
Name:______________________________________ Date:____/____/________

CSCSCI-UA.0002 – Midterm – Practice Questions on Functions and Loops

 1. There's an error in both code samples below. Circle the line where the error occurs. To the right of each code sample, explain why
there's an error: (3 points)

 a) a = greet_with_hello('yo yo meow')

def greet_with_hello(name):
 print('hello %s' % (name))

 b) for outer in range(5):
 print(inner)
 for inner in range(5):
 print(outer)

 c) limit = 5.0
total = 0
for i in range(limit):
 total += i

 2. Using the code in the 1st column, answer the questions in the second and third columns. If the question asks for output, error or
no output is always a possible answer.

Code Question #1 Question #2

def say_cheese(n):
 s = n * 'cheese'
 print(s)
talk = say_cheese(3)

What is the output of this
program?

What is the value of the variable called
talk?

exclamation = 'boo'
whisper = 'shhh'
def do_something():
 exclamation = 'bye!'
 print(whisper)
do_something()
print(exclamation)

What is the first line of output for
this program?

What is the second line of output for
this program?

def join_three(a, b, c):
 return '%s, %s, %s' % (a, b, c)
c, b, a = 3, 2, 1
res = join_three(c, b, a)
print(res)

What is the output of this
program?

What data type is returned from
join_three?

def gimme_a_break():
 print('OK')
 for i in range(3):
 print(i)
 break
 print(i, 'again')
 print('WAT')

res = gimme_a_break()
print(res)
print('FIN')

What is the output of this
program?

What is the output of this program if
break were replaced with continue?

def do_this_thing(limit):
 print('hmmmm')
 for i in range(limit):
 print(i)
 return i
 print('YES!')

value = do_this_thing(3)
print(value)
print('done')

What is the output of this
program?

Draw an arrow to the argument, and
draw an arrow to the parameter for
the definition and execution of
do_this_thing.

 3. Write a function called distance. It should have 4 parameters: the x and y values of one point on the coordinate plane and the x
and y values of a second point on the coordinate plane. It should calculate the distance between both points and return the
resulting value.

The distance formula is: d=√(x2−x1)
2+(y2− y1)

2

 4. Assuming that the distance formula specified in #3 exists, use it in a program that asks for the x and y values of two points and
then prints out the result with exactly 2 decimal places:

enter x1 > 2
enter y1 > 5
enter x2 > 9
enter y2 > 1
The distance between these two points is 8.06

 5. Create your own function to approximate the square root of a number. Use Newton's method to do so:

 a) to take the square root of a number, n...
 b) start with almost any approximation (for example, our first guess may just be n/2)
 c) find a better approximation by using the following formula:
 d) new_approximation = ½ * (approximation + n / approximation)
 e) continue to find a better approximation until the difference between the new approximation and the old is very small (for

example, < 0.01)

 6. Write a function, dec_to_bin, that converts a decimal number (an int) into a binary number (represented as a string). In both
versions, return an empty string if the number is not within 0 and 255. Otherwise, return the binary number as a string.

 a) It has one parameter, the decimal number to convert, and it returns a string, the equivalent binary number
 b) continually subtract powers of 2 (starting with 2 ^ 7) from the decimal number as long as that power of 2 is less than or equal

to the decimal number
 c) if you subtract a power of 2, then count that place (that bit) as 1
 d) if the power of 2 is greater than the decimal value, then don't subtract and count the place (bit) as 0
 e) example: convert 131 →

• 128 (2 ^ 7) is less than 131, so subtract it and record a 1 for that place: decimal number is now 3, and binary is 1
• all other powers of 2 below 2 ^ 7 up intil 2 ^ 1 are more than the decimal number, so records 0's for those: 100000
• 2 (2 ^ 1) is less than 3, so subtract it and record a 1 for that place: decimal number is now 1, and binary is 1000001
• finally, 1 is left, and that can be added as the last bit: 10000011

 f) example usage: print(dec_to_bin(6)) → '00000110'

 7. Write a function called mult_table using the requirements and sample output below. It should have:

• 1 parameter, an integer, that specifies the dimensions of the table it produces
• a return value that's a string string containing a table
• the table should contain the product of the row number and column number in

each cell; for example, in row 3, column 2, the value is 6 because it is the result of
multiplying 3 * 2 (the row and column numbers)

• the width of each cell should be dynamic depending on the number of characters of
the longest product plus 1 to accommodate a space between cells (in the example,
the width of the longest product, 49, is 2...with 1 added for a space, for a total of 3)

 print(mult_table(7))

 1 2 3 4 5 6 7
 2 4 6 8 10 12 14
 3 6 9 12 15 18 21
 4 8 12 16 20 24 28
 5 10 15 20 25 30 35
 6 12 18 24 30 36 42
 7 14 21 28 35 42 49

