plans and Goals

e Plan representation: In the plans we have discussed so far, it is
necessary to describe only the primitive actions to be carried out,
with constraints on when and whether each should be executed. By
contrast, in representing a plan that will be expanded or modified
at a later time, it is necessary to record a variety of information
to guide the later stages of planning. In particular, it is neces-
sary to represent the purpose of each part of the plan. Typically,
these functions are represented in terms of a subgoal or subtask
hierarchy. The purpose of a lower-level task is either as a compo-
nent of a supertask or to achieve a precondition of some later task.
(See Figure 9.4.) Other kinds of information to be recorded include
constraints of various kinds among parts of the plan, and multiple
alternative plans, to be chosen among at a later stage of expansion.

It is also important, of course, to record which parts of the plan
tree have already been accomplished and which are still pending.
It may be desirable, for the sake of memory efficiency, to forget
(i.e., drop from the plan tree) any portion of it that has already
been accomplished.

e Modification operators: Additional modification operators are need-
ed to maintain the plan during execution. Im particular, a piece
of the plan tree may disappear without ever being carried out,
either because its purpose has been accomplished without it being
necessary to carry it out, or because it has been determined to be
impossible or impractical, or because all its supertasks have either
been accomplished or disappeared.

e Actions of general purpose: An agent may wish to carry out an
action whose purpose is not well specified but merely serves to put
him in a stronger position. For example, an agent may wish to have
more money available than he needs for planned activities, just in
case additional expenses arise. An agent may answer the telephone
without knowing which, if any, of his goals will be advanced by so
doing.

e Evaluation: Open-ended planning typically takes place in an un-
controlled and partially known environment in which success can-
not be predicted with absolute certainty; it can only be made more
or less certain. The evaluation must thus be probabilistic.

e Plan maintenance: Finally, there is the central question of search
and control, determining what parts of the planning tree to expand
or modify and how far to expand them.

9.3 Plans and Goals as Mental States 425

Checkup (Jones)

\
ste step
Weight Temperature Blood Pressure
Check (Jones) Check (Jones) |- Check (Jones)
ﬁ' /s‘tep ‘ﬁep tep
Insert (T, - . Remove (T, vRead (T,
Jones) Walit (3 min) Jones) Jones)
7
Precede Precede Precede
Precondition)
Constrains Constrains Constrains

Thermometer (T) Constraint

In (Jones, Office)

' I

\
Achieves

Enter (Jones, Office)

Figure 9.4 Hierarchy of tasks

9.3.4 Reactive Planning

A recent trend in planning research has been to study planning sys-
tems that perform relatively little inference or prediction of future
states, but instead rely on a library of rules that specify an appro-
priate action given a goal and a current world state. There is wide
variation among such systems in the richness of the world model main-
tained and of the inferences performed, if any. (Some systems, such
as Agre and Chapman’s PENGI [1987] have no internal world model
whatever; they rely on immediate perceptions.) We will briefly discuss
Firby’s [1989] RAP system, which is notable among reactive planners
for using a relatively high-level planning language and world model.

426 Plans and Goals

In Firby’s system, a plan consists of a number of RAPs (Reaction
Action Packages). A RAP consists of the following parts:

1. A task to be achieved by the RAP.

2. A success criterion, which may be verified when the RAP has suc-
ceeded in carrying out its task.

3. A number of methods for carrying out the task. Each method con-
sists of

(a) A context, a world state that must hold for the method to be
appropriate.

(b) A task network consisting of a set of subtasks or primitive ac-
tions with constraints on their performance.

Table 9.4 shows one simple RAP. (The LISP-like notation is Firby’s.
Symbols beginning with a question mark are variables. The example
is slightly simplified from Firby’s; the original had an additional clause
whose significance depended on interpreting negation as failure. The
logical translation in Table 9.5 is our interpretation, not Firby’s.)

The RAP system maintains an agenda of tasks to be performed and
a world model. The world model is updated by perceptions, which may
be obtained as the direct results of a particular perception task, or may
be side effects of the robot’s activities. The task agenda is initialized to
contain the robot’s top-level goals. The robot then repeatedly chooses
a task from the agenda to perform, based on scheduling criteria. If
the task is primitive, it is executed by a direct command to the effec-
tors. Otherwise, the robot chooses one of its methods whose context is
currently satisfied and adds the task network for that method to the
agenda. If all parts of a task network have been accomplished, the
success criterion of the supertask is checked. The supertask has been
successful if the criterion holds; otherwise it has failed. When a task
fails, the method of which it was part is held to have failed, so that all
other tasks associated with that method are removed from the task
agenda.

We can characterize the above RAP in terms of a set of axioms like
those of Table 9.5.

The formal interpretation of the central components of a RAP is
thus quite straightforward. Such a characterization would be useful
in trying to relate a RAP to a physical model of the domain. (The com-
plete RAP language gets a great deal more complicated than this, with
many programming bells and whistles. Formalizing these would be a
lengthy project in robotic programming language semantics.) Charac-
terizing or justifying the control structure in formal terms, by contrast,

9.3 Plans and Goals as Mental States 427

Table 9.4 Sample RAP

(DEFINE-RAP
(INDEX (load-into-truck ?object))
(SUCCESS (location ?object in-truck))
(METHOD
(CONTEXT (and (size-of ?object ?size)
(<= ?size arm-capacity)))
(TASK-NET :
(t1 (pickup ?object)
((holding arm ?object) for t2))
(t2 (putdown ?object in-truck))))
(METHOD
(CONTEXT (and (size-of ?object ?size)
(> 7size arm-capacity)))
(TASK-NET
(t1 (pickup lifting-aid)
((holding arm lifting-aid) for t2))
(t2 (pickup ?object) ’
((holding arm ?object) for t3))
(t3 (putdown ?object in-truck)))))

The condition ((holding arm ?object) for 12) attached to t1 in the first
method signifies that t1 should accomplish the state “tholding arm ob-
ject)” and that this condition should be maintained until the beginning
of t2. The conditions in the second method are analogous.

would be difficult. One can imagine a formal analysis of a RAP sys-
tem analogous to the analysis of TWEAK in Section 9.2, which would
show that a robot with a given set of RAPs could achieve the associ-
ated tasks, given certain constraints on the world, but no such analysis
has been found, or, so far as I know, sought. Rather, the justification
sought for systems like RAP would be empirical — that they do well
enough under circumstances that arise in practice.

9.3.5 Characteristic Goals

In understanding the behavior of an agent, it is important to know
what its top-level goals are likely to be. Motivation analysis depends

428 Plans and Goals

Table 9.5 Axiomatic Partial Characterization of a RAP

RAP1. occurs(/, load_into_truck(X)) =
in-truck(value_in(end(I),place(X))).
(Success condition)

RAP.2. occurs(Z,load into_truck(X)) <
[occurs(Z,lit1(X)) V occurs(Z,lit2(X)) 1.
(The task is accomplished by one of two methods)

RAP.3. occurs(Z,lit1(X)) = size_of(X) < arm_capacity.
(Context for first method)

RAPA. occurs(l,Jit1(X)) =
3r1,12 occurs(I1,pickup(X)) A
occurs(I2,putdown(X ,in_truck) A
end(I1) < start(72) A
Vs [end(I1) < S < start(I2) =
true_in(S,holding(arm, X)) 1.
(Task net for first method)

RAPS5. occurs(] ,lit.‘Z(X)) = size_of(X) > arm_capacity.
(Context for second method)

RAP6. occurs(Z,lit2(X)) =

311,712,183 occurs(] 1,pickup(lifting_aid)) A
occurs(/2,pickup(X)) A
occurs(I3,putdown(X ,in_truck) A
end(I1) < start(12) A end(J2) < start(I3) A
Vs [end(I1) < S < start(/2) =
true_in(S, holding(arm,lifting_aid)) 1 A
Vs [end(I2) < S < start(I3) =
true_in(S holding(arm, X)) 1.

(Task net for second method)

entirely on such knowledge; without it, any action could be explained
as a top-level goal in its own right. Knowledge of top-level goals is
also important in interacting intelligently with other creatures and in
predicting one’s own future goals, so as to plan for them in advance.

A partial taxonomy of human high-level goals has been proposed by
Schank and Abelson [1977]. They propose five general categories of
top-level goals in humans:

9.3 Plans and Goals as Mental States 429

1. Satisfaction goals: There are only a small number of these: hunger,
thirst, sleepiness, sexual desire, and so on. A satisfaction goal gen-
erally persists until satisfied by an appropriate action (e.g., eating,
drinking, sleep, sex), and then reappear after a characteristic time
interval. Except for sex, the satisfaction of these goals cannot be
indefinitely postponed, and they hold for all humans under all cir-
cumstances.

2. Preservation goals: The goals of preserving life, health, and prop-
erty. These are almost always held. Schank and Abelson also dis-
tinguish a class of “crisis goals,” preservation goals that are under
direct threat and therefore must be addressed immediately, such
as the preservation goals that are active when one is about to be
run over or when one’s house is on fire. Crisis goals generally take
precedence over any other goal.

3. Entertainment goals: These are activities undertaken “for fun.”
Satisfying them may take from minutes to months to satisfy. They
tend to be of lower priority than satisfaction or preservation goals.
Examples: read a book, see a movie, visit the Himalayas.

4. Achievement goals: Large-scale ambitions whose accomplishment
typically requires an extensive structure of actions extending over
along time.® Examples: become president, bring up children, write
a novel.

5. Delta goals: Certain changes of state can be top-level goals in them-
selves. The most common of these are the gaining of money, prop-
erty, or knowledge.

Schank and Abelson discuss a number of heuristic rules that char-
acterize these categories of goals along a number of dimensions, such
as the relative priority of the goals, the ease with which an agent
will substitute one goal for another, and the emotional reaction of
an agent to the failure of a goal. For instance, an agent will easily
substitute one entertainment goal for another. This is more difficult,
though sometimes possible, with achievement goals and delta goals.
With satisfaction goals, it is easy to substitute a new argument (eat
salmon instead of eat steak), but not to substitute a new type of goal
(sleep instead of eat.) Goal substitution among preservation goals
takes the form of giving up on less important goals in order to pre-
serve more important goals; for example, spending one’s savings to

SThere are occasionally achievement goals that do not require many actions, such
as Prince Charles’s (presumptive) goal of being king of England, which requires on his
part only that he outlive his mother and that he avoid serious offense to his country.

430 Plans and Goals

maintain one’s health. (These rules can be used to predict behavior
only in extreme cases, where one goal is overwhelmingly more impor-
tant than others. Ordinarily, people continually choose between goals,
and it is essentially impossible to know how they will choose without
a detailed knowledge of the individual and the circumstances.)

The above taxonomy is not by any means complete. For example,
people often have goals for others, such as the betterment of family
members, friends, or society (or the injury of enemies). Given the
diversity of human desires, it might seem hopeless to arrive at any
taxonomy or any necessary conditions for human goals. On the other
hand, there are certainly limits on top-level goals that are common-
sensically known. A man with a top-level goal of putting a tulip in his
glove compartment every day when the Mets score an odd number of
runs would be recognizably peculiar.

Also important to an understanding of human behavior is a theory
of interactions among goals and actions that will predict, or at least
constrain, what actions an agent will perform given a situation and
a collection of goals. Making such a choice often involves a complex
evaluation, estimating the expected costs and the expected gain of
achieving or postponing the various goals. Nonetheless, there is some
commonsense consensus on how this calculation should be made. It
would be generally agreed, for example, that a man who played chess
while his house burned down around him was exercising poor judg-
ment. A similar, deeper example would be to infer that a subsistence
farmer in a hard winter will not eat his seed grain until he is in im-
mediate danger.

A related, difficult, issue is the formulation of internal constraints
on the set of goals held by an agent at a time, similar to the constraints
on an agent’s beliefs discussed in Chapter 8. For example, axioms such
as the following might seem plausible:

e If G is a goal of 4, and A believes that G implies Q, then Q is a
goal of A.

e If G is a goal of A4, then -G is not a goal of A.

e If A believes that G will be a goal of A, then it is a current goal of

A that he should be able to achieve G at the future time when he
wants it.

If A has a goal that G should be a goal of A’s, then G is a goal of
A.

9.4 References 431

9.4 References

Planners: Most of the Al analysis of plans and goals has, naturally,
been in the context of planning programs. The following planning pro-
grams were particularly notable: GPS [Newell and Simon 1963] intro-
duced the concepts of means-end analysis and of recursively calling the
planner to achieve preconditions. QA3 [Green 1969] constructed plans
by applying general theorem-proving techniques to situation-calculus
axioms. STRIPS [Fikes and Nilsson 1971] used a GPS strategy applied
to a fixed representation for actions. It also used a general-purpose
theorem prover to compute dependencies among states in a single situ-
ation from state-coherence axioms. (The PLANNER language [Hewitt
1969; Sussman, Winograd and Charniak 1970] appears in retrospect
as more an early version of a logic-programming language than a the-
ory of planning.) HACKER [Sussman 1973] learned plans in the blocks
world by a process of incremental debugging. BUILD [Fahlman 1974]
was a powerful specialized planner for the blocks world. ABSTRIPS
[Sacerdoti 1975] extended STRIPS by introducing task reduction and
levels of abstraction. NOAH [Sacerdoti 1975] likewise used task re-
duction, and introduced nonlinear planning. Nonlinear planners with
task reduction were further extended in NONLIN [Tate 1977]; in
NASL [McDermott 1978b], which also studied the integration of plan-
ning and execution; and in DEVISER [Vere 1983], which incorporated
a metric language of time and time intervals. MOLGEN [Stefik 1981],
which constructed plans for biological experiments, highlighted the
use of constraints on variable bindings in planning. TWEAK [Chap-
man 1987], as described in the text, provides an exceptionally clean
theory of nonlinear planning, but does not incorporate task reduc-
tion. SIPE [Wilkins 1988] is a state-of-the-art planner that combines
task reduction, nonlinear planning, and constraint posting. FORBIN
[Miller, Firby, and Dean 1985] incorporates advanced techniques for
temporal reasoning in the planner. In particular, FORBIN works in
domains where it is possible that multiple events may occur simul-
taneously. [McDermott 1990] describes a complete linear planner for
plans that may include actions with situation-dependent effects.

Theoretical analysis: [Georgeff and Lansky 1987] is a collection

of a number of papers dealing with the logic and representation of -

plans. Particularly relevant to the issues discussed here are [Lifschitz
19871, which gives a formal account of the STRIPS program; [Manna
and Waldinger 1987], which studies plan construction using methods
from automatic programming, and, in particular, addresses the prob-
lem of constructing plans with conditionals; [Drummond 1987], which
develops a plan representation capable of expressing conditionals and

432 Plans and Goals

loops; and [Cohen and Levesque 1987] which describes how an agent
will maintain and pursue his goals. [McDermott 1985] is a (very dif-
ficult) study of the logical structure of a task-reduction planner that
interleaves planning and acting. [Pednault 1988] provides an analy-
sis for TWEAK-like plaris that include actions, like toggling a switch,
whose effect depends on the starting state. [Dean and Boddy 1988]
demonstrate that predicting the effect of such a plan is NP-hard, and
gives a polynomial-time partial solution.

Knowledge preconditions: Knowledge preconditions for plans
are studied in [McCarthy and Hayes 1969], [Moore 1980], and [Mor-
genstern 1987].

Reactive planning: The RAP system discussed in the text is taken
from [Firby 1989]. Other important studies include [Agre and Chap-
man 1987; Brooks 1986; Kaelbling 1987; Hendler 1989; Georgeff 1988;
and Schoppers 1987].

Motivation analysis: The representation of plans and goals for
motivation analysis has been studied in [Charniak 1975; Rieger 1975;
Schank and Abelson 1977; Wilensky 1978; Wilensky 1980; Dyer 1985;
and Kautz and Allen 1986].

9.5 Exercises

(Starred problems are more difﬁcult.)

1. (a) Translate the STRIPS representation of blocks-world events in
Table 5.11 into the TWEAK representation.

(b) * Show how TWEAK could construct a plan to get from state
A to state B in Figure 5-2 using the actions defined in part a.

2. Show that if A can achieve G in S, then A knows that he can
achieve G in S.

3. * Formalize the following inference:
Given that Nicholas knows the following:

(a) Either package A or package B contains a bomb.

(b) The package containing the bomb weighs 5 pounds while the
other package weighs 3 pounds.

(¢) If he lifts the package, then he will know its weight.

(d) If the bomb is put in the toilet, then it will be defused.

(e) Itis possible to put a package in the toilet iff the toilet is empty.

(f) The toilet is currently empty.

9.5 Exercises 433

Infer: Nicholas can achieve the goal of defusing the bomb.
4. * Formalize the following inference:

Joe is at his workshop. He has to build a desk, but his
only record of the dimensions is at home. His customers,
who are the only people who know the dimensions, are
out of town. Infer that Joe will have to go home to get the
dimensions.

5. * Consider the following plan:

Step 1. Take a taxi to the train station no later than 3:30.
Step 2. Buy a ticket to Miami within 5 minutes of arriving
at the station.

Step 3. When the train to Miami is announced, go imme-
diately to the track where it leaves, and get on the train.

(a) Construct a representation for this kind of plan, and axioma-
tize the events that constitute carrying out such a plan.

(b) Define the conditions for the physical feasibility of a plan de-
scribed in the language constructed in part a. The definition
should support inferences like “If the train leaves at 3:50 and
the taxi takes longer than 30 mmutes to get to the station,
then the above plan is infeasible.”

(c) Define the knowledge precondltlons of a plan described in the
language of part a.

