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It was in none other than the black, memorable year 1929 that
the indefatigable Professor Walter B. Pitkin rose up with the
announcement that ‘for the first time in the career of mankind,
happiness is coming within the reach of millions of people.’
Happy living, he confidently asserted, could be attained by at.
least six or seven people out of every ten, but he figured that not
more than one in a thousand was actually attaining it.
However, all the external conditions required for happy living
were present, he said, just waiting to be used. The only obstacle
was a psychological one. Figuring on a basis of 130,000,000
population in America and reducing the Professor’s estimates
to round numbers, we find that in 1929 only 130,000 people
were happy, but that between 78,000,000 and 81,000,000 could
have been happy, leaving only 52,000,000, at the outside,
doomed to discontent. The trouble with all the unhappy ones
(except the 52,000,000) was that they didn’t Know Themselves,
they didn’t understand the Science of Happiness, they had no
Technique of Thinking. Professor Pitkin wrote a book on the
subject; he is, in fact, always writing a book on the subject. So
are a number of other people. I have devoted myself to a careful
study of as many of these books as a man of my unsteady
eyesight and wandering attention could be expected to
encompass. And I decided to write a series of articles of my
own on the subject, examining what the Success Experts have
to say and offering some ideas of my own, the basic one of
which is, I think, that man will be better off if he quits
monkeying with his mind and just lets it alone.

James Thurber, Let Your Mind Alone!
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It is to the advantage of a thinking creature to be aware of thought and
to be able to reason about it. If it has to interact with other thinking
creatures, then reasoning about their mental processes is often nec-
essary to understand and predict their behavior. Even if the creature
is alone, stranded on a desert island, the ability to reason about its
own mental life will be valuable. A Robinson Crusoe robot will need
to make plans involving the gaining and maintaining of knowledge,
such as “If I want to learn my way around the island, I should go to
the top of the big hill,” or “If I want to avoid being eaten, I should
keep a close watch.” ' .

A commonsense mental theory is in many ways harder to formulate
than a physical theory. We have no “correct” theory to draw on. The
fundamental natures of basic psychological phenomena such as think-
ing, perceiving, reasoning, and believing are very little understood,
despite the efforts of psychology, philosophy, neurophysiology, and AL
Natural language provides a vocabulary that is rich but vague and
ambiguous. Our intuitions are often strong, but they are hard to sys-
tematize. Moreover, the mental life and its relation to behavior are
notoriously lawless. We can almost never make certain predictions
about an individual. Even if a prediction is in practice essentially cer-
tain, it often seems intuitively that freedom of choice rules out absolute
certainty. Whatever rule we put forward, no matter how qualified —
say, “If a man is hungry, and there is food set before him ready to
be eaten, and he is able to eat it immediately, and he plans to eat it
immediately, and he has no reason not to eat it immediately, and he
has nothing else on his mind, and he is aware of all this, then he will
eat it” — it can be objected that, though a likely conclusion, it is not
certain, since he can always act capriciously and not eat it.

Our commonsense understanding of the life of the mind is rich and
complex. Consider the following passage from “Ali Baba” in the Ara-
bian Nights:

Cassim rose early in the morning and set out with ten mules
laden with great chests, which he planned to fill. He followed
the road which Ali Baba had told him. When he came to the
door, he pronounced the words “Open Sesame” and it opened.
When he was in, it shut again. In examining the cave, he was
astonished to find much more riches than he had supposed from
Ali Baba’s story. He was so fond of riches that he could have
spent the whole day in feasting his-eyes with so much treasure, .
if the thought that he came to carry some away with him had
not hindered him. He laid as many bags of gold as he could
carry away by the entrance. When at last he came to open the
door, his thoughts were so full of the great riches he should
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possess that he could not think of the necessary word. Instead
of “Open Sesame,” he said, “Open Barley,” and was very much
amazed to find that the door did not open, but remained fast
shut. He named several sorts of grain — all but the right one
— and the door would not open.

Cassim had never expected such an accident. He was so fright-
ened at the danger he was in that the more he endeavored to
remember the word “Sesame,” the more his memory failed. He
had as much forgotten it as if he had never heard it in his life.
He threw down the bags with which he had laden himself, and
walked hastily up and down the cave without the least attention
to the riches that were around him.

The passage is straightforward, with no surprising or deep psy-
chological insights, and with no mention of the really mysterious as-
pects of human minds, such as dreaming, consciousness, or intuition.
Nonetheless, it presumes a complex theory of mind. Understanding
this episode requires knowledge about belief, perception, memory, fail-
ures of memory, character traits, goals, plan formation and execution,
emotions, and the interactions between all of these. Only a small part
of this knowledge has to date been incorporated in formal theories.
We do not, at this time, know how to represent most of the knowledge
involved in this passage. :

One way to avoid some of these problems and complexities is to
take our thinkers to be Al programs, or, rather, idealized models of AI
programs, rather than people or animals. Here, we can construct a
precise underlying theory, we can have definite laws, and issues of free
will do not trouble us. We will adopt this device from time to time in
our discussion. However, it has the obvious danger of leading us to a
consistent dreamworld, in which our theories will be good to describe
the behavior of robots constructed according to those very theories,
and nothing else.

Qur theory of mind will be constructed along the following lines.
Certain physical objects — namely, living animals of certain species,
including humans, and, possibly, autonomous intelligent robots — are
agents who have a mental life. We characterize the mental life of an
agent in terms of the variations of mental states over time and the
occurrence of mental events.

There are many different types of mental states. An agent may hold
a proposition to be more or less certainly true; he may be sure of a
proposition, believe it, be unsure of it, doubt it, or be sure that it is
false. He may hold a proposition to be more or less desirable; he may
hope for it, be indifferent to it, or fear it. He may have intentions
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to perform certain acts; his deliberate actions, mental and physical,
are manifestations of those intentions. He may have emotions — love,
hate, anger, enjoyment, pity, and so on — that are directed toward cer-
tain things and experiences. He may also have undirected emotions,
such as pure happiness or sadness without a particular object.

Mental events include perceiving, in which the agent gains infor-
mation about the external world; reasoning, in which he combines his
existing beliefs to form a new belief; deciding, in which he adopts an
intention; remembering; forgetting; creating goals; abandoning goals;
and changing emotional state. Some of these mental events are delib-
erate results of previous intentions.

Some of the features of mental lives differ from one agent to another,
and from one period of an agent’s life to another. These features are
categorized in terms of psychological traits; we say that an agent is
affectionate, or greedy, or silly, or a talented writer.

Models such as these are called “folk psychological” models. Though
they are fairly natural, every part of them has been challenged. It has
been argued that “mental life” is just a category one imposes on things
in order to generate certain kinds of explanations, and that therefore
it could sometimes be correct to ascribe mental states to an entity
of a sort that is not generally viewed as a single agent, such as a
thermostat or the nation of France [Dennett 1978, chap.1]. It has
been argued, conversely, that having beliefs is inextricably bound up
with the use of language, and can only be correctly ascribed to crea-
tures that communicate in language [Davidson 1975]. Behaviorists
(e.g., [Skinner 1971]) argue that mental states and events are illegit-
imate philosophical constructs, and that psychology must be couched
in terms of stimuli, responses, and drives. Some dualist philosophers,
such as Leibniz, have claimed that the physical world does not actu-
ally affect the mental world. The connection between mental states
and propositions is the matter of intense debate, both as to its nature
and its existence. Regardless of the validity of these objections and al-
ternative approaches, however, the folk psychological model seems to
be the most suitable for the formal expression of commonsense knowl-
edge of psychology, and we will focus almost exclusively on this model.
(An alternative model from [Rosenschein and Kaelbling 1986] will be
discussed briefly in Section 8.5)

We will study only limited parts of the model discussed above. This
chapter is concerned only with the mental states of knowledge and

It may be consoling to observe that some of the worst philosophical knots in this
domain do not have to be addressed in a commonsense theory. In particular, it seems
that we can ignore the “mind-body” problem of how mental states relate to states of the
brain. :
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belief, and the events that affect them. In Sections 1 through 5 of this
chapter, we present an idealized model of knowledge and believing at a
single moment of time, without considering temporal change. In Sec-
tion 6, we extend this model to include change in state. In Section 7,
we present a representation for perceptions. In Section 8, we consider
the consequences of dropping the idealizations of our model. Chapter
9 deals with goals, intentions, decisions, and actions. We will not con-
sider emotions or psychological traits in this book; see the Reference
section in this chapter for citations.

8.1 Propositional Attitudes

Many important mental states are propositional attitudes, relations
between the agent and various propositions about the world. For ex-
ample, Anne sees that it is raining, she hopes that the sun will come
out, she fears that the cellar will flood, she believes that her husband
knows that the attic window is open. Here, “sees,” “hopes,” “fears,”
and “believes” are types of attitudes; “It is raining,” “The sun will
come out,” “The cellar will flood,” and “Anne’s husband knows that
the attic is open,” are propositions. As the last example shows, the
statement of a propositional attitude may itself be a proposition.

A propositional attitude is a relation between an agent and a propo-
sition: “Anne sees that it is raining,” expresses the relation “sees”
between Anne’s current mental state and the proposition “It is rain-
ing.” (As mentioned above, we will.ignore the temporal aspects of
propositional attitudes until Section 8.6.) Statements of propositional
attitudes are an opaque context; they are not invariant under substi-
tution of equal terms. For example, “Oedipus believed that Jocasta
was the queen” is not equivalent to “Oedipus believed that his mother
was the queen,” even though Jocasta was his mother.2 In Chapter
2 we presented three techniques for representing opaque operators
with sentential arguments. In modal logics, first-order logic is ex-
tended by the introduction of modal operators as logical symbols. In
a possible-worlds representation, the sentential operator is replaced
by quantification over a particular class of possible worlds. In syn-
tactic representations, the embedded sentence is replaced by a string
that expresses that sentence. The sentential operator is an ordinary
first-order predicate, which takes a string as an argument.

2Barwise and Perry [1982] point out that there is an extensional use of “see,” in
which one may say, “Oedipus saw his mother talk to Antigone,” even if Oedipus did not
know the woman was his mother.
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8.2 Belief

A basic propositional attitude is to believe that a proposition is true.
The conscious behavior of a rational agent is essentially guided by
his beliefs and his goals. He acts in a manner that would satisfy
his goals if his beliefs were true.> In particular, even if an agent’s
beliefs are false — that is, they do not correspond to reality — still, his
deliberate actions will, in the main, correspond to his beliefs, rather
than the actual reality. Therefore, an account of an agent’s beliefs is
critical for understanding him, particularly if these beliefs are false or
incomplete in some significant manner. We use a two-place operator,
“believe(4, ¢),” to mean that agent A believes proposition ¢. In a modal
theory, this is a modal operator; in a syntactic theory, it is a two-place
predicate. For the time being, we will consider only beliefs of which the
agent is quite confident; we will consider uncertain beliefs in Section
8.4.

It is hard to define exactly what constitutes belief in people. We
generally infer a fellow human’s beliefs from considering his actions,
including his speech, by judging what he might reasonably believe,
given what he has learned and perceived; and by assuming that he
believes what most people believe, or what most people similar to him
believe. These general criteria do not amount to any useful formal
definition. We therefore take belief in people to be a primitive relation.

It is possible to be much more specific about what an AI program
“believes.” Indeed, a major theme of this book is that an AI program
should be written and conceptualized so that one can say very pre-
cisely what the program believes. An Al program of the kind we have
been advocating has a knowledge base that encodes all its beliefs, and
the meaning of this knowledge base is firmly defined by semantic def-
initions. Thus, we can determine what an AI program believes just
by printing out its knowledge base and interpreting it according to
the semantics. We will adopt this as our model of belief, keeping an
eye out from time to time to make sure that its consequences are not
violently divergent from our feelings about human belief.

There is still an ambiguity, however. Let us say that our knowledge
base is written as transparently as possible, as a collection of asser-
tions, and that the program has some inference engine for answering
queries from this knowledge base. There are three possible definitions
of what the program believes: '

3We ignore, of course, many kinds of erratic behavior, e.g., meaningless acts, self-
destructive acts, and uncontrolled acts.
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i. Explicit belief: The program believes anything that is explicitly in
the knowledge base.

ii. Derivable belief: The program believes anything that the inference
engine can derive in a retrieval.

iii. Implicit belief: The program believes anything that could be in-
ferred in principle via sound deduction from the knowledge base.

Which is the real belief? It would seem that if the purpose of at-
tributing belief is to predict behavior, then derivable belief (i1) would
be best. The program will act on the basis of those facts that it can
derive for itself. With realistic inference engines, however, derivable
belief is very difficult to characterize, since it depends not only on the
state of the knowledge base, but also on the circumstances of the query.
For example, an inference engine may allocate different amounts of
time to queries, depending on circumstances; whether a result can be
derived may depend on the time available. Moreover, these circum-
stances may change during the process of derivation, possibly even as
aresult of that process. Constructing a plausible model of an inference
engine is thus very difficult. (See Section 8.8 for further discussion.)
Taking explicit belief as a primitive does not avoid this problem. In
almost all cases, some model of inference must be included; otherwise
the theory will be impossibly simple-minded. An intelligent agent
should be able, under appropriate circumstances, to go from “This is
a tiger” and “Tigers are dangerous” to “This is dangerous,” or else it
hardly deserves the name of intelligent. .-

The use of implicit belief as a primitive greatly simplifies the prob-
lem of characterizing an inference engine. Implicit belief obeys the
principle of consequential closure: An agent implicitly believes any
fact that deductively follows from his belief. In effect, we approximate
the real inference engine with an idealized inference engine capable
of drawing any deductive inference arbitrarily quickly. The resultant
theory is an approximation of rationality that is simple and elegant.
It is sometimes unrealistically powerful. An agent cannot fail to grasp
any of the implications of his beliefs. In particular, all agents know all
mathematical theorems. Worse, an agent cannot have beliefs that are
implicitly contradictory without believing everything. Moreover, de-
ductive inference leaves the set of implicit beliefs unchanged; implicit
belief therefore cannot be used to model the action of deductive infer-
ence. Reasoning about students learning, or about mathematicians
researching, therefore requires a model of explicit belief. Conversely,
true rationality implies a great deal more than just competence in de-
duction. We assume that a rational agent will be able to find reason-
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able explanations and generalizations, and to make and revise plau-
sible inferences, as well as making logically sound deductions.

Consequential closure is taken as an axiom of most modal logics. As
discussed in Section 2.7.1, it is a necessary consequence of a possible-
worlds semantics. Thus a modal logic with a possible-worlds semantics
can describe only implicit belief; where a more verisimilar theory of
belief is needed, a syntactic theory must be used.

8.2.1 Axioms for Belief

We begin our formalization of belief by considering a variety of axioms
and inference rules describing the beliefs of an agent at an instant.
Table 8.1 shows a number of axiom schemas for belief expressed in
a modal language, together with the corresponding axioms on possi-
ble worlds. Table 8.2 shows some possible inference rules applying to
belief, some deductive and others plausible. (Further on in this chap-
ter, Table 8.4 will show these axioms expressed in terms of possible
worlds, and Table 8.5 will show them expressed in syntactic terms.) It
is not necessary to use all these axioms and rules together in a theory
of belief: rather, Tables 8.1 and 8.2 should be viewed as a smorgas-
bord, from which one extracts a subset of axioms suitable to a given
application.

We can divide the axioms and rules of Tables 8.1 and 8.2 into three
general categories. BEL.1, BEL.2, BEL.9, and BEL.14 discuss the
closure of belief under logical or plausible inference. BEL.3, BEL.4,
BEL.5, BEL.6, BEL.11, and BEL.13 state weak forms of the princi-
ple of veridicality. BEL.7, BEL.8, BEL.10, and BEL.12 characterize
introspection. We examine each of these categories in turn.

Logical closure: Implicit belief, by definition, is closed under logical
implication. This property is expressed in rules BEL.1 (consequential
closure), BEL.2 (belief in the axioms), and BEL.9 (general consequen-
tial closure). These rules are part of most modal logics of belief, includ-
ing any modal logic with a possible-world semantics. Consequential
closure is not plausible for explicit belief. BEL.9 is a useful shorteut,
not an independent rule; any instance of BEL.9 can be proven from
BEL.1 and BEL.2.

BEL.14 extends BEL.1 to cover plausible inference. If we know that
A believes that ¥ is a plausible inference from ¢, and we know that
A believes ¢, then, in the absence of contradictory evidence, we may
plausibly infer that A believes ¥. In Section 10.3.2, we will give an
example of an inference that uses this rule.
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Table 8.1 Axioms of Belief

In all of the following, ¢ and + are metalinguistic symbols, ranging
over all sentences in the modal language. A is an object-language
variable ranging over agents. (This table omits the analogues of
MODAL.l—MODAL.4, MODAL.11, and MODAL.12, which describe
the interface between the modal operator and the predicate calculus.)

BEL.1. Consequential closure: Implicit belief is closed under
modus ponens.

Va4 (believe(4, ¢) A believe(4, g=1)) = believe(4, ).

BEL.2.  Belief in the axioms: An agent believes the axioms of logic
and of belief,

If ¢ is a logical axiom or an axiom of belief,
then V4 believe(4, ¢).

BEL.3. Consistency: No one believes a statement and its negation.

Va =(believe(4, ¢) A believe(4, -4)).

BEL.4. Privileged access: If an agent believes that he believes ¢,
then he does, in fact, believe ¢.

Va believe(A,beIieve(A, ?) = believe(4, ¢).

BEL.5.  Axiom of coherence: If an agent believes that he does not
believe ¢, then he does not believe é.

Va4 believe(4,-believe(4, $)) = —believe(4, ¢).

BEL.6.  Axiom of arrogance: An agent believes that all his beliefs
are true.

V4 believe(4, (believe(4, ¢) = ¢)).

BEL.7. Positive introspection: If an agent believes ¢, then. he be-
lieves that he believes @.

V4 believe(4, ¢) = believe(A,believe(A, #)).

BEL.8.  Negative introspection: If an agent does not believe @, then
he believes that he does not believe ¢.

Va4 —believe(4, ¢) = believe(4, - believe(4, ¢)).
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Table 8.2 Inference Rules for Implicit Belief

In all the following rules, the notation ¢ 4 ¥ means that, if agent A
finds sentence ¢ in his knowledge base, then he is entitled to conclude

.

BEL.9.

BEL.10.

BEL.11.

BEL.12.

BEL.13.

BEL.14.

Deductive Rules

General inference rule of consequential closure: An agent
believes any logical consequence of his beliefs.

If ( 61,42, ...¢x F ¥) monotonically, then the statement
Va4 [believes(4, ¢1) A believes(4, ¢2) A...A
believes(A, ¢x)] = believes(4, ¥)
is true.

Necessitation: An agent who has ¢ in his knowledge vbase
may conclude that he himself believes ¢.

¢ Fa believe(4, ¢).

Optimism. An agent may infer ¢ from the fact that he him-
self believes ¢. .

believe(A, ¢) F4 ¢.

Nonmonotonic Inference

Inference of ignorance: If an agent cannot infer ¢, he may
infer that he does not believe ¢.

(Fa0) Fa —believe(4, ¢).

Principle of charity: Any belief of any agent is likely to be
true.

plausible(believe(4, ¢) ¢).

Consequential closure on plausible inference: If A believes
that ¢ is a plausible inference from ¢, and A believes ¢,
then it is plausible to infer that A believes .

plausible(believe(4,plausible(¢, ¥)) A believe(4, ¢),
believe(4, 1)).
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Weak veridicality: Unlike many modal operators, belief does not
obey the rule of veridicality O(¢) = ¢: beliefs may be false. However,
there are a number of weaker statements that are worth considering
as axioms on belief:

BEL.3. (Consistency) No one believes a statement and its nega-
tion; an agent’s beliefs are internally consistent. This sets a lower
limit on sanity. This axiom, in its literal reading, is fairly plau-
sible as a statement about explicit belief; an inference engine can
easily ensure that ¢ and —¢ are not both in a knowledge base si-
multaneously. In a theory of implicit belief, where the principle
of consequential closure holds, it is both highly implausible — it
is not possible for an agent to ensure that his beliefs are inter-
nally consistent — and utterly necessary — an agent whose beliefs
are internally inconsistent implicitly believes any statement at all.
This is an axiom in most modal logics.

BEL.4. (Privileged access) An agent’s beliefs about his own beliefs
are correct; if he believes that he believes ¢, then he is right. This
is a special case of a more general principle of privileged access,
that people’s beliefs about their own mental states are correct. The
principle is much debated in philosaphy (see the Reference section
at the end of this chapter), and one can think of cases where it
seems to be wrong, such as a neurotic who believes he loves his
mother while he actually hates her; but in most commonsense sit-
uations, it is quite plausible. Axiom BEL.4 characterizes an agent
who carries out the inference rule of optimism, BEL9. It is a
strictly weaker consequence of the axiom of arrogance, BEL.6.

BEL.5. (Coherence) If a person believes that he does not believe @,
then he does not believe 4.

V4 believe(A,—believe(4, ¢)) = —believe(4, ¢).

This is the principle of privileged access applied to nonbelief. It
is logically equivalent to “No one ever believes, both that ¢ is true
and that he doesn’t believe it.”

V4 —believe(A,¢ A —believe(4, ¢))

Thisis true in any reasonable model of belief: a person who believed
that ¢ was true but that he didn’t believe it would be seriously con-
fused. It is a strictly weaker consequence of the axiom of positive
introspection BEL.7, together with the axiom of consistency, BEL.3.
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BEL.6. (Arrogance) An agent believes that all his beliefs are true.
Note the difference between this and the axiom of privileged ac-
cess, BEL.4. The axiom of privileged access states that if a person
believes that he believes a particular statement ¢, then he does,
in fact, believe ¢. This axiom makes the stronger statement that
every person believes of every statement ¢ that, if he believes ¢,
then ¢ is true. Whether this is true in a theory of implicit belief
depends rather subtly on exactly what is meant by “implicit.”

BEL.11. (Inference rule of optimism) If agent 4 deduces that he
believes ¢, then he can add ¢ to his knowledge base. This inference
rule is not sound; there are many cases where A will believe false
things, and, therefore, believe(4, ¢) will be true and ¢ will be false.
However, it is a safe rule in the following sense: If this rule ever
takes an agent from a true premise to a false conclusion, then he
could have gotten to that conclusion in any case. For “believe(M, ¢)”
is only true (by definition) if ¢ can be inferred from the statements
in the knowledge base; and if there is some way that ¢ can be
inferred, then we could have used that means to infer it. This
inference rule essentially represents the agent’s trust in his own
rationality. '

BEL.13. (Principle of charity) Any belief of ani agent is likely to be
true.* (Note that this inference can be performed by agents other
than A.) This seems like a very strong claim and one’s natural in-
stinct is to refute it by enumerating all the stupid and wrong things
that people do believe. This, however, is probably an illusion, due
to the salience of wrong beliefs. The neighborhood crank who be-
lieves in astrology and UFO’s is a fount of colorful false beliefs;
one tends to forget that these few errors are greatly overbalanced
by tremendous numbers® of true beliefs: the belief that his name
is Sam Jackson, the belief that he has a bathroom on the second
floor, the commonsense axioms in this book, and so on. This princi-
ple cannot generally be adopted as a certain inference; in domains
where it can, it is more reasonable to talk of “knowledge” than of
“belief.” (See Section 9.5.) It is, however, quite a strong plausible
inference.

The principle of charity is important in a theory of communication.

The basis of communication is that, if A tells something to B, B will
generally believe it. Why should-B believe it? It seems plausible

4The principle of charity is discussed in [Wilson 1959], and in [Davidson 1974], among

other places. Davidson views it as a necessary truth: If an agent’s beliefs are not mostly
true, then we have no way of saying that the agent is rational, no way of reasonably
ascribing any beliefs to him, and no way to determine the contents of his beliefs.

5Not that there is any obvious way of individuating or counting separate beliefs.
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that B reasons as follows: Most utterances are sincere; hence A
probably believes what he says. Most beliefs are true; hence what
A said is probably true.® (See Section 10.3.2.)

Introspection: The last group of rules allows an agent to determine
his own beliefs by examining the contents of his knowledge base, and

allows an external reasoner to predict the results of such introspection
on the part of the agent.

BEL.7. (Positive introspection) If an agent uses the rule of ne-
cessitation, BEL.10, then he can be characterized by an external
observer as obeying the law of positive introspection: If he believes
¢, then he believes that he believes ¢, since he can deduce that he

believes ¢ via necessitation. This is an optional axiom in modal
logic.

BEL.8. (Negative introspection) If an agent does not believe 4, then
he believes that he does not believe ¢. This characterizes an agent
who reliably uses the inference of ignorance. It is often a useful
axiom. We need something of the kind to predict that agents will
sometimes answer “I have no idea” to queries, or will realize that
they have to go seek information. In general, however, it is implau-
sible, since an agent does not believc_e a statement only if it does not

to use in practical problems, since it is hard to show that an agent
does not believe ¢, except by showing that he believes —¢. The
point is illustrated by a well-known example of John McCarthy’s.

e A. “Is the President sitting down or standing up at this
moment?”

e B. “I haven't the faintest notion.”
e A. “Think harder.”

How is it that B knows that thinking harder won't get him any-
where?

BEL.10. (Necessitation) If an agent finds ¢ as an assertion in
his knowledge base, then he is Jjustified in concluding that he be-
lieves ¢. As we discussed in Section 2.7, this inference rule can-
not be turned into a material implication; the axiom schema ¢=

- (Sam Jackson is more likely to talk about UFQOs than
to tell you where his bathroom is.) On the other hand, responsible speakers tend not

to utter uncertain beliefs, and certain beliefs tend to be more reliable than uncertain
beliefs.
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believe(4, ¢) would mean that A believes all true facts, and is not
valid. However, whenever it is applied it will be valid, since it can
only be applied when ¢ is part of the knowledge base; that is, when
A does, in fact, believe ¢. In fact, it has the curious strength that,
whenever it is applied, the conclusion believe(M, ¢) will be true
whether or not the assumption ¢ is true. Necessitation is taken as
an axiom in most systems of modal logic, though not usually with
this interpretation.

BEL.12. (Inference of ignorance) If an agent cannot infer a fact
¢ from his knowledge base, then he may infer that he does not
believe ¢. This type of inference is central to the nonmonotonic
autoepistemic inference [Moore 1985b]. It is a problematic rule in
a number of respects. The antecedent of the inference is in general
uncomputable. It makes the logic nonmonotonic, since the presence
of one inference depends on'the absence of another. It introduces a
circularity into the concept of inference, which may result in there
being either no consistent and logically closed set of implicit beliefs
for the agent, or many different such sets.

Rules BEL.3, BEL.4, BEL.5, BEL.11, and BEL.13 are plausible in a
theory of explicit belief. The rest of the axioms are inappropriate, as,
in general, they imply the agent believes infinitely many statements.

As an example of the use of these rules consider the following prob-
lem: Harry says “Anyone who believes that all Libras are judicious
also believe that all Capricorns are promiscuous. But not all Capri-
corns are promiscuous.” We assume that Harry is speaking sincerely,
and therefore believes what he is saying. We wish to infer that Harry
does not believe that all Libras are judicious. (OQur axioms do not jus-
tify the conclusion “Harry believes that not all Libras are judicious.”)

We can formalize this as follows: Let pl be the proposition, “All
Libras are judicious,” and let pc be the proposition “All Capricorns
are promiscuous.” Our starting assumptions are “believe(harry, V4
believe(4,pl) = believe(4,pc))” and “believe(harry, —pc)”. We wish to
infer “-believe(harry,pl).” Table 8.3 shows the justification of this in-
ference in a modal logic containing the above axioms. The logic uses
an axiomatic proof theory, based on the axioms of predicate calculus,
the above modal axioms of belief, tautological inference, and the ne-
cessitation inference rule, as in Section 2.7. (Tautological inferences
are left implicit in the proof below.)
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Table 8.3 Proof Using the Modal Theory of Belief

No. Step Justification
1. believe(harry,V 4 believe(A,pl) = Given
believe(A,pc))

2. believe(harry, believe(harry,pl) = Consequential closure from 1.
believe(harry,pc))

3. believe(harry,pc) = Consistency (axiom).

—believe(harry,—pc) )

4. Dbelieve(harry, believe(harry,pc) = Belief in the axiom 3.
—believe(harry,—pc))

5. believe(harry, believe(harry,pl)) = Consequential closure
-believe(harry,~pc))  from 2 and 4.

6. believe(harry, believe(harry,~pc)) == Consequential closure from 5.
—believe(harry,pl))

7. believe(harry, —pc) - Given.

8. believe(harry, believe(harry, —pc)) Positive introspection from 7.

9. believe(harry, —believe(harry,pl)) Consequential closure from

8 and 6.
10. —believe(harry,pl) Coherence from 9.

8.2.2 Possible Worlds

As discussed in Section 2.7.2, it is possible to express propositions
with a modal operator in a language of possible worlds. To apply
this technique to belief, we introduce possible worlds as primitive en-
tities in our ontology. A possible world is one particular way that
the world could be. The real world is denoted by the constant wO.
Any atomic proposition that could potentially be believed or disbe-
lieved must be viewed as a Boolean fluent over possible worlds. As
with temporal fluents, we will use the predicate “truein(W,P)” to
mean that state P holds in world W. For example, the sentence
“true_in(w6,blond(michelle))” means that Michelle is blond in world
w6. (We will also use the function “value_in(W, F)” for fluents that
are not Boolean.) We express propositions about belief using an acces-
sibility relation between possible worlds, “bel_acc(4, W1, W2)”. This
relation, read “World W2 is accessible from world W1 relative to the
beliefs of A,” means that W2 is consistent in all respects with the be-
liefs that A holds in W1; any fact that A believes in W1 is actually
true in W2. Facts about which A has no beliefs in W1 may go either
way in W2; if A neither believes nor disbelieves ¢ in W0 then there
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will be accessible worlds in which ¢ is true and accessible worlds in
which ¢ is false. We can thus state that A believes a sentence ¢ by
stating that the corresponding fluent holds in all possible worlds.

For example, the statement “Ralph believes that Michelle is blond”
may be expressed

" Vw1 bel_acc(ralph,w0,W1) = true_in(i¥1,blond(michelle)).

Belief in compound sentences can be expressed by compounding the
consequents of such implications. For example, the sentence “Ralph
believes that either Michelle or Agnes is blond” can be expressed

Vw1 bel_ace(ralph,w0,W1) =
[ truein(IW1,blond(michelle)) V true_in(W1,blond(Agnes)) 1.

This should be distinguished from the stronger statement, “Either
Ralph believes that Michelle is blond, or he believes that Agnes is
blond” which is expressed,

[ Vw1 bel.acc(ralph,w0,W1) = true_in(W1,blond(michelle)) ] v
[ Vw, bel_acc(ralph,w0,W1) = true_in(W1,blond(agnes)) ].

The statement “Ralph believes that someone is blond” is expressed in
the form .

Vw1 bel.ace(ralph,w0,W1) = Jx true_in(W1,blond(X)).

Statements of imbedded belief can be expressed by chaining together
accessibility relations. For example, the statement “Ralph believes
that Michelle believes that Agnes is blond” is equivalent to “If world
W1 is accessible from w0 relative to Ralph, then in W1 Michelle be-
lieves that Agnes is blond,” which, in turn, is equivalent to “If W1 is
accessible from w0 relative to Ralph, then, if W2 is accessible from
W1 relative to Michelle, then Agnes is blond in W2.”

[Vw1,w2 bel_acc(ralph,w0,#1) A bel_acc(michelle, W1, W2) ] =
true_in(W2,blond(agnes)).

In this way, any sentence in the modal language of belief can be trans-
lated into the language of possible worlds.

Axioms BEL.1, of consequential closure, and BEL.2, that the agent
believes all axioms, must hold in all possible-worlds systems. The re-
maining axioms of belief enumerated in Table 8.1 correspond to con-
straints on the structure of belief-accessibility relations. For exam-
ple, axiom BEL.7 of positive introspection, “believe(4, ¢) = believe(A4,
believe(A4, 4)),” corresponds to the constraint that the accessibility re-
lation be transitive,
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Yawiweawa [ bel_ace(4, W1, W2) A bel_ace(4, W2, 1W3) ] =
bel_ace(A4, W1, W3).

It is easily shown that the axiom of positive introspection is true
if the accessibility relation is transitive. Suppose that in W1, 4 does
not believe that he believes that ¢. Translated into the language of
possible worlds, this means that in W1 there is an accessible world W2
in which A does not believe ¢; that is, there is a world W2 accessible
from W1 such that there is a world W3 accessible from W2 such that
¢ is false in W3. If transitivity holds, then W3 is accessible from W1.
Thus, there is a world accessible from W1 in which ¢ is false; that
is, in W1, A does not believe ¢. We have shown that if A does not
believe that he believes ¢, then he does not believe ¢, which is just
the contrapositive of the axiom of positive introspection.

It is also possible, though much more difficult, to establish the re-
verse relation between the modal axiom and the constraint on possi-
ble worlds: If 7 is a modal theory that obeys the axiom of positive
introspection, and also the axioms BEL.1, consequential closure, and
BEL.2, belief in the axioms, then there is a model of 7 in which the
accessibility relation is transitive [Kripke 1975].

Table 8.4 shows the translation of all the axioms for belief into con-
straints on accessibility relations.

8.2.3 Syntactic Formulation

Expressing the axioms of Section 8.2.1 in a language of strings and
syntactic operators involves some slightly subtle considerations. In
particular, the correct manipulation of quantified variables within
strings requires care. For example, suppose we want to express the
axiom “For all N and 4, if N is the address of 4, then A4 believes that
N is the address of A.” We will assume that addresses are strings of
characters such as <59_Turnover_Place>. Keeping in mind that, in a
syntactic theory, the object of a proposition must be a quoted string, a
naive guess at a representation would be,

. 1. Vn 4 address(V, A) = believe(4,<address(N, A)>).
From this, and the statement, “Oscar’s address is 59 Turnover Place,”
the conclusion should follow that “Oscar believes that his address is

59 Turnover Place.”

ii. believe(oscar, <address(<59_Turnover_Places,oscar)>).
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Table 8.4 Axioms of Belief in Terms of Possible Worlds

BEL.1. (Consequential closure)

True in any possible-worlds semantics.

BEL.2. (Belief in the axioms)

True in any possible-worlds semantics

BEL.3. (Consistency)

Va4 wo3w: belace(4, W0, W1),
BEL.4. (Privileged access)

VA,WQ,Wl bel_acc(A, wo, w1) =
I [ bel_ace(A4, W0, W2) A bel.ace(4, W2,W1) 1.
BEL.5. (Coherence) '
Va,wo3w1 bel_acc(4, W0, W1) A
[ Vw2 belLace(A, W1, W2) = bel_acc(A, W0, W?2) 1.

BEL.6.  (Arrogance)

Va,wow1 bel.acc(4, W0, W1) = bel_acc(4, Wl,le).
BEL.7. (Positive introspection)
Vawowi,wa [bellacc(4, W0, W1) A bel.acc(4, W1, W2) ] =
bel_acc(4, W0, W2).
BEL.8. (Negative introspection)

Vawowiwz [ bel.acc(4, W0, W1) A bel_ace(4, W0, W2) ] =
bel_acc(4, W1, W2).
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However what actually follows from rule i is that Oscar believes <add-
ress(N, A)~, which is either meaningless, or means that everything
is everyone’s address. The problem, as discussed in Section 2.8, is
that there is no connection between the quantified variables N and A4
outside the quotation marks, and the substring <N and <A inside
the quotation marks. The quoted string does not use the symbols A
or A, just the characters : N and : 4.

What we actually want to say is the following: If N is A’s address,
then A believes a string of the form “address ( < N inside string de-
limiters >, < name of 4 >)” where the name of the agent and the
address are inserted in the proper place. To express this, we use
three functions introduced in Section 2.8. The function “name_of{ X)”
maps any entity X to a constant string that denotes X. Thus, if
Oscar is the father of Harriet, the following is true: name_of{oscar)
= name_of(father_oftharriet)) = <oscar>. The function “dbl_quote(P)”
takes a string P as an argument, and returns a string with an addi-
tional level of quotation. For example, dbl_quote(<oscar>) =
<=oscar~>. (For the interpretation of this notation in terms of tuples
of characters, see Section 2.8). The function “apply(O, Al ... Ak)” takes
as arguments a string O, which spells out an operator, and strings
Al... Ak, which spell out operands; it denotes the string that spells
out the application of the operator to the operands.

We can now state the rule i correctly:

i’ Va,n address(V, 4) =
believe(4, apply(<addresss>, dbl_quote(N), name_of{ 4))).

Thus, if A is oscar and N is ~<59_Turnover_Place>, then dbl_quote(N)
= <<59_Turnover Place>~> and name_of(4) = <oscar>. The argu-
ments to the apply are thus, <addresss, <<59_Turnover_Places 5,
and <oscar>, and the value of the apply is <address(<59_Turnover.
Place>-, oscar)~-, which is what was desired.

We can compress the notation with some syntactic sugar. Note that
any string within string delimiters that is not a simple symbol can be
rewritten as the application of an operator string to operand strings;
thus, i

<1+1=2> = apply(< = >, <1+ 1>, <2») =
apply(< = -, apply(< + =, <1, <1>), <2»)

We adopt the following convéntion: Let T be a string within string
delimiters, and let S be a substring of 7. If S is surrounded in T by
down arrows |, then S itself, rather than its quoted form, is made
an argument to the apply function. If S is surrounded by at signs
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@, then name_of(S) is made an argument of the apply function. Ifs
is surrounded by exclamation points !, then dbl.quote(S) is made an
argument of the apply function.” Thus, we can write the above rule
more concisely as

Va n address(N,A) = believe(4,<address(!N!,@A@)>-).
or, equivalently,

Va n address(N,A) =
believe(A, <address(ldbl_quote(N)|,|name_of(A4)|)>)

Table 8.5 shows how the axioms and inference rules for belief given
in modal form in Tables 8.1 and 8.2 can be rewritten in syntactic form.
We assume that every agent knows a name for himself. (The modal ax-
ioms implicitly make the corresponding assumption that every agent
knows a rigid designator for himself.)

As discussed in Section 2.8.2, syntactic theories allow the construc-
tion of self-referential sentences and sentences that deny themselves.
It is often possible to use such sentences to show that a small set of
natural axioms on the sentential operators is inconsistent. In partic-
ular, in a syntactic theory we can construct a sentence of the form “I
do not believe this sentence.” Using this sentence, we can show that
.. syntactic theory of belief is inconsistent if it contains the axiom. of
consequential closure, BEL.1, the axiom of knowledge of the axioms,
BEL.2, and the axiom of coherence, BEL.5. (Exercise 8.3).

8.3 Degree of Belief

Beliefs are held with greater and lesser degrees of certainty. We can
incorporate degrees of certainty within our model by introducing a
two-place modal function, “d_belief(4, ¢),” which maps an agent A and
a proposition ¢ into a degree of belief, which is a quantity. Thus, the
sentence

d_belief(john, grey(clyde)) > d-belief(john, elephant(clyde))

TReaders familiar with LISP will recognize this as analogous to the quasi-quote
macro. As in LISP, the interpretation of anti-quote marks inside several layers of string
delimiters is a potential area for ambiguity. On the half-dozen or so occasions that this
arises in the text, I will indicate the scoping of the anti-quote marks by an explicit
comment. Except in one place, the scoping is always to the innermost string delimiters.
Ultimately, one would need systematic conventions to deal with this horrible problem.
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Table 8.5 Rules for Belief: Syntactic Form

In these rules, 4 is an object-level variable ranging over agents, and
P and Q are object-level variables ranging over strings that spell out
sentences. ¢ is a metalevel variable ranging over sentences, for use in
axiom schemas and inference rules. BEL.9-BEL.14 below are infer-
ence rules. BEL.2 is an axiom schema. BEL.1 and BEL.3-BEL.8 are
simple axioms, single first-order sentences.

BEL.1.

BEL.2.

BEL.3.

BEL.4.

BEL.5.

BEL.6.

BEL.7.

BEL.8.

(Consequential closure)

Va,pq (believe(4, P) A believe(4, <|P|=|Q|>)) =
believe(4, Q).

(Belief in the axibms)

If ¢ is a logical axiom or an axiom of belief, and string
P spells out ¢, then V, believe(4, P) is an axiom.

(Consistency)

Va,p —(believe(4, P) A believe(fi, <=[P[>)).

(Privileged access)

V4 believe(A,<believe(@A@, |P)y) = believe(A, P).
(Coherence)

Va,p believe(A4,<—believe(@A@, IPN)») = —believe(A4, P).
(Arrogance)

Va,p believe(4, <believe(QAQ, !P!) = | P|s).
(Positive introspection)
Va,p believe(4, P) = believe(A,<believe(QA@, ! P!)s-).

(Negative introspection)

V4,p —believe(4, P) :> believe(4, <— believe(@QA@, I P!)s-).
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Table 8.5: Rules for Belief: Syntactic Form (Continued)

BEL.9. (General inference rule of consequential closure)

If ( ¢1,00,..-0k = ¥) monotonically, strings P ... Pk spell
out 41 . .. ¢x respectively, and Q spells out ¢, then the state-
ment
V. [believes(4, P;) A ... A believes(4, Pr)] =
believes(A4, Q).

BEL.10. (Necessitation)

If string P spells out sentence ¢, then ¢ -4 believe(4, P).
BEL.11. (Optimism)

If string P spells out sentence ¢, then believe(4, P) F4 ¢.
BEL.12. (Inference of ignorance.)

If string P spells out sentence ¢, then (i 49) Fa
—believe(4, P).

BEL.13. (Charity)

-

If string P spells out sentence ¢, then
plausible(believe(A, P), ¢).

BEL.14. (Consequential closure on plausible inference) ,
If A believes that Q is a plausible inference from P, and A
believes P, then it is plausible to infer that A believes Q.

plausible(believe(4,<plausible(| P, 1QL=) A
believe(4, P),
believe(4,Q))

means that John is more sure that Clyde is grey than that he is an
elephant. (In a syntactic theory, the second argument would be a
string spelling out a sentence.)

Degrees of belief are generally assumed to be governed by a calculus
of uncertainty like those of Chapter 3. For example, if we assume that
agents follow a probabilistic model in assigning degrees of belief, we
can state the following axioms: :
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DBEL.1. d.belief(4, ¢) € [0,1].
DBEL.2. Ift ¢ then d belief(4, ¢) = 1 and d_belief{4,-¢) = 0.
DBEL.3. Ift ¢< then d belief(4, ¢) = d_belief(4, ).

DBEL4. If+ —(¢ Av) then
d-belief(A, ¢ V ¢¥) = d belief(4, ¢) + d_belief(A4, ).

We can then interpret the unquantified belief predicate “believe
(A, ¢)” as meaning certain belief:

believe(4, ¢) & d belief(4, ¢) = 1.

Axioms BEL.1, BEL.2, and BEL.3 on “believe(M, $)” then follow di-
rectly from DBEL.1-DBEL.4 above. Note that we are still assuming a
perfectly rational agent with consequential closure here; we are merely
allowing him to be unsure of certain things.

How to assign values to embedded statements of belief is not alto-
gether clear. The axiom of privileged access suggests, perhaps, that
one’s beliefs about one’s own beliefs should always be certain. If so,
we can reasonably adopt the following axioms:

DBEL.5. dbelief(4, d-beliefl4, ¢) = X) € {0, 1}. )
(An agent is always perfectly sure of his own beliefs.)

DBEL.6. dbeliefl4, d belief(4,¢) = X) = 1 = d_beliefl4, ¢) = X.
(An agent is always right about his own beliefs. Privileged
access.)

DBEL.7. dbelief(4,¢) = X = d.belief(4, d_beliefl4,¢) = X) = 1.
(An agent always knows his own beliefs. Positive intro-
spection.)

8.4 Knowledge

For an agent to succeed in accomplishing his goals reliably, he must
have adequate knowledge of the relevant issues. Having incorrect be-
liefs about the issues is often worse than useless. Therefore, predicting
the success or failure of an agent at a task generally requires reason-
ing about his knowledge. In particular, predicting our own future
successes or failures requires reasoning about our own knowledge. If
we find that our knowledge is likely to be inadequate, we may desire
to increase it before we address the task. (There is a very good case -
to be made that knowledge is a more important concept than belief.
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For instance, the word “know” is much more frequently used than the
word “believe,” or any of its synonyms.)

Like believing a fact, knowing a fact is a propositional attitude, a
relation between an agent and a proposition. Knowledge is a stronger
relation than belief. If an agent knows a fact, then the fact is true, and
he believes it. For example, the statement “Naomi knows that tigers
are fierce” implies that tigers are, indeed, fierce and that Naomi be-
lieves that tigers are fierce. Not all true belief, however, is knowledge.
To know a fact requires having some good reason for believing it. An
agent should try to act only on beliefs of his that are true; his best
policy to achieve this is to act on beliefs that he holds for good reasons.
If a gambler believes that he will win the Lottery and he does win it,
we do not say that he knew he would win, because he had no reason
for his belief, and consequently his belief did not justify his action.
However, it is very difficult to state what constitutes good reason for
a belief. (It is also not certain that all true beliefs with good reason
are considered knowledge; [Gettier 1963] brings some counterexam-
ples.) Therefore, we treat “know” and “believe” as separate primitive
propositional attitudes, connected by the axioms in Table 8.6 below.

Knowledge is generally taken to be a less fundamental concept than
belief. Unlike belief, knowledge is not a “pure” psychological predicate;
it depends on the state of the outer world, not just on the mental state
of the agent.® For that reason, it is belief, rather than knowledge,
that is critical for predicting actions. If John wants a Coke, and he
believes that there is a Coke in the refrigerator, then he will go to
the refrigerator. It does not matter whether his belief is true or not,
until the moment when he can find out whether it is true. Similarly,
the principle of privileged access, that an agent’s beliefs about his
own mental states are correct, does not apply to the mental state of
knowledge; it is not the case that, if John believes that he knows that
there is a Coke in the refrigerator, then he does know that there is a
Coke in the refrigerator.

However, there is another viewpoint in which knowledge is more
fundamental. Suppose we have before us a system that seems to be
intelligent, but in which we cannot find anything that looks like a
knowledge base or like a declarative representation of propositions.
When it “does things right” — when its actions are appropriate to
whatever goals we attribute to it — then it is reasonable to say that it
had knowledge about those aspects of the world that made its actions
right. For example, if a robot stops at the edge of a cliff, then it seems

8This is a more tenuous distinction than it might appear. It is not clear to what
extent belief is independent of the external world. See F ennett 1981], [Marcus 1986]
and [Putnam 1975].
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Table 8.6 Axioms of Knowledge

KNOW.1. (Consequential closure) [know(4,¢) A know(4, p=v)] =
know(4, ).

KNOW.2. (Knowledge of axioms) If ¢ is a logical axiom or an axiom
of knowledge, then know(4, ¢) is an axiom.

KNOW.3. (Veridicality) know(4, ¢) = é.
KNOW.4. (Positive introspection) know(4, ¢) = know(A4,know(4, ¢)).

KNOW.5. (Negative introspection) —know(4, ¢) =
know(A,—‘knpw(A, o).

KNOW.6. (Necessitation) é Fa know(4, ¢)

reasonable to say that it knew that it should not go further. With more
evidence, we may be more detailed and say that it knew that there
was a cliff there, and it knew that it could not survive going over a
cliff. However, the attribution of falsé beliefs to a robot that goes over
a cliff is much harder. Did it think there was no cliff there? Or did it
think it could go over cliffs with impunity? Or was it suicidal? Or was
it not behaving rationally at all? This kind of consideration (among
others) has led to the development of a quite different theory of mental
states from our “folk psychological” model.®

Reflecting considerations such as these, an alternative definition of
knowledge has been put forward by Rosenschein and Kaelbling [1986].
Here, a multistate machine is said to know proposition P when it is
in state S, if, whenever the machine is in state S, P is true. Belief
in this theory is defined as uncertain knowledge: The machine, in
state S, believes P with certainty o if the probability of P, given that
the machine is in 3, is equal to a. A limitation of this model is that it
makes it hard to give a semantics to embedded knowledge, to changing
knowledge, or to knowledge of anything other than the current state
of the world.

Table 8.6 enumerates some possible axioms governing the knowl-
edge of a single agent in a modal language. These are largely anal-
ogous to the axioms of belief that we have presented above in Table
8.1. Table 8.7 enumerates axioms that relate knowledge to belief.

9These considerations are also related to those that led Davidson to claim that the
principle of charity is a necessary property of belief (Section 8.2.1).
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Table 8.7 Axioms Relating Knowledge and Belief

KB.1. (Knowledge is belief) If A knows ¢ then A believes ¢.

know(A4, ¢) = believe(4, ¢).

KB.2. (Positive introspection: A) If A believes ¢, then A knows
that he believes ¢.

believe(4, ¢) = know(A,believe(4, ¢)).

KB.3. (Positive introspection: B) If A believes ¢ then A believes
that he knows ¢.

believe(4, ¢) = believe(A4,know(A4, ¢)).

KB.4. (Negative introspection) If A does not believe ¢, then A
knows that he does not believe 4.

—believe(4, ¢) = know(A,—believe(4, ¢)).

KB.5. (Arrogance) A believes that, if he believes ¢, then he knows
é. v -

believe(A4,believe(A, ¢) = know(4, ¢)).

Axioms KNOW.1 and KNOW.2 establish that knowledge is closed
under deductive implicature. These axioms thus describe implicit
knowledge; applied to explicit or derivable knowledge, they lead to
the same problems as applied to explicit or derivable belief. Axiom
KNOW.3 is an intrinsic part of the definition of knowledge. Note that
it subsumes the analogues for knowledge of axioms BEL.3—-BEL.6 and
rules, BEL.11 and BEL.13. Axiom KNOW.4 is analogous to axiom
BEL.7 and quite as plausible. By contrast, axiom KNOW.5, asserting
that agents have the power of negative introspection on their knowl-
edge, is very strong. For that reason, negative introspection is not
generally adopted in theories of knowledge that aim at any degree of
psychological verisimilitude, though it can be useful in characterizing
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certain closed worlds in which the agent’s beliefs may be incomplete
but cannot be mistaken. For example, in reasoning about a card game,
player A can-reason that if player B does not know who holds the
queen of spades, then B will know that he does not know it.

Axiom KB.1, that knowledge is belief, is part of the definition of
knowledge, as discussed above. Axioms KB.2 and KB.3 are slight
strengthenings of axiom BEL.7, of positive introspection on belief;
KB.4 is a strengthening of BEL.8, negative introspection on belief;
KB.5 is a strengthening of BEL.6, the axiom of arrogance. Note that if
we were to define knowledge to be exactly true belief, so that KB.1 was
a biconditional, then KB.2 and KB.3 would be equivalent to BEL.7,
KB.4 would be equivalent to BEL.8, and KB.5 would be equivalent to
KB.6.

We have stated the axioms above as axiom schemas in a modal
logic where “know(M, ¢)” is a modal operator. It is straightforward
to convert these to a syntactic notation, in the style of Section 8.2.3.
Note that a syntactic theory that contains the axioms of veridicality,
consequential closure, and knowing the logical axioms can be shown
to be formally inconsistent, using the self-referential sentence “I know
that this sentence is false.”

It is also possible to translate our modal language of knowledge to a
language of possible worlds wusing a relation “know.acc
(A,W1,W2),” meaning that world W2 is compatible with everything
that agent A knows in world W1. Axioms KNOW.1 and KNOW.2 hold
in any such possible-worlds structure. Axiom KNOW.3 corresponds to
the statement that every world is accessible from itself. The trans-
lations of axioms KNOW.4 and KNOW.5 are exact analogues of the
translations of axioms BEL.7 and BEL.8 given in Table 8.1. By com-
bining the two accessibility relations “bel_acc” and “know_acc,” it is
possible to express sentences involving both knowledge and belief. For
example, axiom KB.1, that if 4 knows ¢ then A believes ¢, can be ex-
pressed in the axiom “bel_ace(A4, W1, W2) = know_acc(4, W1, W2).” (If
W2 is consistent with A’s beliefs, then it is consistent with A’s knowl-
edge.) The translations of KB.2 and KB.3 are left as exercises.
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8.5 Knowing Whether and What

Often, we must express the proposition that another agent has knowl-
edge that we ourselves do not. Since we do not have the knowledge in
question, we cannot specify in detail what that knowledge is; we can
only give a partial description. Examples:

. Alfred knows whether Sacramento is the capital of California.

. Sarah knows what is the capital of California.

1
2
3. Charles knows how to get to Sebastian’s house.
4. Karen knows ho;v to play the piano.

5

. Gil knows a lot about the Bronze Age.

In this section, we will discuss representations for propositions like
1, in which an agent knows whether a fact is true, and 2, in which
an agent knows the value of a term. In Section 9.3.2 we will discuss
the representation of propositions like 3, where “knowing how” can
be thought of as knowing a collection of facts that describe a route to
Sebastian’s house. Representing propositions like 4, where “knowing
how” is not obviously a matter of knowing some collection of sentences;
or propositions like 5, which involve the notion of a fact being “about”
an entity, is very difficult and is not dealt with in this book. ([Ryle
1949] and [Polanyi 1958] discuss the relation of “knowing how” to
“knowing that.” [Morgenstern 1988] discusses the formal representa-
tion of “knowing how.”)

We begin by considering these representational problems in a modal
language. We introduce the modal operators “know_whether(4, ¢),”
meaning that agent A knows whether ¢ is true, and “know_val(4,7),”
meaning that A knows the value of term . Thus, sentences 1 and 2
could be expressed in the forms

know_whether(alfred, sacramento=capital(california))
know_val(sarah, capital(california))

(Like “know” and “believe,” “know_whether” and “know_val” are modal
operators that create an opaque context for their second argument.
The above sentences are not-equivalent to “hknow_whether(alfred,
sacramento=sacramento)” or “know_val (sarah, sacramento)”.)

We may now consider how these operators are related to “know”. In
the case of “know_whether” the relation is obvious and unproblematic:
A knows whether ¢ is true if he either knows ¢ or he knows —¢.
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KW.1. V4 know_whether(4, ) < [know(A4, ¢) v know(4, =¢)].

The relation between “know_val” and “know” is generally taken to be
the following: An agent knows the value of a term 7T if he knows some
sentence of the form “C = T7” where C is a constant.!® This (not by
coincidence) fits perfectly with the conventional reading of sentences
containing a modal operator within the scope of a quantifier: If O(¢)
is a modal operator, then the sentence “Iy O(a(X))” is taken to be
true if (roughly) the sentence “O(a(C))” is true for some constant C.
(More precisely, 3x O(a(X)) is true if there is an object § such that,
if a new constant symbol C is defined to denote 6, then the sentence
“O(a(C))” is true. See Section 2.7.1.) We can then state the definition
of know_val in the following axiom schema:

KW.2. For any term 7, the sentence “know_val(A4, 7) & 3x know(4,X =
7)” is an axiom.

Corresponding approaches to expressing sentences involving
knowing the value of a term can be formulated in possible worlds
and in syntactic approaches. In a language of possible worlds, we say
that A knows the value of T' if T is the same object in all accessible
worlds. For example, if Sarah knows that the capital of California is
Sacramento, then in all accessible worlds the capital of California is
Sacramento; if Sarah is uncertain whether the capital is Sacramento
or Los Angeles, then in some accessible worlds it is Sacramento and in
others it is Los Angeles. We thus express the sentence “Sarah knows
what the capital of California is” in the formula

dx Vw1 know_acc(sarah,w0,iW1) =
X=valuein(W1,capital(california)).

In the above formula, “capital(california)” is a fluent over possible
worlds. '

In a syntactic language, we say that Sarah knows what the capital
of California is if she knows some string of the form “< name of the
capital of California > =capital(california).” In our notation, we would
write this as

3x know(sarah,<@X @=capital(california)s-).

We can thus define knowing the value of a term as a syntactic relation
between an agent and a string that spells out the term.

190r a rigid designator. As discussed in Section 2.7.1, we can identify ﬁgid designators
with constant symbols without loss of generality.
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KW.2. know_val(4,T) < know(4,<@TQ@ = 1T1>).

Any of these notations will support basic inferences about “knowing
what”. For example, given that Sacramento is the capital of California,
and that Sarah knows what the capital of California is, we can use
any of these theories to infer that Sarah knows that Sacramento is
the capital of California. (Exercise 7).

Universal quantification outside the scope of a modal operator is
interpreted similarly. For example, the sentence “Archie knows all
the states of the U.S.” can be expressed

(1) Vx state(X,us) = know(archie, state(X,us)).
In a possible-worlds semantics, this is expressed

(2) Vx true_in(w0,state(X,us)) =
[ Vw: know_acc(archie,w0,W1) =
true_in(W1,state(X ,us)) 1.

In a syntactic theory, it is expressed
(8) Vx state(X,us) = know(archie,<state(@X@,us)>).

Given any of these facts, and the fact “state(alabama,us),” it is possi-
ble to prove that Archie knows that Alabama is a state. Note that the
above formulas do not specify that Archie knows that the 50 states are
all there are; they will remain true if Archie also believes that Guam
is a state. (See Exercise 8.)

In general, the above techniques provide mechanisms for making
statements of the form “A knows what the r is” for one particular
meaning of “knowing what.” The meaning of “knowing what” will
depend on the kind of description chosen to be viewed as a rigid des-
ignator in the modal theory, or a name in the syntactic theory. For
example if we agree that a street address is a rigid designator for a

location, then “Sam knows where Jessica lives,” expressed
Jx know(sam, lives_at(jessica,X )

means that Sam knows the street address. If we agree that a pair of
coordinates in a standard reference frame are a rigid designator for a

place, then the same sentence means that Sam knows the coordinates

of where Jessica lives. Note that we cannot have street addresses and

coordinates both be rigid designators, unless we are willing to posit

that whenever a street address is known, a coordinate is also known, -
and vice versa.
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In a syntactic theory, we can get around this by introducing a vari-
ety of characterizations of descriptions of objects. For example, if we
have functions street_address(X) mapping a place to its street address,
and coordinates(X) mapping a place to its coordinates, then we can
distinguish between the two types of knowledge in the two formulas,

Jx know(sam,<lives_at(jessica,|street_address(X)|)>)
Jx know(sam,<lives_at(jessica,| coordinates(X)|)>)

This flexibility is a major advantage of a syntactic theory over a modal
or possible-worlds theory. -

8.6 Minds and Time

An agent’s beliefs and knowledge deal with time and change over time.

To incorporate time into a modal or syntactic language of knowledge
and belief is a straightforward application of the techniques of Chapter
5. We convert knowledge and belief into time-varying states either by
adding a situational argument to the operators “know” and “believe”
or by defining state functions “knowing(4, 4)” and “believing(4, 4).”
Time can be incorporated in the propositional or string argument of
know or believe in any of our previous notations. For example, “At
9:00, Warren knew that he was cold and hungry” can be represented
in any of the following forms (among others).

know(warren, cold(warren,s900) A
hungry(warren, s900), s900).
(Temporal: Extra argument. Knowledge: Modal)

true_in(s900,knowing(warren,
<true_in(s900,cold(warren)) A
true_in(s900,hungry(warren))>)).
(Temporal: State type. Knowledge: Syntactic.)

know(warren,cold(warren) A hungry(warren),s900).
(Temporal: Modal. Knowledge: Modal)

Having added this temporal component to knowledge and belief, it
is necessary to rewrite the previous axioms and rules BEL.1-BEL.14
and KNOW.1-KNOW.8. For the most part, this is a straightforward
adding of a single, universally quantified, situational variable to the
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axiom, and using it wherever a situational argument is needed. For
example, the modal axiom of positive introspection on belief becomes

Vs 4 believe(4, ¢, S) = believe(A, believe(4,4,5), S)
A couple of slightly subtle points may be noted:

e The rules BEL.10, BEL.11, BEL.12, and KNOW.7, where the in-
ference was previously restricted by the agent involved, must be
rewritten to be restricted by both the agent and the situation.
For example, the rule of necessitation, BEL.10, previously writ-
ten “¢ F 4 believe(4, ¢),” must be rewritten “¢ 4 s believe(4, ¢, S),”
meaning that if the agent A finds ¢ in his knowledge base at time
S, then he may infer that he believes ¢ at time S.

o In syntactic sentences with imbedded belief states, the internal
sentence must use the name of the situation, a somewhat prob-
lematic concept, particularly since in a continuous model there are
uncountably many situations. We take the following view: A name
of a situation may contain a real number or a symbol with some
real-valued parameter (e.g., a line of a given length). The agent
can then coin a name for each situation in turn. |

An additional operator that is useful for reasoning about knowledge
is that of an agent A knowing the current value of a fluent F in a sit-
uation S. We represent this using the operator “know_fluent(4, F, S)".
For example, the statement “In s800, Reuben knew the time” is repre-
sented “know_fluent(reuben, clock_time, s800)”. Under the assumption
that an agent always knows a name for a situation, this can be defined
as follows:

know_ fluent(4, F, S) &
[know_val(A,value_in(S, F),S) V
know_whether(4,true_in(S, F),S)]

In a possible-worlds semantics, this is expressed by stating that the
fuent F has the same value in all accessible worlds.

Table 8.8 shows a number of plausible axioms constraining knowl-
edge and belief over time that suggest themselves. These, like the
previous axioms governing knowledge and belief at an instant, are
somewhat idealized, particularly axiom BT.1, stating that an agent
who knows something never forgets it. We assume further that all
agents know these axioms, in accordance with axiom KNOW.2.

Axiom BT.1, in particular, is useful for predicting that the agent will
be able to predict his own future knowledge. For example, Table 8.9
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Table 8.8 Axioms of Belief and Knowledge Over Time

In all the axiom schemas below, ¢ is a metalevel variable, ranging over
“anchored” sentences; that is, sentences without temporal indexicals.

BT.1. An agent who knows ¢ in a situation knows ¢ in all later
situations.

[ know(4, ¢, 51) A precede(S1,52) ] = know(4, ¢, S2).
BT.2. If A believes 4, then he believes that he will always believe
.

believe(4, ¢, S1) =
believe(4, Vs, precede(S1, 52) = believe(A, ¢, 52), S1).

BT.3 If A believes that he will believe ¢ in the future, then he
believes ¢ now.

believe(4, 35, precede(S 1, 52) A believe(A4, ¢, S2), S1) =
believe(4, ¢, S1) . .

shows how we can use this to infer that if an agent knows the physics
of the blocks world, knows the starting state, and knows that he can
trace what is happening, then he can predict that he will know the
final state.

In general, however, there are serious problems in formulating a
theory in which an agent’s future beliefs and knowledge can be pre-
dicted. It is difficult to find any reasonable causal or frame axioms on
an agent’s beliefs. There are also difficulties in constructing a theory
that allows an agent to make predictions without assuming that the
agent knows of all the events that occur [Morgenstern 1989].

8.6.1 Situations and Possible Worlds

The situation-based theory of time and the possible-worlds semantics
for belief and knowledge use two different types of possible worlds. A
temporal situation is a snapshot of the world at a given instant; an
epistemically possible world is a way in which the world could possi-
bly be. In combining these two logics, it is necessary to connect these
two concepts. Moore [1980] has shown that identifying epistemically
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Table 8.9 Sample Inference of Agent’s Knowledge of the Future

Given:
The above axioms of knowledge.

Daniel knows all the axioms of the blocks world (Table 5.2).

In situation s0, Daniel knows all “beneath” and “place” fluents.
Vx,y know_fluent(daniel,beneath(X,Y),s0).
Vx know_fluent(daniel,place(X),s0).

Daniel knows that he knows all the blocks.

know(daniel, Vx block(X) = know(daniel,block(X),s0), s0).
Daniel knows that he will know whatever events occur when
they are done.

know(daniel,V; g occur(l, E) =

know(daniel,occur(l, E),end(1)), s0).

Daniel knows that either a pickup, a putdown, or a move
occurs in the interval [s0,s1].
know(daniel, occur([s0,s1],pickup) V occur([sO sl],putdown) V
31 occur([s0,s1], move(L)),
s0).

Infer:
Daniel knows now that in s1 he will still know all beneath
relations.
know(daniel,
Vx,y know_whether(daniel,beneath(X,Y), s1), s0).

Sketch of the proof: Daniel knows in sO that in situation s1 he will -
know what event has occurred in [s0,s1] (Given). By KNOW.1, he
knows axiom BT.1, that he will still know everything in s1 that he
knows now. In particular, in sO he knows that in s1 he will still know
the positions of all the blocks in s0 and the axioms governing the
blocks world. The positions of the blocks in s1 follow logically from
their positions in s0, the event in [s0,s1], and the axioms of the blocks
world. Hence, applying consequential closure to Daniel's knowledge
in s1, it follows that in s1 he will know the positions of the blocks in
sl. Since, by KNOW.1, Daniel knows in s0 that his knowledge in sl
obeys consequential closure, it follows, by consequential closure on his
knowledge in s0, that he knows in sO that he will know in s1 where
all the blocks are.
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possible worlds with temporal situations gives a theory that is ele-
gant and powerful. (The language we construct below is slightly more
expressive than Moore’s, which represented time using the situation
calculus in the narrow sense (Section 5.8).)

We presume a set of parallel chronicles and an accessibility relation
between situations. Situation S2 is accessible from S1 relative to A
if 52 is consistent with everything that A knows in S2. If an agent
knows different things in situation s1 than he does in s2, then different
worlds will be accessible to him in s1 than in s2.

Knowledge about the past and the future is expressed as statements
about the chronicles containing accessible situations. For example
the sentence “Eva knows that Columbus was alive in 1492” is inter-
preted “In every chronicle containing a situation compatible with Eva’s
knowledge, Columbus was alive in 1492.”

Vs: know_acc(eva,s0,51) =
Js2 precedes(S2, S1) A true_in(S2,alive(columbus)) A
value_in(S2,clock_time) € year_1492.

Here, s0 is the current real situation; S1 is any situation which,
so far as Eva knows, might be the current situation; and S2 is some
situation in the same chronicle as S1 in 1492 when Columbus was
alive (Figure 8.1).

Axioms BT.1-BT.3 can be expressed as constraints on the interre-
lations on temporal precedence and knowledge accessibility. For ex-
ample, axiom BT.1, that knowledge is never lost, corresponds to the
following constraint: If S14 precedes S2A in chronicle A4, and S2B is
knowledge accessible from S2A4, then there is a situation S1B that is
knowledge-accessible from S14 and that precedes S2B in chronicle B
(Figure 8.2).

Vs1a,524,528 [ precedes(S14,S52A4) A know_acc(A4, S24,52B) ] =
Js1p precedes(S1B,S2B) A know_acc(4, S14, S1B).

We may justify this formulation as follows: Assume that the above
constraint holds. Suppose that A does not know ¢ in S24. Then there
is a knowledge-accessible situation S2B in which ¢ is false. If S14
precedes S2A then, by the above constraint, there is a situation S1B
that is knowledge accessible from S14 and that precedes S2B. Since ¢
is a time-independent sentence, and ¢ is false in S2B, ¢ must also be
false in S1B. Thus, A does not know ¢ in S1A. We have thus shown
that, if A does not know ¢ at a later time, then he does not know
¢ at an earlier time, which is just the contrapositive of the axiom of
memory. The expression of the remaining rules BT.2 and BT.3 in a
possible-worlds semantics is left to the reader (Exercise 4b).
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8.7 Perceptions

Perceptions are the interface that allows the mind to gain information
about the external world; they are the ultimate source of most beliefs.
Despite their importance, however, there has been little work to date
at developing a commonsense theory of the senses. (The detailed mod-
els of the senses provided by vision and other sensory research do not
enter into a commonsense understanding.) We will discuss some of
the issues involved, and briefly sketch a possible theory.

Consider the following quotation:

Suddenly, there was the momentary gleam of a light in the
direction of the ventilator, which vanished immediately, but was
succeeded by a strong smell of burning oil and heated metal.
Someone in the next room had lit a dark lantern. I heard a
gentle sound of movement, and then all was silent once more,
though the smell grew stronger. For half an hour I sat with
straining ears. Then suddenly another sound became audible
— a very gentle, soothing sound, like that of a small jet of steam
escaping continually from a kettle. The instant that we heard
it, Holmes sprang from the bed, struck a match, and lashed
furiously with his cane at the bell-pull. :

“You see it, Watson?” he yelled. “You see it?”

But I saw nothing. At the moment when Holmes struck the
light, I heard a low, clear whistle, but the sudden glare flashing
into my weary eyes made it impossible for me to tell what it
was at which my friend lashed so savagely. I could, however,
see that his face was deadly pale and was filled with horrer
and loathing. (Sir Arthur Conan Doyle, “The Adventure of the
Speckled Band,” Adventures of Sherlock Holmes.)

Understanding this passage involves a rich theory of perception.
First, the reader must be able to connect Watson’s and Holmes’s per-
ceptions to their mental state. Watson infers that a dark lantern has
been lit from seeing the light and smelling the oil and the heated
metal of the dark lantern. Watson cannot identify the source of the
steam-like sound; Holmes, presumably, has identified it. Whatever
Holmes has seen is the source of his horror. Second, the reader must
connect the perceptions to the physics of ‘the external world. Holmes
lights a match in order to be able to see, and Watson sees Holmes by
the light he has lit. Third, the reader must know something about
the actual sensors; in particular, if one’s eyes are used to the dark and
are suddenly exposed to bright light, one may be temporarily unable
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to see in the direction of the light. An adequate commonsense theory
must deal with all these issues.

A representation for statements about perception, which allows the
expression of simple rules connecting the physics of the perceivable
neighborhood to the knowledge gained through perception, may be de-
veloped in a modified possible-worlds semantics on the following lines:
We define a behavior to be a possible history of the physical world over
time. We define a layout to be a possible instantaneous snapshot of a
behavior. Behaviors and layouts zre thus analogous to intervals and
situations respectively, except that they do not incorporate nonphysi-
cal aspects of the world. In particular, agent’s beliefs and knowledge
are not aspects of a layout. We define a predicate “pe(A4, L0, L1),” read
“Layout L1 is perceptually compatible with layout L0 relative to agent
A,” meaning that layout L1 is consistent with everything that 4 can
perceive in L1. We define the function “layout(S)” as giving the phys-
ical layout in situation S. The statement that A perceives the value
of a fluent F is expressed by asserting that ¥ has the same value in
every compatible layout. For example, the statement that in situation
s0 Caroline sees that the cat is on the sofa is represented

V11 pc(earoline,layout(s0),L1) = true.in(L1,on(cat15,sofa8)).

(We extend “true_in” and “value_in” to layouts in the obvious way.)

The power of a perceptor are expressed by giving necessary condi-
tions for two layouts to be perceptually compatible; its limits are ex-
pressed by giving sufficient conditions. Consider, for example, a robot
“r2d2” with sonar. The statement that the robot can always perceive
whether or not there is a solid object within distance d0 of it can be
represented by stating that two layouts are compatible only if either
both have an object within distance do, or neither does.

le,L2 pc(r2d2,L1, L2) =

[[ 3x solid(X) A
value_in(L1,distance(place(r2d2),place(X))) < d0 ] <

[ 3x solid(X) A
value_in(L2,distance(place(r2d2),place(X))) < do ]].

The statement that the robot can never perceive an object more than
distance d1 can be expressed by saying that, if two layouts have iden-
tical objects within distance d1, then the two are perceptually com-
patible.
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Vi1r2 [ Vx [valuein(L1,distance(place(r2d2), place(X))) < d1 v
value_in(L2, distance(place(r2d2),place(X))) < d1 ] =
value.in(L1,place(X)) = value_in(L2,place(X)) ] =

pc(r2d2,L1, L2).

Perceptions are connected to knowledge by the rules that an agent
who perceives ¢ knows ¢ and knows that he perceives ¢. These rules
are expressed in the following axiums.

PERC.1. know_acc(4,S1,S52) = pc(4,layout(Si), layout(S52)).

PERC.2. [know.acc(4, S1,52) A pe(4,layout(S2), L3)] =
pc(4, layout(S1), L3).

Similarly, we represent the perception of an event by defining a
compatibility relation “bpc(4, B1, B2)” on behaviors. Behaviors B1 and
B2 are compatible relative to agent A if, as far as A can see during
I in Bl, the world might be going through B2. Using the function
“behavior(I)” mapping an interval I to its behavior, we can represent
a sentence like “In interval i0, Hector saw the rabbit eat the carrot”
in the form,

Vp1 bpc(hector, behavior(i0), B1) = .
occurs(B1,eat(rabbitl, carrotl)).

8.8 Realistic Models of Mind

Once we drop the idealization of complete and error-free reasoning and
perception, we enter terra incognita. As mentioned at the beginning of
this chapter, the actual commonsense theory of mind is very rich, and
only very limited and preliminary formal models of this theory have
been constructed. The most we can do, at this stage, is to discuss a
few of the prominent issues that come up in this theory.

1. A complete commonsense theory of mind must include all mental
activities of which we are naturally aware. This does not mean
that the commonsense theory of mind need include all of cognitive
psychology, because we are only aware of the high-level structure
of these activities, not of their fine detail. Thus, a commonsense
theory of vision need not contain any account of the mechanisms of
vision, because these mechanisms are not known to common sense.
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(If they were, vision research would be a lot easier.) What the com-
monsense theory needs is high-level characterizations; rules such
as “Familiar objects can generally be recognized.” Note that we
could have a complete algorithmic theory of vision without having
identified these rules. The two problems are quite separate.

2. Mental activities, including deductive inference, generally take per-
ceptible amounts of time. Therzfore, these should be considered a
type of event and connected by causal theories.

3. Since beliefs are not closed under logical implication, possible-
worlds and standard modal theories are out of the question, and
syntactic theories must be used.!! It is not even reasonable to re-
quire that beliefs be logically consistent, since logical consistency
is noncomputable. It may be reasonable, however, to demand some
level of coherence; to require, for example, that if a person at one
time believes both P and —P, then he will try to resolve this con-
flict.

4. Mental events are sometimes deliberately planned. One may plan
to think about a problem, or to pursue some particular line of
thought, or to remember some particular item. Not all mental
events can be planned, or one ends in an infinite regress [Haas
1986] .

5. To reason about agents that can forget something and then re-
member it later, we must use a model with at least two different
knowledge bases of different functionalities. One knowledge base,
short-term memory, contains the beliefs of which the agent is cur-
rently aware; the other, long-term memory, contains everything
that he has known. Remembering is the event of a proposition in
long-term memory coming to short-term memory. Note that it is
possible to be aware in short-term memory that one knows a fact
in long-term memory but not in short-term memory; for example,
Cassim in the Ali Baba story is aware that he knows the password
in long-term memory, but he can’t remember it. This means that
propositions in the two knowledge bases must be able to refer to the
knowledge bases. Common sense includes a fair amount of knowl-
edge about the interactions between the two knowledge bases. For
example, the Ali Baba story quoted at the beginning of the chapter
relies on the knowledge that distraction and terror make remem-
bering difficult. The climax of The Prince and the Pauper rests on

11The theories proposed in [Levesque 1984] and [Fagin and Halpern 1985], which are
not closed under logical implication, combine aspects of modal and syntactic approaches.
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the common observation that an event can be remembered if the
course of events leading up to it is rehearsed.

6. The varying knowledge and mental powers of different people, or of
the same person over different times, can be categorized in general
terms within a commonsense theory. “Cassandra knows a lot of
differential geometry.” “Richard has perfect pitch.” “Edmund is
very gullible.” “Elaine has an excellent memory, but no sense of
direction.”

7. Tt is sometimes possible and useful to state a rule of the form “If
¢ were true, then A would know ¢”; for example, “If Bob had an
older brother, then he would know about it.” Generally, this rule
is used to infer that, since A does not know ¢, ¢ must be false.
Such rules are derived from general knowledge about what A may
be presumed to have learned. We know that most siblings get to
be known as part of the family circle, and that, in the rare cases
where they are not, they will usually be spoken of from time to
time. If Bob had been born when his parents were relatively old,
and it was known that his parents had many skeletons in the closet
that they never discussed, then the inference rule might not apply.
The background knowledge that lies behind rules like this has not
been much studied. :

8.9 References

One could spend several lifetimes reading the philosophy of mind.
Most of the central issues in the theory of knowledge can be found
in the Platonic dialogue Theatatus. I personally have found Bertrand
Russell's Human Knowledge: Its Scope and Limits [1948] extremely
enlightening. [Ryle 1949] raises many interesting and difficult issues
in the theory of mind; his approach is totally at variance with the
approach taken here. The articles on “Epistemology, History of” and
on “Knowledge and Belief” in the Encylopedia of Philosophy are good
general surveys.

The classic works on the modal theories of knowledge and belief
were written by Hintikka [1962, 1969]. This modal theory of knowl-
edge was applied to Al and related to the theory of temporal situations
by Moore [1980, 1985a]. Moore [1980] also gives a first-order axioma-
tization of a scheme to translate between modal representations and
possible-worlds representations. [Halpern and Moses 1985] reviews
the modal theories of knowledge and belief, and adduces complexity
results in the propositional theory. Levesque [1984] examines a weak-
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ened modal logic of explicit belief that avoids the assumption of con-
sequential closure; extensions of this approach are studied in [Fagin
and Halpern 1985]. [McCarthy et al. 1978] was an early Al work on
the modal theory of knowledge. [(Halpern 1986] and [Vardi 1988] are
collections of research papers on formal theories of knowledge.

Syntactic theories of belief and knowledge were studied by Kaplan
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[Kripke 1972]
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1985a]. [Morgenstern 1989] discusses the difficulties of integrating
theories of knowledge with solutions to the frame problem.

[Gettier 1963] argues that “Justified true belief” is not an adequate
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Conceptual dependency theory [Schank 1975] included ATTEN Ding a
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sensor as a primitive act, which could be causally connected to mental
events. The theory of layouts sketched above is developed in [Davis
1988, 1989].

There are no very detailed unidealized models of mind. [Konolige
1982] gives general schemes for limiting the power of an inference en-
gine. [Haas 1983] shows how inference may be treated as an event;
[Haas 1986] extends this to show how it can be treated as a planned
action. [Thomason 1987] discusses a number of interesting aspects
of belief, and presents a partial model. The use of a two-level the-
ory of memory is an old idea in cognitive psychology. It was used in
conceptual dependency theory [Schank 1975] with the primitive act
MTRANS to transfer information from one to the other, but then it
fell out of interest. [Kube 1985] deals with a number of interesting
issues in this theory.

For formal theories of emotion, see [Schank and Abelson 1977];
[Roseman 1979], [Lehnert 1980], [Dyer 1983], and [Sanders 1989].

8.10 Exercises

(Starred problems are more difficult.)

1. Represent the following sentences (i) in a modal language; (ii) in a
language of possible worlds; and (iii) in a syntactic language. For
this exercise, ignore the temporal component of these sentences.
(Also ignore the fact that, in English, “4 does not know ¢” is always
interpreted to mean that ¢ is true, despite A’s ignorance. For the
purposes of all the exercises in this chapter, treat “A does not know
#” as meaning no more than “It is false that A knows ¢.”)

(a) Jack knows that he lives in Hertfordshire.

(b) Jack believes that Algernon does not know that Jack lives in
Hertfordshire.

(c) Algernon knows where Jack lives.

(d) Jack does not know that Algernon knows where Jack lives.

2. Represent the following sentences (i) in a modal language; (ii) in a
language of possible-worlds; and (iii) in a syntactic language. Be
sure to represent the temporal component of these sentences.

(a) In situation s1, Algernon knew that Jack lived in Hertford-
shire.

(b) In situation s2, Jack did not know that Algernon had already
been at his house for an hour.
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(¢) In situation s3, Jack did not believe that Algernon would re-
main at his house for a week.

(d) In situation s4, Jack knew that Cecily had not ever believed
that Algernon was dead.

. Show how the following inferences can be carried out (i) in a modal
logic; (ii) in a logic of possible worlds; and (iii) in a syntactic logic.
(You may ignore the temporal component.)

(a) Given: Lord Bracknell does not know where Gwendolen is.
Infer: Lord Bracknell does not know that Gwendolen is in
Hertfordshire.

(b) Given: Algernon knows that Aunt Augusta believes that Bun-
bury is sick.

Infer: Aunt Augusta does not know that Bunbury is not sick.

*

(a) For each of the axioms BEL.3, BEL.4, BEL.5, BEL.6, and
BEL.8 show that, if the possible-worlds axiom in Table 8.4
holds, then the corresponding modal axiom in Table 8.1 holds.

(b) Express axioms BT.2 and BT.3 in the language of possible-
worlds. .

- * Show that a syntactic theory is inconsistént if axioms BEL.1,
BEL.2, and BEL.5 hold, and the sentence “I do not believe this
sentence” can be constructed.

. * Show that the axiom of arrogance (BEL.6) is strictly stronger than
the axiom of privileged access (BEL.4) by exhibiting a possible-
worlds structure in which the axiom of privileged access holds but
the axiom of arrogance does not. (Hint: All you need are two worlds
and one atomic formula.)

- Given that Sacramento is the capital of California and that Sarah
knows what the capital of California is, show that Sarah knows
that Sacramento is the capital of California (a) in a possible-worlds
theory; and (b) in a syntactic theory. LT

- * Represent the statement “Archie knows exactly what the states
of the U.S. are” in a formal sentence ¢. Given ¢ and the fact
“state(alabama,us),” it should be possible to infer that Archie knows
that Alabama is a state; given ¢ and the fact “>state(guam,us),” it
should be possible to infer that Archie knows that Guam is not a
state. ¢ should not contain the names of all 50 states. (Hint: Use
set theory.)




