DFS with more info.

- We start by exploring a node
- Finish when we have explored all nodes of the subtree.
- Keep a counter to track the number of steps taken.

Example:

```
1 ← 4 ← 6 ← 10
   ↓      ↓      ↓
  2 → 3 → 5 ← 11
   ↓      ↓      ↓
  9 ← 8 ← 7 ← 12
```

```
1 - 1 118
2 - 2 117
3 - 3 116
4 - 4/5
5 - 6 115
6 - 7/8
7 - 9 114
8 - 10/13
9 - 11/12
10 - 19/24
11 - 20/23
12 - 21/22
```
DFS(node)
 if color[node] = white:
 color[node] = grey
 discovery[node] = time
 time += 1
 for u in node:
 if color[u] = white
 DFS(u)
 color[node] = black
 finish[node] = time
 time += 1

This still linear. in (n+m)

This can classify all types of edges.

1) Forward edge a -> b.
 \[d[a] < d[b] < f[b] < f[a] \]

2) Back edge a -> b.
 \[d[b] \leq d[a] \leq f[a] \leq f[b] \]

3) Cross edge a -> b
 \[d[b] < f[b] < d[a] < f[a] \]
Reachability & Connectivity

Strongly connected relation

\[u \sim v \text{ if } u \text{ reachable from } v \text{ & vice versa.} \]

This is an equivalence relation

\[\Rightarrow \exists \text{ equivalence classes} \]

These classes are called the Strongly Connected components (SCC's) of \(G \).

\[\text{E.g.} \]

![Diagram](image_url)
The SCC graph (Component graph)

\[\text{sgc} = (V, E) \]

The vertices are the distinct equivalence classes of \(\text{sgc} \rightarrow [1], [2], \ldots, [n] \)

- the distinct elements only.

Connect \([i] \rightarrow [j]\) if \(\exists u \in [i] \land v \in [j] \land u \rightarrow v \in E\)

Claim: \(\text{sgc}\) is acyclic.

Proof: if \([v_1] \rightarrow [v_2] \rightarrow \ldots \rightarrow [v_k] \rightarrow [v_1]\)

is a cycle we can collapse it \(\Rightarrow \notin E\)

Applications

1. Given a graph \(G\) with some coins at each vertex, \(c_i\), how many coins can we collect starting from \(S.1\) and ending back at \(S\).1) and ending wherever we want.
First solve the problem assuming g is a DAG.

1) No way to reach back to $s \Rightarrow$ answer = C_s.
2) First topologically sort the graph

 ![Diagram]

For each vertex i, the maximum coins collected can be seen as the max possible depending on the next step.

\Rightarrow maxCoins(i) = $C_i + \max_{\text{nbhd of } i} \maxCoins(l_i)$

We can solve this using DP.

Now for a general graph g

Construct the g'.

1) if we want to return to s, we cannot leave $[s]$, \Rightarrow answer = $\sum_{i \in [s]} C_i$
2) Do the previous algorithm on g'. and treat $DAGr$.

[2]
Gr. \textit{Def.} G is weakly connected iff.

+ pairs u, v either u is reachable from v or vice versa.

Given a graph G, is it weakly connected?

First solve it for a DAG.

Claim \textit{iff} in the topsort ordering of G

v_1, v_2, \ldots, v_n if $v_i \rightarrow v_{i+1} \& i < n$

Proof \textit{if} this happens \Rightarrow it is weakly connected

0/w there are two vertices of indegree 0.

G both are unreachable from each other \(\blacksquare\)

Now for a general graph G.

Construct G^{∞} & use the DAG algorithm.

developed above.
Kosaraju - Sharir Algo

Observation: If we reverse the edges of G, it has the same SCC's. (transpose of G: G^t).

Algo:

1) Do a DFS on G, to get the DFS forest. Order the vertices in decreasing order of finishing time: v_1, \ldots, v_n

2) Do a DFS on G^t, but process the nodes for roots in decreasing order v_1, \ldots, v_n

E.g. \[1 \xleftarrow{1} 116 \rightarrow 2 \xleftarrow{2} 115 \]

\[3 \xrightarrow{3} 4 \xleftarrow{4} 413 \rightarrow 5, 7 \xrightarrow{5, 7} 10 \]

\[5 \xleftarrow{5} 6 \xrightarrow{6} 7 \xleftarrow{7} 8 \xrightarrow{8} 9 \]

Full tree
\[
\begin{align*}
1 & \rightarrow 2^{2/3} \\
5/103 & \rightarrow 4 \\
6/9 & \rightarrow 7/18 \\
5/13/14 & \rightarrow 8 \\
11/16 & \rightarrow 12/15
\end{align*}
\]

Proof:

Def. \(\text{finish}(E[V]) = \max_{u \in E[V]} \text{finish}(u) \)

Claim if \([x] \rightarrow [y]\) is an edge in \(G_{\text{sc}}\) then \(f([x]) > f([y])\)

Proof Case 1.

During \(BFS\) DFS we first hit an element in \([x]\) before any element in \([y]\).

Then before finishing \([x]\) we will fully explore \([y]\) \(\Rightarrow f([x]) < f([y]) \).
Case 2. we pick an element $u \in [Y]

\[
\begin{array}{c}
\mathcal{G} \\
\mathcal{X} \\
\mathcal{Y}
\end{array}
\]

we will finish exploring $[Y]$ before even touching $[X] \Rightarrow f([X]) > f([Y])$

The SCC of g_j, g_j^T will be of the form

\[g_j: \begin{array}{c}
[V_1] \\
[V_2] \\
[V_3] \\
\vdots \\
[V_k]
\end{array} \quad \begin{array}{c}
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow
\end{array} \quad \begin{array}{c}
[V_1] \\
[V_2] \\
[V_3] \\
\vdots \\
[V_k]
\end{array}\]

\[g_j^T: \begin{array}{c}
[V_1] \\
[V_2] \\
[V_3] \\
\vdots \\
[V_k]
\end{array} \quad \begin{array}{c}
\leftarrow \\
\leftarrow \\
\leftarrow \\
\leftarrow
\end{array} \quad \begin{array}{c}
[V_1] \\
[V_2] \\
[V_3] \\
\vdots \\
[V_k]
\end{array}\]

we will have that

\[f([V_i]) < f([V_j]) \quad \forall \; i > j\]

\Rightarrow \text{when we explore vertices in } g_j^T \text{ we will first explore a vertex in } [V_1].

(\text{as the maximum finish time will be in } [V_1])
which will give the first tree as \([V_1, J]\).

Then the next vertex, that is not black yet, will be in \([V_2]\), as the DFS in \([V_1]\) makes it fully black.

\[\text{[V_1]} \leftarrow \text{[V_2]} \quad \text{[V_3]} \quad \ldots \quad \text{[V_k]}\]

\Rightarrow \text{the second tree in the forest will be [V_2].}

\Rightarrow \text{by induction the trees will be [V_1, V_2, ... , V_k]}.

Giving us the SCC-DAG.