Basic Algorithms - lec - 1

Course Overview:

- Programming assignments. (C++)
 - Efficient implementations.
 - Optimization of code.
 - Memory management.

- Problem Sets.
 - Rigorous proofs.
 - Proof writing techniques.
 - Algorithm Design

- Exam
 - Open notes (only written notes).
 - Ofc no internet access.

- Quiz
 - 2-3 small problems. (open notes)

Basic Outline:
- Solve lots of problems to analyze techniques.
- Different areas of algorithms design.
- Intro to mathematical techniques & theories.
What is an algorithm?

Any structured procedure with well-defined steps, which has some input and output.

What is it used for?

- Human genome project
 - Aligning DNA, identifying mutations/SNP/indel
 - Translocation
- Internet routing / secure encryption
 - Sending packets (finding path to destination)
 - How to encrypt / decrypt them
- Signal processing
 - Making music into digital signals 128 Kbps
 - Discretizing from continuous back
 - Loss of compression (JPEG)
 - No lossy PNG
 - Different ones
Appointment Scheduling:

Problem
You are a secretary for a doctor, have to schedule appointments for the next month.
- maintain appointment times.
- after finishing remove from the pool.
- be able to add new appointments.
- if a new time is within 15 minutes of an appointment already booked, then it cannot be added.
- within 9:00 → 5:00 pm (last appointment tomorrow).

'ex.'

now today

11:00 11:30 12:00 12:15 12:35

12:30 → not allowed.
12:50 → allowed.
11:45 → allowed.

Can implement using sorted / unsorted list:

insertion O(n) O(1)
deletion O(n) O(1)
lookup O(log n) O(n)
Binary Search Trees:

Search Trees → Terminology:
- Node
- Children
- Descendants
- Ancestor
- Leaf
- Parent
- Different kinds: upper, lower
- Look-up
- Insertion
- Deletion
- Needs a searching property

Binary:
- Each node only has two children
 - Left, Right

BST Property:

∀ x ∈ BST
∀ y ∈ x. left subtree.

∀ y ∈ x. key ≤ y. key.

∀ y ∈ x. right subtree.

y. key ≥ x. key

```
11:30
11:00  12:15
  12:00  12:35
```
making a BST.

- 11:00
- 12:15
- 12:00
- 12:35

- 11:30

 gives the previous example.

- insert depends on height.

- how to search?

- depends on height.

- Every operation depends on the height of the tree.

- need to keep the height small.

- (If we insert in increasing order.)
AVL Trees:

named after György Andelston-Velsky B.

Evgenii Landis, in 1962.

example of a self-balancing BST.

Keeps the height of the tree small.

- we need extra properties to ensure this.

\[\text{height of left node} \leq 1 \]

\[\text{height of right node} \leq 1 \]

\[
\begin{align*}
h - 2 & \quad | \quad h - 1 \quad | \quad h \\
\end{align*}
\]

\[n_h \geq 1 + n_{h-1} + n_{h-2} \]

\[\geq 1 + 2n_{h-2} \]

\[n_h \geq 2n_{h-2} \]

\[n_h \geq \frac{h}{2} \]

\[h \leq 2 \log_2 n_h \]
need to keep this invariant true for every insertion / deletion.

Right Rotate(x) →

Left Rotate(y)

we assume x is not balanced.

Case 1

$h + 1 < h - 1$

$h < h - 1 / h$

right rotate (x)

$y → h+1 / h+2$

$y → h/h+1$ balanced!
Case 2.

just right rotate doesn't work.

we need to go deeper!

R^{-1}/R^{-2}. (one of them is R^{-1}). could be both.
left rotate (Y).

Right rotate (X).

Conclusion:
we can maintain BST invariants.

⇒ BST has height \(\leq 2 \log_2 n \)

⇒ every operation can be done \(\leq 2 \log_2 n \) time.
Deletions
A tiny bit more complicated.

Steps.
1. Find the node to be deleted, X.

2. Swap X with minimum node of B or maximum node of A.
 (Edge case, don’t need to worry)
 (What happens if one of the children is empty?)

3. Now remove the leaf containing X.
 & balance up the tree up to the root.

(Tiny change, X might not be a leaf.)
In this case move the subtree up one level.
more operations.

1) closest upper closest.
2) closest lower.

- solving appointment scheduling
 - when appointment finishes remove from tree
 - find closest & check for overlap
 - if no overlap you can insert.

more variations
- 2-3 tree
- Red black tree
- a-b tree
- splay tree
- B-tree
other problems solving using BST.
 * Dictionary implementation. Also uses hash-maps.
 * C++ -> ordered map
 (uses red-black tree).

Augmentation

Store more information in each node:
 types of augmentation.
 → storing size of tree, (at each node)
 → storing min/max of tree, (at each node)
 → other info like booleans / AP/CAP, etc.

Size augmentation

At each node store number of nodes in the whole subtree.

\[
x.\text{size} = y.\text{size} + z.\text{size} + 1.
\]
Uses:
- find k^{th} element in tree
- for any query, find number of elements less than (greater) query

no need to have $B & T \leq$ node. key
property. only do insertion, deletion by position. (this acts as a list interface).
with fast API.

min-max Range update

Problem:
insert (k, v_{ai}) - $O(\log n) \leq 2 \log n$
query (k) - $O(\log n) \leq 2 \log n$
add (a, b, v) - $\leq n$

naive is too slow.

range update can be made faster by augmenting nodes with a carry value.

add extra value node. carry.
$x \cdot \text{carry} = v$

\[X \]

\[A \quad B \]

\Rightarrow every value in the tree has increased by v.

don't have to individually go to each node to increase the value. (how to query?).

how to update using this?

write update function for a node

update (node, a, b, v).

three cases.

1) if the range of the subtree is fully within $[a, b]$, then add v to node carry.

2) if range is fully disjoint, don't need to do anything.

3) else there is a partial intersection. then do the update for left child, right child, & if necessary update node value.
Pseudocode

update (node, a, b, v) {
 if node is NULL
 return
 elif node range \subseteq [a, b]
 node.carry += v.
 elif node range \cap [a, b] = \emptyset
 do nothing.
 else
 update (node.left, a, b, v)
 update (node.right, a, b, v)
 if node.key \in [a, b]
 node.value += v.
}
Complexity:

![Tree Diagram]

- The recursive call will never go down the nodes which are shaded.

Hence we have two paths, potentially going down to some leaves, of height \(\leq 2 \log n \).

1) For each node on this path we have to update, at most one child. (Which is in the interior), & do one recursive call.

2) We might have to update points on the paths as well.

Hence a total of \(\leq 4 \log n \) nodes per path.

\[\Rightarrow \text{Total number of updated nodes} \leq 8 \log n. \]
Points to note:
what if you do an insert on an range which had a value added to it?

- naive insertion results in extra value to new key.
- Path clearing.

push down the value of the carry to the children on the path to the inserted key.

```
push down (node).
    node. left. carry += node. carry
    node. value += node. carry
    node. carry = 0.
```
Ex. See that rotate (right/left) still preserves the cleared path to the new key.

Similar work for delete.
- when you go to find min/max & do a swap, keep doing a pushdown for each node on the path to min/max.