Basic Algorithm's lec 21

Notation:
- \(U \): "universe" of keys to hash
- \(K \): "index set" of hash family
- \(V \): "value" set to map the hash function

Family:
- \(\mathcal{H} = \{ h_k \}_{k \in K} \), \(h_k : U \rightarrow V \)

Recall universal hashing

\[\left| \left\{ k \mid h_k(a) = h_k(b) \right\} \right| \leq \frac{|K|}{|V|} \]

Not always possible to get such a bound,

Definition of \(\varepsilon \)-universality

\[\left| \left\{ k \mid h_k(a) = h_k(b) \right\} \right| \leq \varepsilon \cdot |K| \]

For universal hashing \(\varepsilon = \frac{1}{m=|V|} \)
Probabilistically
\[P_r [\text{hash}(a) = \text{hash}(b)] \leq \varepsilon \]

Previous proof for expected block size
\[\rightarrow 1 + \varepsilon \cdot n \]

E.g., Rolling Hash
\[U = Z_p^{t+1}, K = Z_p, V = Z_p \]
\[\text{hash}(x_0, \ldots, x_t) = \sum_{i=0}^{t} x_i \cdot K^i \]

Also called the polynomial hash function

Claim: This family is \(t/p \) universal

Proof: Let \[\text{hash}(a) = \text{hash}(b) \]
\[\rightarrow \sum a_i \cdot K^i = \sum b_i \cdot K^i \]
\[\rightarrow \sum c_i \cdot K^i = 0 \]

\(c_i \) are the indices causing collision are the roots of this polynomial.
the polynomial is of degree \(\leq t \)

\[\Rightarrow \# \text{roots} \leq t \]

\[\Rightarrow \left\{ k \mid h_k(a) = h_k(b) \right\} \leq t = \frac{t}{p} \cdot p \]

\[\Rightarrow \text{the family is a } \frac{t}{p} \text{ universal family} \]

\[\text{E.g. another rolling hash} \]

\[U = \mathbb{Z}_p^t, \quad K = \mathbb{Z}_p, \quad Y = \mathbb{Z}_p \]

\[h_k(x_0, \ldots, x_t) = \frac{t}{11} (x_i + k) \]

\[i = 0 \]

By a similar proof, this is also \(\frac{t}{p} \) universal.

These families are also called "weak" universal families.

for strong families (for given \(c \))

\[\Pr_k \left[h_k(a) = h_k(b) \right] \leq \frac{1}{mc} \]

This is a \(c \)-universal hash family.
Variable length input

\[U = \bigcup_{i=0}^{t} \mathbb{Z}_p^+ \quad K = \mathbb{Z}_p \quad V = \mathbb{Z}_p \]

\[h_k(x_0, \ldots, x_l) = k^{t+1} + \sum_{i=0}^{l} x_i \cdot k^i \]

* Polynomial with padding.

* is also \(\mathbb{T}_p \) universal.

Applications.

String finding in expected \(O(n) \).

Given a database of text of size \(n \) and a pattern of length \(m \), find the pattern in \(O(n \cdot m) \).

Naive method.

- Go to position \(i = 1, \ldots, n - m \).
- Check if next \(m \) characters form the pattern.

\(\rightarrow O(n \cdot m) \).
Randomized - Las-Vegas.

Find hash of each substring of length \(m \) and only check for matches.

* Still need to hash \(n-m \) strings of size \(m \)

\[\text{Rolling hash.} \]

\[
\begin{align*}
 h_1 &= \sum_{i=0}^{m-1} b_i \cdot k^i \\
 h_2 &= \sum_{i=1}^{m} b_i \cdot k^{i-1}
\end{align*}
\]

\[\Rightarrow h_2 = \frac{h_1 - b_0 + b_m \cdot k^{m-1}}{k} \]

\(O(1) \) operation

We can calculate hash of next substring in \(O(1) \).
Find all hashes of $n-m$ substrings in $O(n)$. Let the number of collisions to the hash of the pattern $= \alpha$.

For each of the α collisions, check if they are the pattern

$\Rightarrow \quad T(n,m) = n + \alpha m$.

$\mathbb{E}[T(n,m)] = n + \mathbb{E}[\alpha] m$.

If we are doing the hashing mod p, $\mathbb{E}[\alpha] = \frac{m-1}{p}$

$\Rightarrow \quad \mathbb{E}[T(n,m)] = n + \frac{m(m-1)}{p}$

so if we take a prime $p \geq m^2$, we are still linear.

[If $p \geq m^2$, $\log p = 2 \log m$]

Bit level complexity is not affected as the factor is multiplicative.
Longest common Substring

given two strings of length \(n \), \(a, \ldots, a_n, b, \ldots, b_n \)
find the length of longest substring.

Can use DP, \(D[i..n][j..n] \)

\[
D[i][j] = \begin{cases}
\text{length of longest substring ending at} & \text{if } a_i = b_j \\
D[i-1][j-1] + 1 & 0 \\
0 & 0 \text{ otherwise}
\end{cases}
\]

\(\mathcal{O}(n^2) \) time & space

Can do better with a Las Vegas algorithm
Assume the following:

Given an array, bi,..., bL, a length L, we can find the LCS of length L in expected O(n).

If there is a common subsequence of length L, we can binary search over length L.

We can bouncy search over length L in expected L-sizes.

If low = high = u + 1, we only check for O(\log n) L-sizes.

while (high - low > 1)

if l-substring of length = wid

dow = low = wid

else bi = wid.
The expected time complexity

\[= O(n \log n) \]

as we need expected time = \(O(n) \) to check for wid.

Proof of assumption.

Do calculations of Rabin Karp string matching mod \(p \)

where \(\log p = O(\log n) \). [actually \(p \approx 2^{\log n} \)]

1) Build a hash table of all \(n-l+1 \) substrings of \(b \).

\(\text{using rolling hash in } O(n) \).

2) For each substring of \(a \) of size \(l \), check if it is in the Table \(b \) (if there is a collision check the substring.

\# substrings of \(a = O(n) \).

probability of collision for "one" substring

\[= \frac{l-1}{n} = O(1) \]

\(\therefore \) expected time per substring = \(O(l) \)
\[\Rightarrow \text{total time} = O(n^2) \]

we haven't found any improvement.

* we need a smaller probability of collision

if \(P = 2^{\log n} \), doubling the size of \(P \).

\[\Rightarrow \text{collision probability} \approx \frac{e^n}{n^2} = O\left(\frac{1}{n}\right) \]

\[\Rightarrow \text{time per substring} = O\left(\frac{e}{n}\right) \]

\[\Rightarrow \text{total time} = O(n) \]

\[\text{But: we have to make a table of size} = n^2 = P \]

\[O(n^2) \]

\[\therefore \]

\underline{Solution}

In the table \([P = 2^{\log n}]\) store a second

dash of each substring, \(g \) where the second

dash is calculated using \(P_a = 2^{\log n} \)
and now before comparing two strings first check if their second hash values are same or not.