Recall: Random variables

Random variable X taking its values in the domain Ω.

- if $\Omega \subseteq \mathbb{N}$, X is discrete
- if $\Omega \subseteq \mathbb{R}$, X is continuous
Recall: Random variables

Random variable X taking its values in the domain Ω.

- if $\Omega \subseteq \mathbb{N}$, X is **discrete**
 the set of events is $\mathcal{P}(\Omega)$

- if $\Omega \subseteq \mathbb{R}$, X is **continuous**
 the set of events is the set of all subsets of Ω that are a union or intersection of any number of intervals of Ω.

Sometimes the distribution of X is called “law” of X.
Recall: Random variables

Random variable X taking its values in the domain Ω.

- if $\Omega \subseteq \mathbb{N}$, X is discrete
 the set of events is $\mathcal{P}(\Omega)$

- if $\Omega \subseteq \mathbb{R}$, X is continuous
 the set of events is the set of all subsets of Ω that are a union or intersection of any number of intervals of Ω.

- the distribution of X is the function: A event $\mapsto P(X \in A) \in [0,1]$.

Sometimes the distribution of X is called “law” of X.
Recall: Random variables

Random variable X taking its values in the domain Ω.

- if $\Omega \subseteq \mathbb{N}$, X is discrete
 the set of events is $\mathcal{P}(\Omega)$

- if $\Omega \subseteq \mathbb{R}$, X is continuous
 the set of events is the set of all subsets of Ω that are a union or intersection of any number of intervals of Ω.

- the distribution of X is the function: A event $\mapsto P(X \in A) \in [0, 1]$
 if X is discrete, it is characterized by the function:

 $$ t \in \Omega \mapsto P(X = t) $$

 if X is continuous, we saw that $\forall t \in \Omega, P(X = t) = 0$

Sometimes the distribution of X is called “law” of X.

Recall: Random variables

Discrete random variable X taking its values in the domain Ω.

- **Expected value, or mean of X:**

$$\text{Exp}(X) = \sum_{v \in \Omega} v \cdot P(X = v)$$

(\textit{Exp}(X) is the center of the distribution of X)

- if $\mu = \text{Exp}(X)$ is finite, the **variance** of X is:

$$\text{Var}(X) = \text{Exp}((X - \mu)^2) = \sum_{v \in \Omega} P(X = v).(v - \mu)^2$$

- if $\text{Exp}(X)$ is finite, the **standard deviation** of X is:

$$\text{Std}(X) = \sqrt{\text{Var}(X)}$$

(\textit{Std}(X) is the spread around the center)
Recall: Random variables

Discrete random variable

Theorem (Thm 9.8 of the textbook and more)

Let X and Y be two discrete random variables with finite expected values, and $a \in \mathbb{R}$. Then:

(i) $\text{Exp}(X + Y) = \text{Exp}(X) + \text{Exp}(Y)$, and

(ii) $\text{Exp}(aX) = a\text{Exp}(X)$,

(iii) $\text{Exp}(a + X) = a + \text{Exp}(X)$.

Theorem (Thms 9.9, 9.12 of the textbook)

Let X and Y be two independent discrete random variables with finite expected values. Then:

(iv) $\text{Exp}(X \cdot Y) = \text{Exp}(X)\text{Exp}(Y)$, and

(v) $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$.

(Let X, Y be two independent random variable. What can you say about $\text{Var}(X - Y)$?)
Recall: Random variables

Exercise:
Let \(X \) and \(Y \) be two numerical random variables such that
\[\text{Exp}(X) = 1, \text{Var}(X) = 4, \text{Exp}(Y) = 3, \text{Var}(Y) = 1. \]

A. What is the value of \(\text{Exp}(2X + 3) \)?

B. What is the value of \(\text{Var}(2X + 3) \)?

C. What is the value of \(\text{Std}(2X + 3) \)?

D. Consider the equation \(\text{Exp}(2X + 3Y) = 2\text{Exp}(X) + 3\text{Exp}(Y) \). Does this hold (a) always; (b) if \(X \) and \(Y \) are independent, but not necessarily otherwise; (c) not necessarily even if \(X \) and \(Y \) are independent?

E. Consider the equation \(\text{Var}(2X + 3Y) = 4\text{Var}(X) + 9\text{Var}(Y) \). Does this hold (a) always; (b) if \(X \) and \(Y \) are independent, but not necessarily otherwise; (c) not necessarily even if \(X \) and \(Y \) are independent?
Recall: Random variables, discrete distribution

The discrete uniform distribution: \(\Omega \) is finite, let \(\Omega = \{1, \ldots, N\} \)

- \(\forall w \in \Omega, P(X = \omega) = \frac{1}{N} \)
- \(\text{Exp}(X) = \frac{N+1}{2} \)
- \(\text{Var}(X) = \) (exercise)

(example: we roll a fair die)
Recall: Random variables, discrete distribution

The discrete uniform distribution: \(\Omega \) is finite, let \(\Omega = \{1, \ldots, N\} \)

- \(\forall w \in \Omega, P(X = \omega) = \frac{1}{N} \)
- \(\text{Exp}(X) = \frac{N+1}{2} \)
- \(\text{Var}(X) = ? \) (exercise)

The discrete uniform distribution (2): \(\Omega \) is finite, let \(\Omega = \{a, \ldots, b\} \)

- \(P(X = \omega) = \frac{1}{b-a+1} \)
- \(\text{Exp}(X) = \frac{a+b}{2} \)
- \(\text{Var}(X) = ? \) (exercise)

(example: we roll a fair die)
Recall: Random variables, discrete distribution

The Bernoulli distribution: depends on a parameter $p \in [0, 1]$. $\Omega = \{0, 1\}$

- $P(X = 0) = (1 - p)$, $P(X = 1) = p$
- $Exp(X) = p$
- $Var(X) = p(1 - p)$

(example: we flip a weighted coin with weight p)
Recall: Random variables, discrete distribution

The Bernoulli distribution: depends on a parameter \(p \in [0, 1] \). \(\Omega = \{0, 1\} \)

- \(P(X = 0) = (1 - p) \), \(P(X = 1) = p \)
- \(\text{Exp}(X) = p \)
- \(\text{Var}(X) = p(1 - p) \)

(example: we flip a weighted coin with weight \(p \))

The binomial distribution: depends on two parameters \(n \) and \(p \). \(\Omega = \{0, 1, ..., n\} \)

- for any \(k \in \Omega \), \(P(Y = k) = C(n, k)p^k(1 - p)^{n-k} \).
- \(\text{Exp}(X) = np \)
- \(\text{Var}(X) = np(1 - p) \)

(example: we flip \(n \) times a weighted coin with weight \(p \))
3/ Continuous random variables

Let X be a continuous variable with values in $\Omega \subseteq \mathbb{R}$.

Recall: the event of Ω are the intersections/unions of intervals of Ω.

Example 6:

Experience: We pick up a number in the interval $[a, b]$; we suppose that each element has the same likelihood to appear.

Random variable: X

Domain: $\Omega = [a, b]$.

Distribution: How to characterize $P(X \in A)$, for an event A of Ω

Intuition: What is $P(X \leq b)$? What is $P(X \leq a + b - a)$? What is $P(X \leq a + b - a^2)$? What is $P(X \leq a + 3b - a^4)$? What is \ldots What is $P(X \leq \omega)$?

\Rightarrow Cumulative distribution function
Continuous random variables

Let X be a continuous variable with values in $\Omega \subseteq \mathbb{R}$.

Recall: the event of Ω are the intersections/unions of intervals of Ω.

Example 6:
Experience: We pick up a number in the interval $[a, b]$; we suppose that each element has the same likelihood to appear.
Random variable: X
Domain: $\Omega = [a, b]$.
Distribution: How to characterize $P(X \in A)$, for an event A of Ω
3/ Continuous random variables

Let X be a continuous variable with values in $\Omega \subseteq \mathbb{R}$.

Recall: the event of Ω are the intersections/unions of intervals of Ω.

Example 6:
Experience: We pick up a number in the interval $[a, b]$; we suppose that each element has the same likelihood to appear.
Random variable: X
Domain: $\Omega = [a, b]$.
Distribution: How to characterize $P(X \in A)$, for an event A of Ω

Intuition:
What is $P(X \leq b)$?
3/ Continuous random variables

Let X be a continuous variable with values in $\Omega \subseteq \mathbb{R}$.

Recall: the event of Ω are the intersections/unions of intervals of Ω.

Example 6:

Experience: We pick up a number in the interval $[a, b]$; we suppose that each element has the same likelihood to appear.

Random variable: X

Domain: $\Omega = [a, b]$.

Distribution: How to characterize $P(X \in A)$, for an event A of Ω

Intuition:

What is $P(X \leq b)$?

$P(X \leq a + \frac{b-a}{2})$?
3/ Continuous random variables

Let X be a continuous variable with values in $\Omega \subseteq \mathbb{R}$.

Recall: the event of Ω are the intersections/unions of intervals of Ω.

Example 6:

Experience: We pick up a number in the interval $[a, b]$; we suppose that each element has the same likelihood to appear.

Random variable: X

Domain: $\Omega = [a, b]$.

Distribution: How to characterize $P(X \in A)$, for an event A of Ω.

Intuition:

- What is $P(X \leq b)$?
- $P(X \leq a + \frac{b-a}{2})$?
- $P(X \leq a + \frac{b-a}{4})$?

![Diagram](image)
3/ Continuous random variables

Let X be a continuous variable with values in $\Omega \subseteq \mathbb{R}$.

Recall: the event of Ω are the intersections/unions of intervals of Ω.

Example 6:
Experience: We pick up a number in the interval $[a, b]$; we suppose that each element has the same likelihood to appear.
Random variable: X
Domain: $\Omega = [a, b]$.
Distribution: How to characterize $P(X \in A)$, for an event A of Ω

Intuition:
What is $P(X \leq b)$?
$P(X \leq a + \frac{b-a}{2})$?
$P(X \leq a + \frac{b-a}{4})$?
$P(X \leq a + 3\frac{b-a}{4})$?
3/ Continuous random variables

Let X be a continuous variable with values in $\Omega \subseteq \mathbb{R}$.

Recall: the event of Ω are the intersections/unions of intervals of Ω.

Example 6:
Experience: We pick up a number in the interval $[a, b]$; we suppose that each element has the same likelihood to appear.

Random variable: X

Domain: $\Omega = [a, b]$.

Distribution: How to characterize $P(X \in A)$, for an event A of Ω

Intuition:
What is $P(X \leq b)$?
$P(X \leq a + \frac{b-a}{2})$?
$P(X \leq a + \frac{b-a}{4})$?
$P(X \leq a + 3\frac{b-a}{4})$?
...
3/ Continuous random variables

Let X be a continuous variable with values in $\Omega \subseteq \mathbb{R}$.

Recall: the event of Ω are the intersections/unions of intervals of Ω.

Example 6:

Experience: We pick up a number in the interval $[a, b]$; we suppose that each element has the same likelihood to appear.

Random variable: X

Domain: $\Omega = [a, b]$.

Distribution: How to characterize $P(X \in A)$, for an event A of Ω

Intuition:

What is $P(X \leq b)$?

$P(X \leq a + \frac{b-a}{2})$?

$P(X \leq a + \frac{b-a}{4})$?

$P(X \leq a + 3\frac{b-a}{4})$?

\cdots

$P(X \leq \omega)$?

\Rightarrow Cumulative distribution function
Cumulative distribution function: definition

Let X be a continuous variable with values in $\Omega \subseteq \mathbb{R}$.

Definition (def 9.15 of the textbook)

The *cumulative distribution function* for X is a function $c : \Omega \rightarrow [0, 1]$ s.t.:

- $\forall t \in \Omega$, $P(X \leq t) = P(X < t) = c(t)$,
- if $t_1 \leq t_2$, then $c(t_1) \leq c(t_2)$, (*c is monotonically non decreasing*)
- $\forall 0 < v < 1$, there exists t s.t. $c(t) = v$.

Left: $c(t) = \frac{t-a}{b-a}$. Right: $c(t) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{t} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$, $\mu = 80$ and $\sigma = 15$.
Cumulative distribution function: definition

Let X be a continuous variable with values in $\Omega \subseteq \mathbb{R}$.

Definition (def 9.15 of the textbook)

The *cumulative distribution function* for X is a function $c : \Omega \rightarrow [0, 1]$ s.t.:

- $\forall t \in \Omega, P(X \leq t) = P(X < t) = c(t)$,
- if $t_1 \leq t_2$, then $c(t_1) \leq c(t_2)$, (*c is monotonically non decreasing*)
- $\forall 0 < v < 1$, there exists t s.t. $c(t) = v$.

Let $[u, v]$ be an interval of Ω and c be the cdf of X. Then:

$$P(X \in [u, v]) = c(v) - c(u)$$

Because: $P(X \leq v) = P((X < u) \cup (u \leq X \leq v))$

$$= P(X < u) + P(X \in [u, v])$$
Cumulative distribution function: Example

Let X be a random variable on $\Omega = [a, b]$, with the cdf:

$$c(t) = \frac{t - a}{b - a}$$

Let A_1 be the interval $A_1 = [a_1, b_1]$. Then:

$$P(X \in A_1) = \frac{b_1 - a}{b - a} - \frac{a_1 - a}{b - a} = \frac{b_1 - a_1}{b - a}$$

Let A_2 be the interval $A_2 = [a_2, b_2]$, s.t. $b_2 - a_2 = b_1 - a_1$. Then:

$$P(X \in A_1) = P(X \in A_2).$$
Probability density function: definition

Let X be a continuous variable with values in $\Omega \subseteq \mathbb{R}$, with cdf c.

Definition (def 9.17 of the textbook)

If c is piecewise differentiable then $c'(t)$ is called the *probability density function* (pdf) of X.

We note $\tilde{P}(X = t)$ the value of the pdf of X at t. We call it *probability density at t*.

Formally:

$$\tilde{P}(X = t) = \lim_{u \to t, \epsilon \to 0^+} \frac{P(u < X < u + \epsilon)}{\epsilon} = \frac{d}{dt} P(X \leq t)$$

($\tilde{P}(X = t)$ is the probability that X lies in an interval around t getting as small as possible, or infinitely small)
Probability density function: Example

Let X be a random variable on $\Omega = [a, b]$, with the cdf:

$$c(t) = \frac{t - a}{b - a}$$

Then:

$$\forall t \in \Omega, \tilde{P}(X = t) = c'(t) = \frac{1}{b - a}$$

the probability density is $1/(b - a)$ at any t: each element of Ω has the same likelihood to appear.
Probability density function: Example

Let X be a random variable on $\Omega = [a, b]$, with the cdf:

$$c(t) = \frac{t - a}{b - a}$$

Then:

$$\forall t \in \Omega, \tilde{P}(X = t) = c'(t) = \frac{1}{b - a}$$

the probability density is $1/(b - a)$ at any t: each element of Ω has the same likelihood to appear.

Example 6: Experience: We pick up randomly a real number in the interval $[a, b]$; we suppose that each element has the same likelihood to appear. Random variable: X takes the value of the number picked up randomly. Domain: $\Omega = [a, b]$, it is an interval of \mathbb{R}. Distribution:

cdf: $P(X \leq t) = \frac{t - a}{b - a}$

pdf: $\tilde{P}(X = t) = \frac{1}{b - a}$
Probability density function

Recall: the events of $\Omega \subseteq \mathbb{R}$ are the union or intersections of intervals of Ω

Theorem (thm 9.18)

Let X be a random variable on Ω, and E be a event of Ω. Then

$$P(X \in E) = \int_E \tilde{P}(X = t)dt$$

(analogous to the discrete case, but the sums is now an integral)
3.1/ Joint density function and independence

Let X, Y be two continuous random variables on Ω_X, Ω_Y.

We define the joint probability density of X, Y as

$$\tilde{P}(X = t, Y = u) = \lim_{v \to t, w \to u, \epsilon \to 0^+} P((v \leq X \leq v + \epsilon) \cap (w \leq Y \leq w + \epsilon)) / \epsilon^2$$

where P is the joint distribution of X, Y if this limit exists.

One can extend this definition to a finite set of random variables;

Theorem (thm 9.25)

Suppose that the joint probability density of X and Y exists. X and Y are independent if $\forall t \in \Omega_X, \forall u \in \Omega_Y,$

$$\tilde{P}(X = t, Y = u) = \tilde{P}(X = t).\tilde{P}(Y = u)$$
3.2/ Conditional probability

Let X, Y be two continuous random variables on Ω_X, Ω_Y, such that the joint probability density of X, Y exists.

The \textit{conditional density probability of X knowing Y} is defined as

$$\tilde{P}(X = t|Y = u) = \frac{\tilde{P}(X = t, Y = u)}{\tilde{P}(Y = u)}$$
3.3/ Marginal distribution

Let X, Y be two continuous random variables on Ω_X, Ω_Y, such that the joint probability density of X, Y exists.

One has, for any $t \in \Omega_X$:

$$\tilde{P}(X = t) = \int_{\Omega_Y} \tilde{P}(X = t, Y = u)du$$

and for any $u \in \Omega_Y$

$$\tilde{P}(Y = u) = \int_{\Omega_X} \tilde{P}(X = t, Y = u)dt$$
3.4/ Expected value, variance, standard deviation

Let X be a continuous random variable on Ω.

The expected value, or mean, of X is

$$\text{Exp}(X) = \int_{\Omega} t \tilde{P}(X = t) dt$$
3.4/ Expected value, variance, standard deviation

Let X be a continuous random variable on Ω.

The expected value, or mean, of X is

$$\text{Exp}(X) = \int_{\Omega} t \tilde{P}(X = t) dt$$

it is not necessarily finite!

If $\text{Exp}(X)$ exists (i.e. is finite), the variance of X is

$$\text{Var}(X) = \int_{\Omega} (t - \text{Exp}(X))^2 \tilde{P}(X = t) dt$$

The standard deviation of X is $\sqrt{\text{Var}(X)}$.

In general, the expected value is noted μ and the standard deviation σ.
3.4/ Expected value, variance, standard deviation

Theorem (Thm 9.8’ of the textbook and more)

Let X and Y be two continuous random variables with finite expected values, and $a \in \mathbb{R}$. Then:

(i) $\text{Exp}(X + Y) = \text{Exp}(X) + \text{Exp}(Y)$, and
(ii) $\text{Exp}(aX) = a\text{Exp}(X)$,
(iii) $\text{Exp}(a + X) = a + \text{Exp}(X)$.

Theorem (Thms 9.9’, 9.12’ of the textbook)

Let X and Y be two independent continuous random variables with finite expected values. Then:

(iv) $\text{Exp}(X \cdot Y) = \text{Exp}(X) \cdot \text{Exp}(Y)$, and
(v) $\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$.
3.4/ Expected value, variance, standard deviation

Example 6: Experience: We pick up randomly a real number in the interval
\([a, b]\); we suppose that each element has the same likelihood to appear.
Random variable: \(X\) takes the value of the number picked up randomly.
Domain: \(\Omega = [a, b]\), it is an interval of \(\mathbb{R}\).
Distribution:
cdf: \(P(X \leq t) = \frac{t-a}{b-a}\)
pdf: \(\tilde{P}(X = t) = \frac{1}{b-a}\)

\[Exp(X) = \int_a^b t\tilde{P}(X = t)\,dt = \frac{1}{b-a} \int_a^b t\,dt = \frac{b^2-a^2}{2(b-a)} = \frac{b+a}{2}.\]
3.4/ Expected value, variance, standard deviation

Example 6: Experience: We pick up randomly a real number in the interval
$[a, b]$; we suppose that each element has the same likelihood to appear.

Random variable: X takes the value of the number picked up randomly.

Domain: $\Omega = [a, b]$, it is an interval of \mathbb{R}.

Distribution:

cdf: $P(X \leq t) = \frac{t-a}{b-a}$
dpdf: $\tilde{P}(X = t) = \frac{1}{b-a}$

$Exp(X) = \int_a^b t \tilde{P}(X = t) \, dt = \frac{1}{b-a} \int_a^b t \, dt = \frac{b^2-a^2}{2(b-a)} = \frac{b+a}{2}$.

$Var(X) = \int_a^b (t - Exp(X))^2 \tilde{P}(X = t) \, dt$

$= \int_a^b t^2 \tilde{P}(X = t) \, dt - 2Exp(X) \int_a^b t \tilde{P}(X = t) \, dt$

$+ Exp(X)^2 \int_a^b \tilde{P}(X = t) \, dt$

$= \frac{b^3-a^3}{3(b-a)} - 2\left(\frac{b+a}{2}\right)^2 + \left(\frac{b+a}{2}\right)^2 \frac{b-a}{b-a} = \ldots = \frac{(b-a)^2}{12}$
3.5/ Continuous distributions

The continuous uniform distribution: $\Omega = [a, b]$

- each t of Ω has the same density of probability
3.5/ Continuous distributions

The continuous uniform distribution: \(\Omega = [a, b] \)

- each \(t \) of \(\Omega \) has the same density of probability

Example 6: Experience: We pick up randomly a real number in the interval \([a, b]\); we suppose that each element has the same likelihood to appear.

Random variable: \(X \) takes the value of the number picked up randomly.

Domain: \(\Omega = [a, b] \), it is an interval of \(\mathbb{R} \).

Distribution:
- cdf: \(P(X \leq t) = \frac{t-a}{b-a} \)
- pdf: \(\tilde{P}(X = t) = \frac{1}{b-a} \)

\[
\begin{align*}
\text{Exp}(X) &= \frac{b+a}{2} \\
\text{Var}(X) &= \frac{(b-a)^2}{12}
\end{align*}
\]
3.5/ Continuous distributions

The continuous uniform distribution: \(\Omega = [a, b] \)

- each \(t \) of \(\Omega \) has the same density of probability

Example 6: Experience: We pick up randomly a real number in the interval \([a, b]\); we suppose that each element has the same likelihood to appear.

Random variable: \(X \) takes the value of the number picked up randomly.

Domain: \(\Omega = [a, b] \), it is an interval of \(\mathbb{R} \).

Distribution:
- cdf: \(P(X \leq t) = \frac{t-a}{b-a} \)
- pdf: \(\tilde{P}(X = t) = \frac{1}{b-a} \)

\(\text{Exp}(X) = \frac{b-a}{2} \)

\(\text{Var}(X) = \frac{(b-a)^2}{12} \)
3.5/ Continuous distributions

The Gaussian distribution: or normal distribution. Domain $\Omega = \mathbb{R}$.

Defined by two parameters:

- the mean μ
- the standard deviation σ

If X follows the Gaussian distribution of parameters μ and σ, then:

$$\tilde{P}(X = t) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

and the cdf is

$$P(X \leq t) = \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{t} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

By definition, the mean of X is μ and the standard deviation is σ.
3.5/ Continuous distributions

The Gaussian distribution: or normal distribution. Domain $\Omega = \mathbb{R}$. Defined by two parameters:

- the mean μ
- the standard deviation σ

If X follows the Gaussian distribution of parameters μ and σ, then:

$$
\tilde{P}(X = t) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(t-\mu)^2}{2\sigma^2}} = N_{\mu,\sigma}(t)
$$

and the cdf is

$$
P(X \leq t) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{t} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{t} N_{\mu,\sigma}(t) dt
$$

By definition, the mean of X is μ and the standard deviation is σ.

Example 7: The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean $\mu = 80$ kg and standard deviation $\sigma = 15$ kg.

Experience:

We pick up randomly a male inhabitant of Gotham and weight him. Random variable: X is the weight of the inhabitant picked up randomly. Domain: $\Omega = \mathbb{R}$.

$$
\tilde{P}(X = 90) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(90-\mu)^2}{2\sigma^2}} = \int_{-\infty}^{90} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx
$$

(use Matlab to compute this...)

$$
P(X \leq 90) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{90} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{90} N_{\mu,\sigma}(90) dt
$$

(How can we compute this???)
3.5/ Continuous distributions

The Gaussian distribution: or normal distribution. Domain $\Omega = \mathbb{R}$.
If X follows the Gaussian distribution of parameters μ and σ, then:

$$ \tilde{P}(X = t) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(t-\mu)^2}{2\sigma^2}} $$

and the cdf is

$$ P(X \leq t) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{t} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx $$

Example 7: The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean $\mu = 80$ kg and standard deviation $\sigma = 15$ kg.
Experience: We pick up randomly a male inhabitant of Gotham and weight him.
Random variable: X is the weight of the inhabitant picked up randomly.
Domain: $\Omega = \mathbb{R}$
3.5/ Continuous distributions

The Gaussian distribution: or normal distribution. Domain \(\Omega = \mathbb{R} \).
If \(X \) follows the Gaussian distribution of parameters \(\mu \) and \(\sigma \), then:

\[
\tilde{P}(X = t) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(t-\mu)^2}{2\sigma^2}}
\]

and the cdf is

\[
P(X \leq t) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{t} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx
\]

Example 7: The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean \(\mu = 80 \) kg and standard deviation \(\sigma = 15 \) kg.
Experience: We pick up randomly a male inhabitant of Gotham and weight him.
Random variable: \(X \) is the weight of the inhabitant picked up randomly.
Domain: \(\Omega = \mathbb{R} \)

\[
\tilde{P}(X = 90) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(90-\mu)^2}{2\sigma^2}} = 0.023. \text{ (use Matlab to compute this...)}
\]
3.5/ Continuous distributions

The Gaussian distribution: or normal distribution. Domain $\Omega = \mathbb{R}$.
If X follows the Gaussian distribution of parameters μ and σ, then:

$$\tilde{P}(X = t) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

and the cdf is

$$P(X \leq t) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{t} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx$$

Example 7: The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean $\mu = 80$ kg and standard deviation $\sigma = 15$ kg.
Experience: We pick up randomly a male inhabitant of Gotham and weight him.
Random variable: X is the weight of the inhabitant picked up randomly.
Domain: $\Omega = \mathbb{R}$

$$\tilde{P}(X = 90) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(90-\mu)^2}{2\sigma^2}} = 0.023. \text{ (use Matlab to compute this...)}$$

$$P(X \leq 90) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{90} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx \text{ (how can we compute this???)}$$
3.5/ Continuous distributions

The Gaussian distribution: or normal distribution. Domain $\Omega = \mathbb{R}$.

If X follows the Gaussian distribution of parameters μ and σ,
then:

$$\tilde{P}(X = t) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(t - \mu)^2}{2\sigma^2}} = 0.023.$$

(use MATLAB to compute this...)

$$P(X \leq 90) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{90} e^{-\frac{(x - \mu)^2}{2\sigma^2}} \, dx \text{ (how can we compute this???)}$$

Example 7: The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean $\mu = 80$ kg and standard deviation $\sigma = 15$ kg.

Experience: We pick up randomly a male inhabitant of Gotham and weight him.

Random variable: X is the weight of the inhabitant picked up randomly.

Domain: $\Omega = \mathbb{R}$

Left: the cdf of X, right: the pdf of X.

$\tilde{P}(X = 90) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(90 - \mu)^2}{2\sigma^2}} = 0.023.$ (use MATLAB to compute this...)

$P(X \leq 90) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{90} e^{-\frac{(x - \mu)^2}{2\sigma^2}} \, dx \text{ (how can we compute this???)}$
3.5/ Continuous distributions

The Gaussian distribution:

\[P(X \leq t) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{t} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx \] \(\text{(how can we compute this???)} \)
3.5/ Continuous distributions

The Gaussian distribution:
\[P(X \leq t) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{t} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx \] (how can we compute this???)

Theorem

If \(X \) *follows* \(N_{\mu,\sigma} \) *then* \(Y = \frac{X-\mu}{\sigma} \) *follows* \(N_{0,1} \).

Then \(P(X \leq t) = P(Y \leq \frac{t-\mu}{\sigma}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{t-\mu}{\sigma}} e^{-\frac{x^2}{2}} \, dx \)
3.5/ Continuous distributions

The Gaussian distribution:

\[P(X \leq t) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{t} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx \]

(how can we compute this???)

Theorem

If \(X\) *follows* \(N_{\mu,\sigma}\) *then* \(Y = \frac{X-\mu}{\sigma}\) *follows* \(N_{0,1}\).

Then \(P(X \leq t) = P\left(Y \leq \frac{t-\mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{t-\mu}{\sigma}} e^{-\frac{x^2}{2}} \, dx\)

If we know how to compute:

\[E(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{x^2}{2}} \, dx = \int_{-\infty}^{t} N_{0,1}(x) \, dx \]

we are all set!
3.5/ Continuous distributions

The Gaussian distribution:
\[P(X \leq t) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{t} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx \] (how can we compute this???)

Theorem

If \(X \) follows \(N_{\mu,\sigma} \) then \(Y = \frac{X-\mu}{\sigma} \) follows \(N_{0,1} \).

Then \(P(X \leq t) = P\left(Y \leq \frac{t-\mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{t-\mu}{\sigma}} e^{-\frac{x^2}{2}} \, dx \)

If we know how to compute:

\[E(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{x^2}{2}} \, dx = \int_{-\infty}^{t} N_{0,1}(x) \, dx \]

we are all set!

In Matlab: \(E(t) \) is obtained with \((1/2)*(1+erf(t/sqrt(2)))\).
3.5/ Continuous distributions

Example 7: The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean $\mu = 80$ kg and standard deviation $\sigma = 15$ kg.

Experience: We pick up randomly a male inhabitant of Gotham and weight him.

Random variable: X is the weight of the inhabitant picked up randomly.

Domain: $\Omega = \mathbb{R}$

$$\tilde{P}(X = 90) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(90-\mu)^2}{2\sigma^2}} = 0.023.$$ (use \textit{Matlab} to compute this...)

$$P(X \leq 90) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{90} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx$$ (how can we compute this???)

If we know how to compute $E(t)$: $P(X \leq t) = E\left(\frac{t-\mu}{\sigma}\right)$

In Matlab: \((1/2)*(1+\text{erf}\left((t-\mu)/(\text{sigma}\times\text{sqrt}(2))\right))\)

For instance, compute $P(85 \leq X \leq 90)$ as:

- $\mu = 80$;
- $\sigma = 15$;
- $$(1/2)*(1+\text{erf}\left((90-\mu)/(\text{sigma}\times\text{sqrt}(2))\right))$$
- $-(1/2)*(1+\text{erf}\left((85-\mu)/(\text{sigma}\times\text{sqrt}(2))\right))$$
3.6/ Baye’s law on an example:

Example 7:
The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean 80 kg and standard deviation 15 kg.

Example 8:
The weight of the female inhabitants of Gotham follows a Gaussian distribution of mean 75 kg and standard deviation 10 kg.

The sex G of the inhabitants of Gotham follows the Bernoulli law of parameter $p = 0.54$. (54% of the inhabitants are female).

Let Z be the weight of an inhabitant of Gotham picked up randomly. Determine the probability that this inhabitant is a male knowing its weight.
3.6/ Baye’s law on an example:

Example 7:
The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean 80 kg and standard deviation 15 kg.

Example 8:
The weight of the female inhabitants of Gotham follows a Gaussian distribution of mean 75 kg and standard deviation 10 kg.

The sex G of the inhabitants of Gotham follows the Bernoulli law of parameter $p = 0.54$. (54% of the inhabitants are female).

Let Z be the weight of an inhabitant of Gotham picked up randomly. Determine the probability that this inhabitant is a male knowing its weight.

Baye’s law:

$$\tilde{P}(G = 0 | Z = t) = \frac{\tilde{P}(Z = t | G = 0) \times P(G = 0)}{\tilde{P}(Z = t | G = 0) \times P(G = 0) + \tilde{P}(Z = t | G = 1) \times P(G = 1)}$$
3.6/ Baye’s law on an example:

Example 7:
The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean 80 kg and standard deviation 15 kg.

Example 8:
The weight of the the female inhabitants of Gotham follows a Gaussian distribution of mean 75 kg and standard deviation 10 kg.

The sex \(G \) of the inhabitants of Gotham follows the Bernoulli law of parameter \(p = 0.54 \). (54% of the inhabitants are female).

Let \(Z \) be the weight of an inhabitant of Gotham picked up randomly. Determine the probability that this inhabitant is a male knowing its weight.

Baye’s law:

\[
\tilde{P}(G = 0|Z = t) = \frac{\tilde{P}(Z = t|G = 0) \times P(G = 0)}{\tilde{P}(Z = t|G = 0) \times P(G = 0) + \tilde{P}(Z = t|G = 1) \times P(G = 1)}
\]
3.6/ Baye’s law on an example:

Example 7:
The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean 80 kg and standard deviation 15 kg.

Example 8:
The weight of the female inhabitants of Gotham follows a Gaussian distribution of mean 75 kg and standard deviation 10 kg.

The sex \(G \) of the inhabitants of Gotham follows the Bernoulli law of parameter \(p = 0.54 \). (54% of the inhabitants are female).

Let \(Z \) be the weight of an inhabitant of Gotham picked up randomly. Determine the probability that this inhabitant is a male knowing its weight.

Baye’s law:

\[
\tilde{P}(G = 0|Z = t) = \frac{\tilde{P}(Z = t|G = 0) \times 0.46}{\tilde{P}(Z = t|G = 0) \times 0.46 + \tilde{P}(Z = t|G = 1) \times 0.54}
\]
3.6/ Baye’s law on an example:

Example 7:
The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean 80 kg and standard deviation 15 kg.

Example 8:
The weight of the female inhabitants of Gotham follows a Gaussian distribution of mean 75 kg and standard deviation 10 kg.

The sex G of the inhabitants of Gotham follows the Bernoulli law of parameter $p = 0.54$. (54% of the inhabitants are female).

Let Z be the weight of an inhabitant of Gotham picked up randomly. Determine the probability that this inhabitant is a male knowing its weight.

Baye’s law:

$$\tilde{P}(G = 0|Z = t) = \frac{0.0161 \times 0.46}{0.0161 \times 0.46 + \tilde{P}(Z = t|G = 1) \times 0.54}$$

⇒ the inhabitant is probably a female!
3.6/ Baye’s law on an example:

Example 7:
The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean 80 kg and standard deviation 15 kg.

Example 8:
The weight of the female inhabitants of Gotham follows a Gaussian distribution of mean 75 kg and standard deviation 10 kg.

The sex G of the inhabitants of Gotham follows the Bernoulli law of parameter $p = 0.54$. (54% of the inhabitants are female).

Let Z be the weight of an inhabitant of Gotham picked up randomly. Determine the probability that this inhabitant is a male knowing its weight.

Baye’s law:

$$\tilde{P}(G = 0|Z = t) = \frac{0.0161 \times 0.46}{0.0161 \times 0.46 + 0.0242 \times 0.54} \approx 0.3617$$

⇒ the inhabitant is probably a female!
3.6/ Baye’s law on an example: Bayesian classifier

Example 7:
The weight of the male inhabitants of Gotham follows a Gaussian distribution of mean 80 kg and standard deviation 15 kg.

Example 8:
The weight of the female inhabitants of Gotham follows a Gaussian distribution of mean 75 kg and standard deviation 10 kg.

The sex G of the inhabitants of Gotham follows the Bernoulli law of parameter $p = 0.54$. (54% of the inhabitants are female).

Let Z be the weight of an inhabitant of Gotham picked up randomly. Determine the probability that this inhabitant is a male knowing its weight.

Baye’s law:

$$\tilde{P}(G = 0|Z = t) = \frac{0.0161 * 0.46}{0.0161 * 0.46 + 0.0242 * 0.54} \approx 0.3617$$

\Rightarrow the inhabitant is probably a female!
4/ Statistics
4.1/ Tschebyscheff’s inequality

Theorem (Thms 9.11 of the textbook)

Let X be a random variable with mean μ and standard deviation σ. Then for any $w > \sigma$, one has:

$$P(|X - \mu| \geq w) \leq \frac{\sigma^2}{w^2}$$

(if w is greater than the standard deviation σ, the probability that X is at a distance more than w from μ decreases at least as $\frac{\sigma^2}{w^2}$.)
4.1/ Tschebyscheff’s inequality

Theorem (Thms 9.11 of the textbook)

Let X be a random variable with mean μ and standard deviation σ. Then for any $w > \sigma$, one has:

$$P(|X - \mu| \geq w) \leq \frac{\sigma^2}{w^2}$$

Example 7:
The weight X of the male inhabitants of Gotham follows a Gaussian distribution of mean $\mu = 80$ kg and standard deviation $\sigma = 15$ kg.

- let $w_1 = 20$: the proba. that $X \leq \mu - w_1$ or $\mu + w_1 \leq X$ is less than

 $$\frac{15^2}{20^2} = \frac{225}{400} \sim \frac{1}{2}$$
4.1/ Tschebyscheff’s inequality

Theorem (Thms 9.11 of the textbook)

Let X be a random variable with mean μ and standard deviation σ. Then for any $w > \sigma$, one has:

$$P(|X - \mu| \geq w) \leq \frac{\sigma^2}{w^2}$$

Example 7:
The weight X of the male inhabitants of Gotham follows a Gaussian distribution of mean $\mu = 80$ kg and standard deviation $\sigma = 15$ kg.

- let $w_1 = 20$: the proba. that $X \leq \mu - w_1$ or $\mu + w_1 \leq X$ is less than
 $$\frac{15^2}{20^2} = \frac{225}{400} \sim \frac{1}{2}$$

- let $w_2 = 25$: the proba. that $X \leq \mu - w_2$ or $\mu + w_2 \leq X$ is less than
 $$\frac{15^2}{25^2} = \frac{225}{625} \sim \frac{1}{3}$$
4.2/ Fitting a distribution to a sample

Example 7:
The weight X of the male inhabitants of Gotham follows a Gaussian distribution of mean $\mu = ?$ kg and standard deviation $\sigma = ?$ kg.

You have a sample of inhabitants of Gotham; for each inhabitant in this sample you know its weight.
How to determine μ and σ?
4.2/ Fitting a distribution to a sample

Example 7:
The weight X of the male inhabitants of Gotham follows a Gaussian distribution of mean $\mu = ?$ kg and standard deviation $\sigma = ?$ kg.

You have a sample of inhabitants of Gotham; for each inhabitant in this sample you know its weight.
How to determine μ and σ?

Intuition:
Determine the mean and the standard deviation of the weights in the sample.
4.2/ Fitting a distribution to a sample

Example 7:
The weight X of the male inhabitants of Gotham follows a Gaussian distribution of mean $\mu = ?$ kg and standard deviation $\sigma = ?$ kg.

You have a sample of inhabitants of Gotham; for each inhabitant in this sample you know its weight.

How to determine μ and σ?

Intuition:
Determine the mean and the standard deviation of the weights in the sample.

Good news: this intuition is correct.
The problem is known as the Maximum Likelihood Estimation (MLE): see chapter 14 of the textbook for more details.
4.2/ Fitting a distribution to a sample

Example 8:
The sex G of the inhabitants of Gotham follows the Bernoulli law of parameter $p=?$.

You have a sample of inhabitants of Gotham; for each inhabitant in this sample you know its sex.
How to determine p?
4.3/ An application of statistics: polls

Problem:
We want to determine the fraction f of a population that prefers A to B.
4.3/ An application of statistics: polls

Problem:
We want to determine the fraction f of a population that prefers A to B.

Statistical approach:
f is a random variable taking values in $\Omega_f = \mathbb{R}$.
We want to determine:

- the law of f
- its mean \tilde{f}
- its standard deviation σ_f
4.3/ An application of statistics: polls

Problem:
We want to determine the fraction \(f \) of a population that prefers \(A \) to \(B \).

Statistical approach:
\(f \) is a random variable taking values in \(\Omega_f = \mathbb{R} \).
We want to determine:

- the law of \(f \)
- its mean \(\tilde{f} \)
- its standard deviation \(\sigma_f \)

We poll \(n \) individuals chosen randomly in the population.
Let \(X_1, \ldots, X_n \) be \(n \) independent discrete variables, taking value in domain \(\Omega_X = \{0, 1\} \), following the Bernoulli law of parameter \(\tilde{f} \).

\(X_i \) takes value 1 if the \(i \)-th individual prefers \(A \).
4.3/ An application of statistics: polls

Problem:
We want to determine the fraction \(f \) of a population that prefers \(A \) to \(B \).

Statistical approach:
\(f \) is a random variable taking values in \(\Omega_f = \mathbb{R} \).
We want to determine:

- the law of \(f \)
- its mean \(\tilde{f} \)
- its standard deviation \(\sigma_f \)

We poll \(n \) individuals chosen randomly in the population.
Let \(X_1, \ldots, X_n \) be \(n \) independent discrete variables, taking value in domain \(\Omega_X = \{0, 1\} \), following the Bernoulli law of parameter \(\tilde{f} \).

\(X_i \) takes value 1 if the \(i \)-th individual prefers \(A \).
4.3/ An application of statistics: polls

Let f be a random variable taking values in $\Omega_f = \mathbb{R}$. X_1, \ldots, X_n are n independent variables, taking values in $\Omega_X = \{0, 1\}$, following the Bernoulli law of parameter \tilde{f}.

Average of X_1, \ldots, X_n: We call

$$Y = \frac{X_1 + \ldots + X_n}{n}$$

the average of X_1, \ldots, X_n.

Theorem (Thm 9.13 of the textbook)

Let X_1, \ldots, X_n be n independent variables, each of which has mean μ and standard deviation σ. Let $Y = X_1 + \ldots + X_n$ be the average. Then

(a) $\mathbb{E}(Y) = \mathbb{E}(X_1) + \ldots + \mathbb{E}(X_n) = n \mu$;
(b) $\text{Var}(Y) = \text{Var}(X_1) + \ldots + \text{Var}(X_n) = \frac{\sigma^2}{n}$;
(c) $\text{Std}(Y) = \frac{\sigma}{\sqrt{n}}$.

Theorem (Central Limit Theorem; Thm 9.29 of the textbook)

Let X_1, \ldots, X_n be n independent variables, each of which has mean μ and standard deviation σ. Let $Y = X_1 + \ldots + X_n$ be the average. Then, when n grows, the law of Y converges to the Gaussian distribution of mean μ and standard deviation σ/\sqrt{n}.
4.3/ An application of statistics: polls

f is a random variable taking values in $\Omega_f = \mathbb{R}$.

X_1, \ldots, X_n are n independent variables, taking value in $\Omega_X = \{0, 1\}$, following the bernoulli law of parameter \tilde{f}.

Average of X_1, \ldots, X_n: We call

$$Y = \frac{X_1 + \ldots + X_n}{n}$$

the average of X_1, \ldots, X_n.

→ when n is the size of the population, $Y = f$!!!
→ Y converges to f
→ we use Y to estimate f
→ what can we say about the mean and standard dev. of Y?
4.3/ An application of statistics: polls

f is a random variable taking values in $\Omega_f = \mathbb{R}$.

X_1, \ldots, X_n are n independent variables, taking value in $\Omega_X = \{0, 1\}$, following the Bernoulli law of parameter \tilde{f}.

Theorem (Thm 9.13 of the textbook)

Let X_1, \ldots, X_n be n independent variables, each of which has mean μ and standard deviation σ. Let $Y = \frac{X_1 + \ldots + X_n}{n}$ be the average. Then

(a) $\text{Exp}(Y) = \frac{\text{Exp}(X_1) + \ldots + \text{Exp}(X_n)}{n} = \frac{n\mu}{n} = \mu$

(b) $\text{Var}(Y) = \text{Exp}(\left(\frac{X_1 + \ldots + X_n}{n} - \text{Exp}(Y)\right)^2) = \ldots = \frac{\sigma^2}{n}$

(c) $\text{Std}(Y) = \frac{\sigma}{\sqrt{n}}$
4.3/ An application of statistics: polls

f is a random variable taking values in $\Omega_f = \mathbb{R}$.

X_1, \ldots, X_n are n independent variables, taking value in $\Omega_X = \{0, 1\}$, following the bernoulli law of parameter \tilde{f}.

Average of X_1, \ldots, X_n: We call

$$Y = \frac{X_1 + \ldots + X_n}{n}$$

the average of X_1, \ldots, X_n.

\rightarrow when n is the size of the population, $Y = f$!!

\rightarrow Y converges to f

\rightarrow we use Y to estimate f

\rightarrow what can we say about the mean and standard dev. of Y?

\rightarrow $\text{Exp}(Y) = \tilde{f}$, $\text{Std}(Y) = \sqrt{\frac{\tilde{f}(1-\tilde{f})}{n}}$

\rightarrow what can we say about the law of f?
4.3/ An application of statistics: polls

\(f \) is a random variable taking values in \(\Omega_f = \mathbb{R} \).
\(X_1, \ldots, X_n \) are \(n \) independent variables, taking value in \(\Omega_X = \{0, 1\} \), following the bernoulli law of parameter \(\tilde{f} \).

Theorem (central limit theorem; Thm 9.29 of the textbook)

Let \(X_1, \ldots, X_n \) be \(n \) independent variables, each of which has mean \(\mu \) and standard deviation \(\sigma \). Let \(Y = \frac{X_1 + \ldots + X_n}{n} \) be the average. Thus the law of \(Y \), when \(n \) grows, converges to the gaussian distribution of mean \(\mu \) and standard deviation \(\frac{\sigma}{\sqrt{n}} \).

→ when \(n \) is the size of the population, \(Y = f!!! \)
→ \(Y \) converges to \(f \)
→ we use \(Y \) to estimate \(f \)
→ what can we say about the mean and standard dev. of \(Y \)?
→ \(\text{Exp}(Y) = \tilde{f}, \text{Std}(Y) = \frac{\sqrt{\tilde{f}(1-\tilde{f})}}{\sqrt{n}} \)
→ what can we say about the law of \(f \)?
4.3/ An application of statistics: polls

\(f \) is a random variable taking values in \(\Omega_f = \mathbb{R} \).
\(X_1, \ldots, X_n \) are \(n \) independent variables, taking value in \(\Omega_X = \{0, 1\} \), following the Bernoulli law of parameter \(\tilde{f} \).

\(\rightarrow \) estimate \(\tilde{f} \) on the sample.
4.3/ An application of statistics: polls

f is a random variable taking values in $\Omega_f = \mathbb{R}$.

X_1, \ldots, X_n are n independent variables, taking value in $\Omega_X = \{0, 1\}$, following the Bernoulli law of parameter \tilde{f}.

→ estimate \tilde{f} on the sample.

First conclusion: if n is sufficiently big:

- knowing \tilde{f} observed on the sample, f follows a Gaussian law of mean \tilde{f} and standard deviation $\sigma_f = \frac{\sqrt{\tilde{f}(1-\tilde{f})}}{\sqrt{n}}$, i.e.:

$$
\tilde{P}(f = t|\text{the poll}) = N_{\tilde{f}, \frac{\sqrt{\tilde{f}(1-\tilde{f})}}{\sqrt{n}}}(t)
$$

Then knowing \tilde{f} observed on the sample, the most probable value for f is $\text{Exp}(f) = \tilde{f}$.
4.3/ An application of statistics: polls

f is a random variable taking values in $\Omega_f = \mathbb{R}$.

X_1, \ldots, X_n are n independent variables, taking value in $\Omega_X = \{0, 1\}$, following the Bernoulli law of parameter $\tilde{\theta}$.

→ estimate $\tilde{\theta}$ on the sample.

First conclusion: if n is sufficiently big:

knowing $\tilde{\theta}$ observed on the sample, f follows a Gaussian law of mean $\tilde{\theta}$ and standard deviation $\sigma_f = \frac{\sqrt{\tilde{\theta}(1-\tilde{\theta})}}{\sqrt{n}}$, i.e.:

$$\tilde{P}(f = t | \text{the poll}) = N_{\tilde{\theta}, \frac{\sqrt{\tilde{\theta}(1-\tilde{\theta})}}{\sqrt{n}}}(t)$$

Then knowing $\tilde{\theta}$ observed on the sample, the most probable value for f is $\text{Exp}(f) = \tilde{\theta}$.

Second “conclusion”: Can we get a probabilistic estimate of the error?
4.4/ Confidence intervals

\(f \) is a random variable taking values in \(\Omega_f = \mathbb{R} \).
Its probability distribution knowing the poll follows a gaussian law of mean \(\tilde{f} \) and standard deviation \(\sigma_f = \frac{\sqrt{\tilde{f}(1-\tilde{f})}}{\sqrt{n}} \)

Definition (def 9.15 of the textbook)

Let \([t_1, t_2]\) be an interval in \(\Omega_f \), such that:

\[\tilde{P}(t_1 \leq f \leq t_2 | \text{the poll}) \geq 95\% \]

\([t_1, t_2]\) is called a confidence interval at the 95% level.

*(it means: knowing the poll, the probability that the true value for \(f \) is between \(t_1 \) and \(t_2 \) is more than 95%.)

*(it does not mean: the probability that the true value for \(f \) is between \(t_1 \) and \(t_2 \) is more than 95%.)
4.4/ Confidence intervals

f is a random variable taking values in $\Omega_f = \mathbb{R}$.
Its probability distribution knowing the poll follows a gaussian law of mean \tilde{f} and standard deviation $\sigma_f = \sqrt{\frac{\tilde{f}(1-\tilde{f})}{\sqrt{n}}}$

Problem: be given p find t_1, t_2 such that

$$\tilde{P}(t_1 \leq f \leq t_2 | \text{the poll}) = p$$

1. let $t_1 = \tilde{f} - q\sigma_f$ and $t_2 = \tilde{f} + q\sigma_f$
4.4/ Confidence intervals

f is a random variable taking values in $\Omega_f = \mathbb{R}$. Its probability distribution knowing the poll follows a gaussian law of mean \tilde{f} and standard deviation $\sigma_f = \sqrt{\frac{\tilde{f}(1-\tilde{f})}{n}}$

Problem: be given p find t_1, t_2 such that

$$\tilde{P}(t_1 \leq f \leq t_2 | \text{the poll}) = p$$

1. let $t_1 = \tilde{f} - q\sigma_f$ and $t_2 = \tilde{f} + q\sigma_f$
2. then $\tilde{P}(t_1 \leq f \leq t_2 | \text{the poll}) = P(-q \leq \frac{f-\tilde{f}}{\sigma_f} \leq q)$
 $$= E(q) - E(-q) = 2E(q) - 1$$

Recall: $E(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{t} N_{0,1}(x)dx$

In Matlab: $E(t) = (1/2)*(1+\text{erf}(t/\text{sqrt}(2)))$
4.4/ Confidence intervals

\(f \) is a random variable taking values in \(\Omega_f = \mathbb{R} \).
Its probability distribution \textit{knowing the poll} follows a gaussian law of mean \(\tilde{f} \) and standard deviation \(\sigma_f = \sqrt{\frac{\tilde{f}(1-\tilde{f})}{n}} \)

Problem: be given \(p \) find \(t_1, t_2 \) such that

\[
\tilde{P}(t_1 \leq f \leq t_2 | \text{the poll}) = p
\]

1. let \(t_1 = \tilde{f} - q\sigma_f \) and \(t_2 = \tilde{f} + q\sigma_f \)
2. then \(\tilde{P}(t_1 \leq f \leq t_2 | \text{the poll}) = P(-q \leq \frac{f-\tilde{f}}{\sigma_f} \leq q) = E(q) - E(-q) = 2E(q) - 1 \)
3. \(\tilde{P}(t_1 \leq f \leq t_2 | \text{the poll}) = p \iff E(q) = \frac{p+1}{2} \iff \text{erf}(q/sqrt(2)) = p \)

Recall: \(E(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{t} N_{0,1}(x) dx \)
In Matlab: \(E(t) = (1/2)*(1+\text{erf}(t/sqrt(2))) \)
4.4/ Confidence intervals

f is a random variable taking values in $\Omega_f = \mathbb{R}$.
Its probability distribution knowing the poll follows a gaussian law of mean \tilde{f} and standard deviation $\sigma_f = \frac{\sqrt{\tilde{f}(1-\tilde{f})}}{\sqrt{n}}$

Problem: be given p find t_1, t_2 such that

$$\tilde{P}(t_1 \leq f \leq t_2 | \text{the poll}) = p$$

1. let $t_1 = \tilde{f} - q\sigma_f$ and $t_2 = \tilde{f} + q\sigma_f$
2. then $\tilde{P}(t_1 \leq f \leq t_2 | \text{the poll}) = P(-q \leq \frac{f - \tilde{f}}{\sigma_f} \leq q)$
 $$= E(q) - E(-q) = 2E(q) - 1$$
3. $\tilde{P}(t_1 \leq f \leq t_2 | \text{the poll}) = p$ \iff $E(q) = \frac{p+1}{2}$
 $$\iff \text{erf}(q/\sqrt{2}) = p$$
4. E is has E^{-1} as inverse: $q = E^{-1}(\frac{p+1}{2})$, $t_1 = \tilde{f} - q\sigma_f$ and $t_2 = \tilde{f} + q\sigma_f$.
In Matlab: $q = \text{erfinv}(p) \times \sqrt{2}$
4.4/ Confidence intervals: Example in Matlab

\[
\begin{align*}
n &= 1000; \text{ }\% \text{ the size of the sample} \\
\mu &= 0.574; \text{ }\% \text{ the mean observed on the poll} \\
\sigma &= \sqrt{\mu(1-\mu)/n}; \text{ }\% \text{ the std of } f \text{ knowing the poll} \\
\end{align*}
\]

\% we want a confidence interval at the 95\% level
\[
\begin{align*}
p &= 0.95; \\
q &= \text{erfinv}(p)\sqrt{2}; \\
t1 &= \mu - \sigma q; \\
t2 &= \mu + \sigma q; \\
\text{disp}(['\text{confidence interval at the }', \text{num2str}(p), ' \text{ level: [', \text{num2str}(t1), ', ', \text{num2str}(t2), ']'}]);
\end{align*}
\]

\% we want a confidence interval at the 99\% level
\[
\begin{align*}
p &= 0.99; \\
q &= \text{erfinv}(p)\sqrt{2}; \\
t199 &= \mu - \sigma q; \\
t299 &= \mu + \sigma q; \\
\text{disp}(['\text{confidence interval at the }', \text{num2str}(p), ' \text{ level: [', \text{num2str}(t199), ', ', \text{num2str}(t299), ']'}]);
\end{align*}
\]

\% we want to reduce the size of the 95\% level:
\[
\begin{align*}
factor &= 2*2; \\
n &= n*factor; \\
\sigma &= \sqrt{\mu(1-\mu)/n}; \text{ }\% \text{ the std of } f \text{ knowing the poll} \\
p &= 0.95; \\
q &= \text{erfinv}(p)\sqrt{2}; \\
t1r &= \mu - \sigma q; \\
t2r &= \mu + \sigma q; \\
\text{disp}(['\text{confidence interval at the }', \text{num2str}(p), ' \text{ level: [', \text{num2str}(t1r), ', ', \text{num2str}(t2r), ']'}]); \\
\text{ratio} &= (t2-t1)/(t2r-t1r); \\
\text{disp}(['\text{ratio old/new: }', \text{num2str(ratio)}]); \\
\text{disp}(['\text{sqrt of factor: }', \text{num2str(sqrt(factor)) }]);
\end{align*}
\]
4.5/ An application of statistics: Monte Carlo methods

Problem: estimate the area a of the set A defined as:

$$\left\{ \begin{array}{l}
0 \leq X \leq 10, 0 \leq Y \leq 10 \\
-0.1 \leq \cos(\pi X) \cdot \cos(\pi Y) \leq 0.1
\end{array} \right. \quad (1)$$

Statistical approach: let f be a random variable with mean \tilde{f} and std. σ_f \tilde{f} is the fraction of points in $[0, 10] \times [0, 10]$ that are in A.
4.5/ An application of statistics: Monte Carlo methods

Problem: estimate the area \(a \) of the set \(\mathcal{A} \) defined as:

\[
\begin{cases}
0 \leq X \leq 10, 0 \leq Y \leq 10 \\
-0.1 \leq \cos(\pi X) \cdot \cos(\pi Y) \leq 0.1
\end{cases}
\]

(1)

Statistical approach: let \(f \) be a random variable with mean \(\tilde{f} \) and std. \(\sigma_f \)

\(\tilde{f} \) is the fraction of points in \([0, 10] \times [0, 10] \) that are in \(\mathcal{A} \)

1. generate \(n \) points uniformly in \(\mathcal{B} = \{0 \leq X \leq 10, 0 \leq Y \leq 10\} \)

for each point, test the inequalities \(-0.1 \leq \cos(\pi X) \cdot \cos(\pi Y) \leq 0.1\)

\(n \) discrete random variable \(X_1, \ldots, X_n \), Bernoulli law of parameter \(\tilde{f} \)
4.5/ An application of statistics: Monte Carlo methods

Problem: estimate the area a of the set A defined as:

$$
\begin{cases}
0 \leq X \leq 10, 0 \leq Y \leq 10 \\
-0.1 \leq \cos(\pi X) \cdot \cos(\pi Y) \leq 0.1
\end{cases}
$$

(1)

Statistical approach: let f be a random variable with mean \tilde{f} and std. σ_f

\tilde{f} is the fraction of points in $[0, 10] \times [0, 10]$ that are in A

1. generate n points uniformly in $B = \{0 \leq X \leq 10, 0 \leq Y \leq 10\}$
 for each point, test the inequalities $-0.1 \leq \cos(\pi X) \cdot \cos(\pi Y) \leq 0.1$

2. \tilde{f} is the ratio of the num. of points that are in A on n
 \[
 \frac{X_1 + \ldots + X_n}{n}
 \]
 converges to Gauss. of mean \tilde{f} and std. $\sigma_f = \sqrt{\frac{\tilde{f}(1-\tilde{f})}{n}}$
4.5/ An application of statistics: Monte Carlo methods

Problem: estimate the area a of the set A defined as:

$$
\begin{align*}
0 & \leq X \leq 10, 0 \leq Y \leq 10 \\
-0.1 & \leq \cos(\pi X) \cdot \cos(\pi Y) \leq 0.1
\end{align*}
$$

Statistical approach: let f be a random variable with mean \tilde{f} and std. σ_f.

\tilde{f} is the fraction of points in $[0, 10] \times [0, 10]$ that are in A.

1. generate n points uniformly in $B = \{0 \leq X \leq 10, 0 \leq Y \leq 10\}$
 for each point, test the inequalities $-0.1 \leq \cos(\pi X) \cdot \cos(\pi Y) \leq 0.1$
 n discrete random variable X_1, \ldots, X_n, Bernoulli law of parameter \tilde{f}

2. \tilde{f} is the ratio of the num. of points that are in A on n
 $\frac{X_1 + \ldots + X_n}{n}$ converges to Gauss. of mean \tilde{f} and std. $\sigma_f = \frac{\sqrt{\tilde{f}(1-\tilde{f})}}{\sqrt{n}}$

3. let b be the area of B; we estimate a as $\tilde{f} b$
4.5/ An application of statistics: Monte Carlo methods

Problem: estimate the area a of the set \mathcal{A} defined as:

$$\left\{ \begin{array}{lcr} 0 \leq X \leq 10, 0 \leq Y \leq 10 \\ -0.1 \leq \cos(\pi X) \cdot \cos(\pi Y) \leq 0.1 \end{array} \right. \quad (1)$$

Statistical approach: let f be a random variable with mean \tilde{f} and std. σ_f

\tilde{f} is the fraction of points in $[0, 10] \times [0, 10]$ that are in \mathcal{A}

1. generate n points uniformly in $B = \{0 \leq X \leq 10, 0 \leq Y \leq 10\}$
 for each point, test the inequalities $-0.1 \leq \cos(\pi X) \cdot \cos(\pi Y) \leq 0.1$

2. \tilde{f} is the ratio of the num. of points that are in \mathcal{A} on n

 $\frac{X_1 + \ldots + X_n}{n}$ converges to Gauss. of mean \tilde{f} and std. $\sigma_f = \frac{\sqrt{\tilde{f}(1-\tilde{f})}}{\sqrt{n}}$

3. let b be the area of B; we estimate a as $\tilde{f} b$

4. a confidence interval at the p level for f is $[t_1, t_2] = [\tilde{f} - \sigma_f E^{-1}\left(\frac{p+1}{2}\right), \tilde{f} + \sigma_f E^{-1}\left(\frac{p+1}{2}\right)]$
4.5/ An application of statistics: Monte Carlo methods

Problem: estimate the area a of the set A defined as:

$$
\begin{cases}
0 \leq X \leq 10, 0 \leq Y \leq 10 \\
-0.1 \leq \cos(\pi X) \cdot \cos(\pi Y) \leq 0.1
\end{cases}
$$

(1)

Statistical approach: let f be a random variable with mean \tilde{f} and std. σ_f

\tilde{f} is the fraction of points in $[0, 10] \times [0, 10]$ that are in A

1. generate n points uniformly in $B = \{0 \leq X \leq 10, 0 \leq Y \leq 10\}$
 for each point, test the inequalities $-0.1 \leq \cos(\pi X) \cdot \cos(\pi Y) \leq 0.1$
 n discrete random variable X_1, \ldots, X_n, Bernoulli law of parameter \tilde{f}

2. \tilde{f} is the ratio of the num. of points that are in A on n
 $\frac{X_1+\ldots+X_n}{n}$ converges to Gauss. of mean \tilde{f} and std. $\sigma_f = \frac{\sqrt{\tilde{f}(1-\tilde{f})}}{\sqrt{n}}$

3. let b be the area of B; we estimate a as $\tilde{f}b$

4. a confidence interval at the p level for f is $[t_1, t_2] = [\tilde{f} - \sigma_f E^{-1}(\frac{p+1}{2}), \tilde{f} + \sigma_f E^{-1}(\frac{p+1}{2})]$

5. a confidence interval at the p level for a is $[bt_1, bt_2]$
4.5/ An application of statistics: Monte Carlo methods (2)

Problem: estimate the integral \(a = \int_0^8 \sin(1 + \ln(x))\,dx \)

- \(a \) is the *signed* area under the graph of \(g(x) = \sin(1 + \ln(x)) \)
- for any \(x \in [0, 8] \), \(-1 \leq g(x) \leq 1\)
4.5/ An application of statistics: Monte Carlo methods (2)

Problem: estimate the integral \(a = \int_{0}^{8} \sin(1 + \ln(x))dx \)

- \(a \) is the signed area under the graph of \(g(x) = \sin(1 + \ln(x)) \)
- for any \(x \in [0, 8], -1 \leq g(x) \leq 1 \)

Statistical approach: let \(f \) be a random variable with mean \(\tilde{f} \) and std. \(\sigma_f \)
\(\tilde{f} \) is the fraction of points in \([0, 8] \times [-1, 1]\) that are in \(A \)

1. generate \(n \) points uniformly in \(B = [0, 8] \times [-1, 1] \)
 for each point, test if it is between the \(x \)-axis and the graph
4.5/ An application of statistics: Monte Carlo methods (2)

Problem: estimate the integral \(a = \int_{0}^{8} \sin(1 + \ln(x))\,dx \)

- \(a \) is the *signed* area under the graph of \(g(x) = \sin(1 + \ln(x)) \)
- for any \(x \in [0, 8], -1 \leq g(x) \leq 1 \)

Statistical approach: let \(f \) be a random variable with mean \(\tilde{f} \) and std. \(\sigma_f \)
\(\tilde{f} \) is the fraction of points in \([0, 8] \times [-1, 1] \) that are in \(A \)

1. generate \(n \) points uniformly in \(B = [0, 8] \times [-1, 1] \)
 for each point, test if it is between the \(x \)-axis and the graph
2. ...