Decision Structures &
Boolean Logic

CSCI-UA.002

Sequence Structures

m What we have been (
programming so far is known

Start

as a “sequence structure”

4

£

Input a width

m Sequence structures are sets of
statements that execute in the

order in which they appear /

4

Input a height

\

m Unfortunately not all programs
can be written this way, as

Multiply values

there are certain times when

we need to deviate from a /

linear structure and adapt our

Vv

Output result

program based on information

2

provided. (

Finish

Example: Calculating Overtime
Pay

m If a worker works more than 40 hours in a week he or she is
entitled to overtime pay.

m Overtime pay is calculated at the rate of 1.5 times the
worker’s hourly rate.

m This additional rate is only applied to hours worked above
the 40 hour limit.

Example: Calculating Overtime
Pay

m Input: Hourly rate of pay

m Input: Number of hours worked in 1 week

m Process: If the hours worked is less than 40, simply multiply hourly rate
by hours worked

m Process: If the hours worked is greater than 40:

Multiply hourly rate by hours worked for 40 hours.

Subtract 40 from the the total hours to obtain the overtime hours
Multiply overtime hours by 1.5 times the rate of pay

Add overtime pay to base pay

m Output: Total Pay

Example: Calculating Overtime
Pay

m Our current Python toolset doesn’t give us the ability to
deviate from a linear sequence structure

The Selection Statement

m Allows your program to “ask a question” and respond
accordingly.

m Simplest form — perform an action only if a certain condition
exists

m [f the condition is not met, then the action is not performed

The Selection Statement

m In this program we begin by C Start)

asking a question — “is it cold N

outside?”)

Cold Outside ? > Put on a coat

m If the answer to this question is

yes (aka “True”) then we can -

execute an alternate set of l

commands (Finish

m Otherwise we can continue
with the program as-is

The Selection Statement

[Start
v
True
Cold Outside ? 9 Put on a coat

(" Finish)

Selection Statements in Python

"if" keyword begins a selection statement

condition to be tested

d

if condition:

statement \
statement
statement colon denotes end

v of condition

T statements to execute if condition is true

"block" of execution must be indented

Boolean Expressions

+
Writing a condition

m The trick to writing a selection statement is in constructing a
condition that matches the question you are trying to ask the
computer

m All selection statements must have a condition to ‘“‘test”

m Think of conditions as “yes or no” questions. They can only
be answered by one of two options — “True” or “False”

T .
Boolean Expressions

True or False

/

if condition:

statement
statement
statement

+ .
Boolean Expressions

m Named after George Boole, a —
19t century English | I
philosopher and %EOVE ORDERS LUNCH
mathematician

m Boole developed a system of
mathematics that allows us to
work with the abstract
concepts of “true” and “false”

m Boole is considered one of the
founders of modern computer
science, as his work underpins
the way in which modern
computers process binary
data

==
Writing a Boolean Expression

m Boolean expressions can be used as the condition in an “if”
statement

m They are generally formed using “relational operators” which
allow you to test to see whether a specific relationship exists
between two (or more) values

Relational Operators

a>>b # 1s a greater than b ?
a<D>b # 1s a less than b ?
a == b # 1s a equal to b ?
a <=b # 1s a less than OR

equal to b ?

a >= b # is a greater than OR
equal to b ?

Writing a Boolean Expression

m ALL Boolean expressions boil down to “True” or “False”

m Programmers often say that the expression “evaluates” to
“True” or “False”

Writing a Boolean Expression

pen = 10

sword = 7

if pen > sword: # pen > sword
print (‘the pen is # 10 > 7

mightier than the
sword! ') # True

4.
Let’s Evaluate! |I

given these variables # evaluate these expressions
a = 99 a>Db
b =17 b < c
c = =5 b >= ¢
d = 92 c <=d
a ==>b +d

Boolean Operator Tips

m Don’t confuse “==* with “="*

m “="1s used for assigning values to variables

m “=="1is used for testing to see if two values are identical
m Use “!=" if you want to test if two values are different

m The “<=" and “>=" operators test for more than one
relationship

m “<=* tests to see if a value is less than OR equal to another
m “>=" tests to see if a value is greater than OR equal to another

Let’s write some programs!

Programming Challenge:
Freezing / Boiling Guppies

m Guppies are hardy fish, but they
can’t live in all water
temperatures.

m The acceptable range for
guppies is between 72 and 86
degrees Fahrenheit.

m Write a program that asks the
user for a temperature. Then
display one of two messages
based on the information

provided:

m You'’re going to freeze your
guppy!

m You're going to boil your
guppy!

Programming Challenge: Number
Guessing Game (part 1)

m Ask the user to guess a number
between 1 and 10. Assume they
will enter an Integer.

m Pick a number between 1 and 10
that is your “secret” number (for
example, 5)

m [f the user types in your secret
number, tell them that they win!

m If the user types in a number
less than or greater than your
secret number, tell them that
they’re either above or below
the number and to try again

Programming Challenge:
Calculating a bonus

m You're the manager of a large, distributed sales force

m You want to create an easy to use tool that will allow your
sales staff to do the following:

m Input their monthly sales amount
m Determine if they made their monthly quota of $10,000
m [f they made their quota, they are eligible for a bonus of $500

m [f they made their quota, they should receive a “Good Job!”
message

m At the end of the program you should print out how much their
bonus will be ($0 or $500)

==
Programming Challenge:

Calculating a bonus

C Start)

/ Input monthly sales /

True
Met quota ? 9 Assign bonus of $500

False
/ Print "You made your quota!" /

A

(" Finish)

+ .
Extension

m All sales people should receive 1% commission on their
sales

m If a sales person made over 50,000, they should receive 5%
commission on their sales (instead of 1%) — this is in addition
to their $500 bonus for making their quota

m Print out their total take-home amount (bonus + commission)
at the end of the program

Selection Statements in the Wild!

J How are selection statements used
in ATM machines?

0 How many selection statements can
you count from your last ATM
transaction?

The IF — ELSE structure

Simple Selection Statements

m The selection statements we [Start
have been writing so far have N)
only allowed us to create a o
single alternate branch of Cold Outside ? oot om s cont
execution
False
m There are many times when we l
need to create multiple (Finish

branches of execution based
on the value of a Boolean
expression

+
The IF-ELSE structure

m The IF-ELSE structure allows you to perform one set of
statements if a condition is true, and another if it is false

+
The IF-ELSE structure

(Start

2

/ Input Salary /
v

False True
/ print "Sorry, you didn't qualify” / 6 Salary > 50,000 9 Qualify user for a loan
?

/ print "You qualified!" /

l

(Finish)

The IF-ELSE structure

if temperature < 32:
print (“it’s freezing outside!”)

else:
print (“it’s not so bad outside ..”)

+
Programming Challenge:

Calculating Overtime Pay

m If a worker works more than 40
hours in a week he or she is
entitled to overtime pay.

m Overtime pay is calculated at
the rate of 1.5 times the
worker’s hourly rate.

m This additional rate is only
applied to hours worked
above the 40 hour limit.

Programming Challenge:
Calculating Overtime Pay

Input: Hourly rate of pay

m Input: Number of hours worked in 1 week

m Process: If the hours worked is less than 40, simply
multiply hourly rate by hours worked

m Process: If the hours worked is greater than 40:

= Multiply hourly rate by hours worked for 40
hours.

m Subtract 40 from the the total hours to obtain
the overtime hours

= Multiply overtime hours by 1.5 times the rate of
pay
m Add overtime pay to base pay

m Output: Total Pay

String Comparison

String Comparison

m So far we have been writing Boolean expressions that
evaluate based on numeric data

m Example: x> 5;y < 10;z==100

m We can also construct Boolean expressions that can test
relationships between strings

m When we compare strings we are essentially reducing them
to their zeros and ones and comparing them numerically

+
Standard ASCII Table

0 NUL 16 DLE 32 SP 48 0 64 @ 80 P 9 ° 112 p
1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 a 113 g
2 SIX 18 DC2 34 " 50 2 66 B 82 R 98 b 114 r
3 EIX 19 DC3 35 # 51 3 67 C 83 S 99 c 115 s
4 EOT 20 DC4 36 § 52 4 68 D 84 T 100 d 116 t
5 EN 21 NAK 37 % 53 5 69 E 85 U 101 e 117 u
6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 f 118 v
7 BEL 23 ETB 39 ° 55 7 71 G 87 W 103 g 119 w
8 BS 24 CAN 40 (56 8 72 H 88 X 104 h 120 x
9 HT 25 EM 41) 57 9 73 | 89 Y 105 i 121y
10 LF 26 SUB 42 * 58 : 74 J 9 Z 106] 122 z
11 VT 27 ESC 43 + 59 75 K 91 [107 K 123 {
12 FF 28 FS 4 60 < 76 L 92 \ 108 | 124 |
13 CR 29 GS 45 - 61 = 77 M 93] 109 m 125 }
14 SO 30 RS 46 . 62 > 78 N 94 ~ 110 n 126 -
15 S| 31 US 47 |/ 63 ? 79 0 95 _ 111 o 127 DEL

4.
Boolean Operators for Strings |I

‘dog’ > ‘cat’

‘fish’ < ‘alligator’
‘elephant’ == ‘tiger’
‘bat’ != ‘honey badger’

‘bat’ > ‘back’

* OH HH OH H*

is ‘dog’ greater than ‘cat’ ?
is ‘fish’ less than ‘alligator’ ?

are ‘elephant’ and ‘tiger’
equivalent?

are these strings different ?

is ‘bat’ greater than ‘back’

Programming Challenge: Password
Protection

m Write a program that asks the user for a password

m Check to see if the password that was submitted is equal to
the string ‘secret’

m If it is, print out a “welcome” message

m Otherwise, tell them to try again

T
Basic string manipulation

m Python has a huge string manipulation library that allows you to interact
with and modify strings. We are going to get more in depth with this
package later in the semester.

m For now we will only be exploring two small functions in this package -
lower() and upper()

m The lower() function converts the characters in a string to all lowercase,
while the upper() function converts the characters in a string to all
uppercase

m These functions are not built into the Python library directly, but exist
inside the “str” module - as such they must be referred to using “dot
syntax”

m Example:
m string lc

str.lower(‘Harry Potter’) # string lc = ‘harry potter’
‘HARRY POTTER'’

® string uc

str.upper(‘Harry Potter’) # string uc

Programming Challenge: Case
insensitive password

m Rewrite your password protection program to be case
insensitive (i.e. the password “Secret” will also let you into
your program)

Programming Challenge:
Alphabetize two strings

m Ask the user to type in two names

m Compare the names and print them out in alphabetical order

String Length

m You can ask Python to count the number of characters
contained in a string using the len() function

m len() returns an integer that represents the total length of a
string

m Example:

myname = ‘harry’
print (len(myname)) # 5

Programming Challenge:
Comparing the size of two strings

m Ask the user to input two names

m Sort the names in size order and print them out to the user

Nested Decision Structures

Nested Decision Structures

m Sometimes you need to ask “follow up” questions after you’ve
evaluated the value of a Boolean expression

m Python allows you to “nest” decision structures inside one
another, allowing you to evaluate additional conditions

Guess the Number using Nested
Decision Structures

[Start

(" Finish)

+
Programming Challenge

m Re-write the “guess the number” game using a nested
decision structure.

m If the user guesses the number they win. If they don’t you
should tell them to guess higher or lower next time
depending on their answer.

Guess the Number using Nested
Decision Structures

secretnumber = 5

usernumber = int(input('Guess a number '))

1f usernumber == secretnumber:
print ("you guessed itl!")
else:

1f usernumber < secretnumber:

print ("your number is too low")
else:

print ("your number is too high")

Nested Decision Structures

m Indentation is key — Python will use the indentation level of a
structure to determine its relationship to any previous
statements

Programming Challenge:
Freezing / Boiling / OK Guppies

m Guppies are hardy fish, but they can’t
live in all water temperatures.

m The acceptable range for guppies is
between 72 and 86 degrees
Fahrenheit.

m Write a program that asks the user
for a temperature. Then display one
of three messages based on the
information provided:

m You’'re going to freeze your guppy!
m You’re going to boil your guppy!
m Your guppy is going to be fine!

+
Programming Challenge

m Write a program that asks the
user to enter in a number
greater than or equal to zero
and less than or equal to 100.
If they do not you should alert
them and end the program.

m Next, determine the letter
grade associated with the
number. For example, and A is
any grade between 90 and
100. Report the letter grade to
the user.

==
Programming Challenge: Loan

Qualification

m You're working for a small bank that wants to write a program
to allow its customers to pre-qualify themselves for a
personal loan

m Rules for qualification are as follows:

m Borrower must make more than $50,000 per year and be at his or
her job for at least 2 years

m The 2 year job requirement can be waived, however, for
borrowers making more than $100,000 per year

m Write a program to ask the user for their yearly salary as well
as the # of years they have been at their current company.
Use the rules above to output the string ‘You qualify’ or ‘You
do not qualify’

Guess the Number using Nested
Decision Structures

[Start

(" Finish)

Guess the Number using Nested
Decision Structures

secretnumber = 5

usernumber = int(input('Guess a number '))

1f usernumber == secretnumber:
print ("you guessed itl!")
else:

1f usernumber < secretnumber:

print ("your number is too low")
else:

print ("your number is too high")

Nested Decision Structures

m Indentation is key — Python will use the indentation level of a
structure to determine its relationship to any previous
statements

IF-ELIF-ELSE Structure

+
Testing a series of conditions

m Testing a series of conditions using an IF-ELSE structure can
result in a large amount of indentations

m Sometimes this can cause your code to become difficult to
read

m Example: Grade determination program
m Input: ask the user for a numeric grade (i.e. 95)
m Process: convert the grade to its letter format (A through F)

= Output: print the letter grade

Grade Determination Program

g = float(input('grade "))

if (g > 90):
print ('A'")
else:
1f (g > 80):
print ('B')
else:
if (g > 70):
| print ('C'")
else:
1f (g > 60):
print ('D")
else:
print ('F')

==
[F-ELIF-ELSE

m You can simplify complex IF statements by using the ELIF
structure

m ELIF is an optional structure that can be placed between your
IF and ELSE statements

m [t allows you to evaluate additional conditions at the same
level as the original IF statement

==
[F-ELIF-ELSE

g = float(input('grade "))

1f g > 90:
print ('A')
elif g > 80:
print ('B')
elif g > 70:
print ('C")
elif g > 601
print ('D")
else:
print ('F')

==
[F-ELIF-ELSE

m Some notes about using ELIFs:

m Conditions are tested in the order in which they are written. Once
a condition evaluates to True all future conditions are skipped

m An ELSE statement at the end of a decision structure is considered
the “catch all” statement — if all conditions above end up failing
then the statements inside the ELSE block will execute

m However, using an ELSE statement at the end of your decision
structure is optional.

m There is no logical need for an IF-ELIF-ELSE statement. You can
always write a program without it by using a standard IF-ELSE
block.The advantage of an IF-ELIF-ELSE statement is that your
code may end up being be more readable / understandable.

Logical Operators

Logical Operators

m All programming languages provide a set of “logical
operators”

m These operators can be used to create complex Boolean
expressions that evaluate more than one condition at the
same time

Logical Operators

x = 10
y =5

a = 20
b = 25

1f x>y and a < b:
print ('yes!')
else:
print ('no!’)

Logical Operators

m Logical operators are used to combine Boolean expressions
into a composite Boolean expression

m There are three main logical operators that we use regularly
in programming

® and
m Or

® not

+
The "and” operator

m “and’” can be used to combine True and True => True
two Boolean expressions
True and False => False

m The resulting Boolean

expression will evaluate to be False and True => False
True if the two Boolean
expressions it is connecting False and False => False

both evaluate to be True

+
Let’s evaluate!

print (a > b and a > 1)

print (a > 1 and b > a)

print (a == 5 and b < 100)

print (a > 1 and b < 1 and b > a)

print (a > 1 and b > 1 and b > a)

“and” Example

Loan Qualifier

salary = float(input(' 'How much do you make? "))
years = float(input('How long have you been at your job? '))

1f salary >= 50000 and years >= 2:
print ('You qualify for a loan!')

else:
print ('You do not qualify for a loan')

==

The "or” operator

m “or” can also be used to
combine two Boolean
expressions

m The resulting Boolean
expression will evaluate to be
True if EITHER of Boolean
expressions it is connecting
evaluates to be True

True

True

False

False

or

or

or

or

True

False

True

False

=>

=>

=>

True

True

True

False

+
Let’s evaluate!

print (a > b or a > 1)

print (a > 1 or b > a)

print (a == 5 or b < 100)

print (a > 1 or b < 1 or b > a)

print (a > 1 or b > 1 or b > a)

“or” Example
Guppy Temperature

temp = float(input('What is the temperature of your fish tank? "))

1f temp < 72 or temp > 86:
print ("The temperature is too extreme!")

The "not” operator

m The “not” operator is a unary operator that reverses the
logical value of its argument

m This means that it will “flip” a True value into a False value,
and vice versa

==

“not” example

username = input ('username? ')

1f not (username == 'Harry'):
print ("invalid input!")
else:

print ("Welcome, Harry!")

==

Programming Challenge:
Username and Password

m Write a program that asks a
user for a username and a
password

m Check to see if BOTH the
username and password are
correct

m If so, provide a Welcome
message to the user

m If not, provide a Login Failure
message to the user

Username:

Password.:

Forgotten password?

Login

