
+

Decision Structures &
Boolean Logic
CSCI-UA.002

+
Sequence Structures

n  What we have been
programming so far is known
as a “sequence structure”

n  Sequence structures are sets of
statements that execute in the
order in which they appear

n  Unfortunately not all programs
can be written this way, as
there are certain times when
we need to deviate from a
linear structure and adapt our
program based on information
provided.

+
Example: Calculating Overtime
Pay

n  If a worker works more than 40 hours in a week he or she is
entitled to overtime pay.

n  Overtime pay is calculated at the rate of 1.5 times the
worker’s hourly rate.

n  This additional rate is only applied to hours worked above
the 40 hour limit.

+
Example: Calculating Overtime
Pay
n  Input: Hourly rate of pay

n  Input: Number of hours worked in 1 week

n  Process: If the hours worked is less than 40, simply multiply hourly rate
by hours worked

n  Process: If the hours worked is greater than 40:
n  Multiply hourly rate by hours worked for 40 hours.
n  Subtract 40 from the the total hours to obtain the overtime hours
n  Multiply overtime hours by 1.5 times the rate of pay
n  Add overtime pay to base pay

n  Output: Total Pay

+
Example: Calculating Overtime
Pay

n  Our current Python toolset doesn’t give us the ability to
deviate from a linear sequence structure

+
The Selection Statement

n  Allows your program to “ask a question” and respond
accordingly.

n  Simplest form – perform an action only if a certain condition
exists

n  If the condition is not met, then the action is not performed

+
The Selection Statement

n  In this program we begin by
asking a question – “is it cold
outside?”

n  If the answer to this question is
yes (aka “True”) then we can
execute an alternate set of
commands

n  Otherwise we can continue
with the program as-is

+
The Selection Statement

+
Selection Statements in Python

+
Boolean Expressions

+
Writing a condition

n  The trick to writing a selection statement is in constructing a
condition that matches the question you are trying to ask the
computer

n  All selection statements must have a condition to “test”

n  Think of conditions as “yes or no” questions. They can only
be answered by one of two options – “True” or “False”

+
Boolean Expressions

+
Boolean Expressions

n  Named after George Boole, a
19th century English
philosopher and
mathematician

n  Boole developed a system of
mathematics that allows us to
work with the abstract
concepts of “true” and “false”

n  Boole is considered one of the
founders of modern computer
science, as his work underpins
the way in which modern
computers process binary
data

+
Writing a Boolean Expression

n  Boolean expressions can be used as the condition in an “if”
statement

n  They are generally formed using “relational operators” which
allow you to test to see whether a specific relationship exists
between two (or more) values

+
Relational Operators

+
Writing a Boolean Expression

n  ALL Boolean expressions boil down to “True” or “False”

n  Programmers often say that the expression “evaluates” to
“True” or “False”

+
Writing a Boolean Expression

pen = 10

sword = 7

if pen > sword:

print (‘the pen is
mightier than the
sword!’)

pen > sword

10 > 7

True

+
Let’s Evaluate!

given these variables

a = 99

b = 7

c = -5

d = 92

evaluate these expressions

a > b

b < c

b >= c

c <= d

a == b + d

d <= a + c

c != b

+
Boolean Operator Tips

n  Don’t confuse “==“ with “=“
n  “=“ is used for assigning values to variables

n  “==“ is used for testing to see if two values are identical

n  Use “!=“ if you want to test if two values are different

n  The “<=“ and “>=“ operators test for more than one
relationship
n  “<=“ tests to see if a value is less than OR equal to another

n  “>=“ tests to see if a value is greater than OR equal to another

+
Let’s write some programs!

+
Programming Challenge:
Freezing / Boiling Guppies
n  Guppies are hardy fish, but they

can’t live in all water
temperatures.

n  The acceptable range for
guppies is between 72 and 86
degrees Fahrenheit.

n  Write a program that asks the
user for a temperature. Then
display one of two messages
based on the information
provided:
n  You’re going to freeze your

guppy!
n  You’re going to boil your

guppy!

+
Programming Challenge: Number
Guessing Game (part 1)

n  Ask the user to guess a number
between 1 and 10. Assume they
will enter an Integer.

n  Pick a number between 1 and 10
that is your “secret” number (for
example, 5)

n  If the user types in your secret
number, tell them that they win!

n  If the user types in a number
less than or greater than your
secret number, tell them that
they’re either above or below
the number and to try again

+
Programming Challenge:
Calculating a bonus

n  You’re the manager of a large, distributed sales force

n  You want to create an easy to use tool that will allow your
sales staff to do the following:
n  Input their monthly sales amount

n  Determine if they made their monthly quota of $10,000

n  If they made their quota, they are eligible for a bonus of $500

n  If they made their quota, they should receive a “Good Job!”
message

n  At the end of the program you should print out how much their
bonus will be ($0 or $500)

+
Programming Challenge:
Calculating a bonus

+
Extension

n  All sales people should receive 1% commission on their
sales

n  If a sales person made over 50,000, they should receive 5%
commission on their sales (instead of 1%) – this is in addition
to their $500 bonus for making their quota

n  Print out their total take-home amount (bonus + commission)
at the end of the program

+
Selection Statements in the Wild!

q  How are selection statements used
in ATM machines?

q  How many selection statements can
you count from your last ATM
transaction?

+
The IF – ELSE structure

+
Simple Selection Statements

n  The selection statements we
have been writing so far have
only allowed us to create a
single alternate branch of
execution

n  There are many times when we
need to create multiple
branches of execution based
on the value of a Boolean
expression

+
The IF-ELSE structure

n  The IF-ELSE structure allows you to perform one set of
statements if a condition is true, and another if it is false

+
The IF-ELSE structure

+
The IF-ELSE structure

if temperature < 32:  
print (“it’s freezing outside!”)

else:  
print (“it’s not so bad outside …”)

+
Programming Challenge:
Calculating Overtime Pay

n  If a worker works more than 40
hours in a week he or she is
entitled to overtime pay.

n  Overtime pay is calculated at
the rate of 1.5 times the
worker’s hourly rate.

n  This additional rate is only
applied to hours worked
above the 40 hour limit.

+
Programming Challenge:
Calculating Overtime Pay
n  Input: Hourly rate of pay

n  Input: Number of hours worked in 1 week

n  Process: If the hours worked is less than 40, simply
multiply hourly rate by hours worked

n  Process: If the hours worked is greater than 40:

n  Multiply hourly rate by hours worked for 40
hours.

n  Subtract 40 from the the total hours to obtain
the overtime hours

n  Multiply overtime hours by 1.5 times the rate of
pay

n  Add overtime pay to base pay

n  Output: Total Pay

+
String Comparison

+
String Comparison

n  So far we have been writing Boolean expressions that
evaluate based on numeric data
n  Example: x > 5; y < 10; z == 100

n  We can also construct Boolean expressions that can test
relationships between strings

n  When we compare strings we are essentially reducing them
to their zeros and ones and comparing them numerically

+
Standard ASCII Table

+
Boolean Operators for Strings

‘dog’ > ‘cat’

‘fish’ < ‘alligator’

‘elephant’ == ‘tiger’

‘bat’ != ‘honey badger’

‘bat’ > ‘back’

is ‘dog’ greater than ‘cat’ ?

is ‘fish’ less than ‘alligator’ ?

are ‘elephant’ and ‘tiger’
equivalent?

are these strings different ?

is ‘bat’ greater than ‘back’

+
Programming Challenge: Password
Protection

n  Write a program that asks the user for a password

n  Check to see if the password that was submitted is equal to
the string ‘secret’

n  If it is, print out a “welcome” message

n  Otherwise, tell them to try again

+
Basic string manipulation

n  Python has a huge string manipulation library that allows you to interact
with and modify strings. We are going to get more in depth with this
package later in the semester.

n  For now we will only be exploring two small functions in this package –
lower() and upper()

n  The lower() function converts the characters in a string to all lowercase,
while the upper() function converts the characters in a string to all
uppercase

n  These functions are not built into the Python library directly, but exist
inside the “str” module – as such they must be referred to using “dot
syntax”

n  Example:
n  string_lc = str.lower(‘Harry Potter’) # string_lc = ‘harry potter’
n  string_uc = str.upper(‘Harry Potter’) # string_uc = ‘HARRY POTTER’

+
Programming Challenge: Case
insensitive password

n  Rewrite your password protection program to be case
insensitive (i.e. the password “Secret” will also let you into
your program)

+
Programming Challenge:
Alphabetize two strings

n  Ask the user to type in two names

n  Compare the names and print them out in alphabetical order

+
String Length

n  You can ask Python to count the number of characters
contained in a string using the len() function

n  len() returns an integer that represents the total length of a
string

n  Example:

myname = ‘harry’  
print (len(myname)) # 5

+
Programming Challenge:
Comparing the size of two strings

n  Ask the user to input two names

n  Sort the names in size order and print them out to the user

+
Nested Decision Structures

+
Nested Decision Structures

n  Sometimes you need to ask “follow up” questions after you’ve
evaluated the value of a Boolean expression

n  Python allows you to “nest” decision structures inside one
another, allowing you to evaluate additional conditions

+
Guess the Number using Nested
Decision Structures

+
Programming Challenge

n  Re-write the “guess the number” game using a nested
decision structure.

n  If the user guesses the number they win. If they don’t you
should tell them to guess higher or lower next time
depending on their answer.

+
Guess the Number using Nested
Decision Structures

+
Nested Decision Structures

n  Indentation is key – Python will use the indentation level of a
structure to determine its relationship to any previous
statements

+
Programming Challenge:
Freezing / Boiling / OK Guppies
n  Guppies are hardy fish, but they can’t

live in all water temperatures.

n  The acceptable range for guppies is
between 72 and 86 degrees
Fahrenheit.

n  Write a program that asks the user
for a temperature. Then display one
of three messages based on the
information provided:
n  You’re going to freeze your guppy!
n  You’re going to boil your guppy!

n  Your guppy is going to be fine!

+
Programming Challenge

n  Write a program that asks the
user to enter in a number
greater than or equal to zero
and less than or equal to 100.
If they do not you should alert
them and end the program.

n  Next, determine the letter
grade associated with the
number. For example, and A is
any grade between 90 and
100. Report the letter grade to
the user.

+
Programming Challenge: Loan
Qualification

n  You’re working for a small bank that wants to write a program
to allow its customers to pre-qualify themselves for a
personal loan

n  Rules for qualification are as follows:
n  Borrower must make more than $50,000 per year and be at his or

her job for at least 2 years
n  The 2 year job requirement can be waived, however, for

borrowers making more than $100,000 per year

n  Write a program to ask the user for their yearly salary as well
as the # of years they have been at their current company.
Use the rules above to output the string ‘You qualify’ or ‘You
do not qualify’

+
Guess the Number using Nested
Decision Structures

+
Guess the Number using Nested
Decision Structures

+
Nested Decision Structures

n  Indentation is key – Python will use the indentation level of a
structure to determine its relationship to any previous
statements

+
IF-ELIF-ELSE Structure

+
Testing a series of conditions

n  Testing a series of conditions using an IF-ELSE structure can
result in a large amount of indentations

n  Sometimes this can cause your code to become difficult to
read

n  Example: Grade determination program
n  Input: ask the user for a numeric grade (i.e. 95)

n  Process: convert the grade to its letter format (A through F)

n  Output: print the letter grade

+
Grade Determination Program

+
IF-ELIF-ELSE

n  You can simplify complex IF statements by using the ELIF
structure

n  ELIF is an optional structure that can be placed between your
IF and ELSE statements

n  It allows you to evaluate additional conditions at the same
level as the original IF statement

+
IF-ELIF-ELSE

+
IF-ELIF-ELSE

n  Some notes about using ELIFs:
n  Conditions are tested in the order in which they are written. Once

a condition evaluates to True all future conditions are skipped

n  An ELSE statement at the end of a decision structure is considered
the “catch all” statement – if all conditions above end up failing
then the statements inside the ELSE block will execute

n  However, using an ELSE statement at the end of your decision
structure is optional.

n  There is no logical need for an IF-ELIF-ELSE statement. You can
always write a program without it by using a standard IF-ELSE
block. The advantage of an IF-ELIF-ELSE statement is that your
code may end up being be more readable / understandable.

+
Logical Operators

+
Logical Operators

n  All programming languages provide a set of “logical
operators”

n  These operators can be used to create complex Boolean
expressions that evaluate more than one condition at the
same time

+
Logical Operators

+
Logical Operators

n  Logical operators are used to combine Boolean expressions
into a composite Boolean expression

n  There are three main logical operators that we use regularly
in programming

n  and

n  or

n  not

+
The “and” operator

n  “and” can be used to combine
two Boolean expressions

n  The resulting Boolean
expression will evaluate to be
True if the two Boolean
expressions it is connecting
both evaluate to be True

True and True => True

True and False => False

False and True => False

False and False => False

+
Let’s evaluate!

a = 5

b = 10

print (a > b and a > 1)

print (a > 1 and b > a)

print (a == 5 and b < 100)

print (a > 1 and b < 1 and b > a)

print (a > 1 and b > 1 and b > a)

+
“and” Example
Loan Qualifier

+
The “or” operator

n  “or” can also be used to
combine two Boolean
expressions

n  The resulting Boolean
expression will evaluate to be
True if EITHER of Boolean
expressions it is connecting
evaluates to be True

True or True => True

True or False => True

False or True => True

False or False => False

+
Let’s evaluate!

a = 5

b = 10

print (a > b or a > 1)

print (a > 1 or b > a)

print (a == 5 or b < 100)

print (a > 1 or b < 1 or b > a)

print (a > 1 or b > 1 or b > a)

+
“or” Example
Guppy Temperature

+
The “not” operator

n  The “not” operator is a unary operator that reverses the
logical value of its argument

n  This means that it will “flip” a True value into a False value,
and vice versa

+
“not” example

username = input('username? ')

if not (username == 'Harry'):

 print("invalid input!")

else:

 print("Welcome, Harry!")

+
Programming Challenge:
Username and Password

n  Write a program that asks a
user for a username and a
password

n  Check to see if BOTH the
username and password are
correct

n  If so, provide a Welcome
message to the user

n  If not, provide a Login Failure
message to the user

