Basic Algorithms - Sec. 19 (Extra)

P vs. NP

P → polynomial time solvable

NP → non-deterministic poly time.

E.g., 3 SAT

TSP

Hamiltonian Path

Knapsack

Change making

Multiple gene alignment

Sudoku / Sokoban

Chess

... not solvable in poly time (yet).
Efficient...
Polytime \rightarrow good
everything else \rightarrow bad

(Problems: n^{50} is nice
Las Vegas/Monte Carlo \rightarrow not nice.)

what is a problem in Ω?
types of problems.
Decision vs Search
 e.g. is graph cyclic?
 e.g. find cycle in graph.

Theory of computing--
define encodings of problems as a bit string.
e.g. a graph can be written as

\[
\begin{array}{c}
4 \leftrightarrow 3 \\
2 \leftrightarrow 1
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 5 \\
1 & 2 & 4 \\
3 & 4 & 35 \\
45 & & & & &
\end{array}
\]

\rightarrow

5 5 1 2 2 4 3 4 3 5 5

\rightarrow

bit string
101 101 001 010 ...
so we have a set $h = \{ \text{encoding}(p) \mid p \text{ a problem} \}$.

algorithm $A : h \rightarrow \{0, 1\}$

$A(p) = 1$ if YES
0 if NO

$h_1 = \{ p \in h \mid A(p) = 1 \}$.

These sets are called "languages".

decision (\leq) recognizing h_1 as a language

Search \iff verification.

An algorithm which gives back an answer needs to be verifiable....

e.g. in the cycle, we can check if all edges exist in G.

def $h \rightarrow$ encodings of all problems.

$S \rightarrow$ encodings of all outputs (correct or not).

Verifier $V : h \times S \rightarrow \{0, 1\}$.

$V(p, s) = 1$ if s is a solution to p

0 otherwise.
Connections betw
search & decision

\[\exists s \in V, (p,s) = 1 \implies A(p) = 1 \]

↓ existential

intuitively decisions are easier than searching

\[s : \text{solution/witness/certificate} \]

to help the verifier.

P : all decision problems solvable in polytime

NP : all decision problems verifiable in polytime

with a certificate

How is it same as non-deterministic?

Randomly generate a certificate.

if \(A(p) = 1 \implies \text{non-zero probability of generating correct certificate} \)

Open: \(P \overset{?}{=} NP \).

if we can verify fast, can we also solve it fast?
Why are problems hard?

when → more interesting.

E.g. 3-SAT

a formula

\((x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \land \ldots \)

Here we want to give assignments to variables to satisfy them.

A random assignment \(\sigma \): \(X \rightarrow \{0, 1\} \)
satisfies a clause with probability = \(\frac{7}{8} \)

Fact: No polynomial time algorithm is known to solve 3-SAT.

But: most 3-SAT formulas are easy to solve.

Intuition: the less number of formulas/variables ratio, the more likely to satisfy random assignments by the larger the ratio \(\Rightarrow \) more overlap between formulas \(\Rightarrow \) harder to satisfy everyone.
Example: consider sparse cases.
i.e. \# clauses = \alpha \cdot \# variables
\[m = \alpha \cdot n \]
\[\Sigma \geq \# assignments which satisfy the formula. \]

we want to find \(\alpha \) such that
with high probability the clause is unsatisfiable.
i.e. we want to show that \(\Pr (Z > 0) \) is low.

Markov
\[\Pr (Z > 1) \leq \frac{E[Z]}{1} \]
\[\Rightarrow \Pr (Z > 0) \leq E[Z] \]

\[E[Z] = \sum_{\text{assignment}} E[1_{0}] \]

\(1_{0} \) := indicator of whether \(\sigma \) satisfies the formula.

\[E[1_{0}] = \Pr (\sigma \text{ satisfying}) \]
\[= \frac{m}{n} \Pr (\sigma \text{ satisfies clause } i) = \prod_{i=1}^{m} 7/8 \]
\[= (7/8)^m \]
\[E[z] = \sum_0^\infty (7/8)^m \]

\[= 2^m \cdot (7/8)^m \]

\[= \left[2 \cdot (7/8)^{\alpha} \right]^m \]

Now \(2 \cdot (7/8)^{\alpha} \leq 1 \Rightarrow \Pr(Z > u) \to 0 \) as \(m \to \infty \)

\[\Rightarrow \text{take } \alpha = \log_{7/8} 2 \approx 5.2 \]

So, if we have more than \(\alpha = 5.2 \) clauses to variables ratio, we probably won't satisfy the formula.

This bound is not tight.

We can refine it more by using Chebyshev's inequality (not for today).

Also still need to prove other way...
A lot of NP-problems in graphs become easier if you know the density of the graph.

E.g. independent set: low size if lots of edges.

Clique (complete subgraph): low size if less # edges.

etc.

How to give a probability distribution on graphs?

→ choose each graph with \(\frac{1}{2^\binom{n}{2}} \) probability.

Possible & horrible...

→ Very simple model by Erdős Rényi.

→ Generative model.

"Create" a graph with a probability \(p \) on each edge → an edge is included with probability \(p \).
E-R graphs have a lot of “thresholding” properties, \(g(n, p) \to \text{random E-R graph on } n \) edges.

E.g. 1) if \(p > \frac{d \log n}{n} \), \(d \geq 1 \)
then \(\supset \) graph is connected
\[p < \frac{d \log n}{n} \quad \lambda < 1 \]
--- --- disconnected

2) \(np < 1 \) then \(\supset \) the largest connected component is \(O(\log n) \)
 (similar to depth of quicksort / quick select)

3) \(np = 1 \) --- of size \(n^{2/3} \)
 (edge case in previous proof).

etc. for giant components, eigenvalues, society detection.

Caveat: This is not the most ideal modeling of the real world, but it is very simple & enlightening.
Thus \(\text{let } p = \frac{d \log u}{n} \)

1) if \(d \gg 1+\varepsilon \) \(\Rightarrow \) \(G(n, p) \) is connected w.h.p.
2) if \(d \leq 1-\varepsilon \) \(\Rightarrow \) \(G(n, p) \) is disconnected w.h.p.

Proof of 2.

Let \(I_i \) \(\rightarrow \) indicator for node \(i \) being isolated

\[
I = \sum_{i=1}^{n} I_i \rightarrow \text{# of isolated nodes.}
\]

\[
\Pr(I_i = 1) = (1-p)^{n-1} \approx e^{-pn} = e^{-d \log u} - d
\]

\[
\Rightarrow \mathbb{E}[I] = \sum \mathbb{E}[I_i]
\]

\[
= u \cdot u^{-d} = u^{1-d} \rightarrow \infty \quad \text{as } n \rightarrow \infty \text{ because } d < 1
\]

But this is not enough

need \(\Pr(I = 0) \rightarrow 0 \text{ as } n \rightarrow \infty \)

\[
\Rightarrow \Pr(I = 0) \leq \Pr\left(\left|I - \mathbb{E}[I]\right| \geq \mathbb{E}[I]\right)
\]

\[
\leq \frac{\text{Var}(I)}{\mathbb{E}[I]^2} \leq \frac{\mathbb{E}[I]}{\mathbb{E}[I]^2}
\]

\[
\rightarrow 0 \quad \text{as } n \rightarrow \infty
\]
with high probability graph is disconnected

Proof of 1)

\[E[I] = n^{1-\lambda} \to 0 \quad \text{as} \quad n \to \infty \quad \text{if} \quad \lambda > 1 \]

\(\Rightarrow \) graph is connected (even though there are no isolated nodes, we could have a forest).

if disconnected then we have a set of \(k \) nodes

\(\Rightarrow \) they are not connected to the rest of \(n-k \) nodes.

let \(D_k \) be the event that there are \(k \) such nodes

\[\Pr(D_k = 1) = \frac{\binom{n}{k}}{\binom{n}{k}} (1-p)^k \]

\(\Rightarrow \) \(D = \sum D_k \) := event that graph is disconnected

\(\Rightarrow \) \(\Pr(D > 0) \leq E[D] \)

\[= \sum_{k=1}^{n^2} \frac{\binom{n}{k}}{\binom{n}{k}} (1-p)^k (n-k) \]

\[\to 0 \quad \text{as} \quad n \to \infty \quad \text{(proof is unimportant)} \]

"math"...
Importance of phase transitions:

- Designing AI systems:
 - When do the "Heuristics" used by the system guarantee an answer?
 - Experimental evidence for finding thresholds to complement "paper work".

- A lot of models need to be updated constantly
 - How much do current models capture...

- What things don't change after certain stage?
 - E.g. if you have a lot of constraints in 3 SAT, a lot of variables will share the same value across solutions.