Minimum Spanning Tree

Given G, an undirected, weighted graph, a spanning tree $T \subseteq G$ is a connected tree on V.

Weight of a tree: $\sum_{e \in T} \omega(e)$

Given G, find a spanning tree with minimum weight.

E.g.

Not unique.
Prim's Algorithm (1930 → 1957).
Sornik → Prim.

Algorithm

1) Start from an empty set of vertices: S.
2) Choose a random root & add it to S.
3) Start growing a tree from S by adding the least weighted edge going out of S.

E.g.,

- Choose A as root.

![Diagram of Prim's Algorithm example](image-url)
for $v \in V$
\[H[v] = \infty \]
(H is a priority queue with change operations).
\[S = \emptyset, \quad \pi[v] = -1 \]
\[H[v] = 0 \] for some random v.

while ($S \neq \emptyset$)
\[\nu = H.\text{deleteMin}() \]
\[S.\text{add}(\nu) \]
for each $\text{ubh of } \nu$
\[\text{if } H[\text{ubh}] > \omega(\nu, \text{ubh}) \]
\[H[\text{ubh}] = \omega(\nu, \text{ubh}) \]
\[\pi[\text{ubh}] = 0 \]

Running time analysis.

- each edge is examined once in the for loop.
 (twice when ubh is added).

- at each point, we set $H[\text{ubh}]$ which is a change operation in the heap.
 (also called decrease-key) \(\rightarrow O(\log n) \).

- each vertex is added & deleted once from H.
\[n - O(\log n) \]
\[= O((n + m) \log n) \]
if we use a FibonacciHeap

\[T'(y) = O(n \log u + m) \]

(good for dense graphs).

Proof of correctness.

Suppose that \(T_p \) is the tree given by Prim's Algorithm & \(T_0 \) is another tree with \(\omega(T_0) \leq \omega(T_p) \).

Suppose the edges in \(T_p \) were added in the order
\[e_1, e_2, \ldots, e_{n-1} \]

As \(e_i \) is the first edge \(i, e_i \notin T_0 \), \(e_i = (x, y) \)

\(\Rightarrow \) \(T_0 \) is of the form

Suppose that in Prim's algorithm, \(x \in S \), \(y \notin S \).

then along the path \(x \leadsto v_1 \leadsto v_2 \cdots \leadsto v_k \leadsto y \)

\(\Rightarrow \) \(k \), \(k+1 \in S \), \(v_k \in S \), \(v_k+1 \notin S \)

(because \(S \) is a connected tree)
now in Prim's algorithm
we did not choose $v_x \rightarrow v_{x+1}$ over $x \rightarrow y$

$\Rightarrow \quad \omega(v_x, v_{x+1}) \geq \omega(x, y)$

if $\omega(v_x, v_{x+1}) > \omega(x, y)$
swap the edges in the tree T_0

i.e. remove $v_x \rightarrow v_{x+1}$

and insert $x \rightarrow y$

to get T_1'

T_1' is a tree, \mathcal{B} has smaller weight than T_0

$\Rightarrow \quad \omega(v_x, v_{x+1}) = \omega(x, y)$

we can swap x and keep the weight same.

Inductively we can change T_0 to T_p without changing the weight

$\Rightarrow \quad \omega(T_0) = \omega(T_p)$
Kruskal's Algorithm

1) Start with an empty set of vertices/edges.
2) Choose the minimum edge which joins two disconnected vertices & add it to the forest.

E.g.

- E:
 - A
 - B
 - C
 - D
 - E
 - F

- Diagram: Graph with edges connecting vertices.
operations needed

- find minimum edge [sort the edges]
- check if two vertices are in the same component.
- join two components.

For the last two operations, union-find data structure

Time complexity

- sorting $\rightarrow \mathcal{O}(m \log m)$
- find $\rightarrow \text{foreach edge} \rightarrow \mathcal{O}(m \text{find}(u))$
- join $\rightarrow n-1$ join operations $\rightarrow \mathcal{O}(n \text{join}(u))$

$\Rightarrow T(d) = \mathcal{O}(m \log m + m \text{find}(u) + n \text{join}(u))$

* Dijonct set forest (union-find with path compression)

 find(u), join$(u) = \mathcal{O}(\alpha(u))
 \quad \alpha(u) \leq \log(n)$

$\Rightarrow T(d) = \mathcal{O}(m \log n)$
Proof of correctness.

we only join components which are disconnected.

\Rightarrow we get a spanning tree T_k

Suppose that $\exists T_0 \ni \omega(T_0) \leq \omega(T_k)$

let the edges added in T_k be in order

e_1, e_2, \ldots, e_m

& let e_i be the first edge $\notin T_0$, $\forall e_i = (x,y)$

look at $T_0 \cup \{e_i\}$

\[
\begin{array}{c}
V_0 & \vdots & V_k \\
\hline
X & e_i & Y
\end{array}
\]

before adding e_i, in Kruskal, we would have added
any other edge e (including $v_j \rightarrow v_{j+1}$), if they were
of smaller weight ω unless they were in one component.

Get both cases:

1) x, v_i, \ldots, v_k, y are not all in the same
 component.

 (a) of the form $v_j \rightarrow v_{j+1}$ or $x \rightarrow v_i$ or $v_k \rightarrow y$

2) \exists edge $v_j \rightarrow v_{j+1}$ or $x \rightarrow v_i$ or $v_k \rightarrow y$

$\Rightarrow \omega(a,b) \leq \omega(e_i)$

By same argument as Prim's