
+

Data Types, Errors and Debugging, Advanced Math
Operations & Formatting Output
CSCI-UA.002

+
Data Types

+
Data Types

n  Python needs to know how to set aside memory in your
computer based on what kind of information you want to
store

n  There are three basic types of data that we will be working
with during the first half of the term
n  Strings (character-based data)

n  Numbers

n  Logical Values (True / False)

+
Numeric Data Types

n  Integers
n  Whole numbers that do not contain a decimal point

n  Abbreviated as “int” in Python

n  Example: 5, -5, 100, 10032

n  Floating Point Numbers
n  Numbers that contain a decimal point

n  Abbreviated as “float” in Python

n  Example: 5.0, -5.0, 100.99, 0.232132234

+
Numeric Data Types

n  You can store numeric data inside variables that you create.
Example:

num_1 = 5 ! ! !# this is an int  
num_2 = 4.99 ! !# this is a float

n  Keep in mind that you do not use separators or symbols when
storing numeric data. Example:

num_3 = $5,123.99 !# error!!

+
What’s the data type?

5!

5.5!

“Hello”!

“5.5”!

2.975!

2.0!

+
Numeric Data Types

n  Python is not a strictly typed language. This means that you
don’t need to pre-declare what kind of data your variables
will be holding.

n  This is also called “dynamic typing”.

+
Data Types across languages

n  Python

n  PHP

n  JavaScript

n  Perl

n  C

n  C++

n  Java

n  ActionScript

Loosely Typed Strictly Typed

+
Strictly Typed Languages -
Examples

var name:String = “Harry”;!

var top_speed:Number = 50;!

var gravity:Number = 9.5;!

String name = “Harry”;!

int top_speed = 50;!

float gravity = 9.5;!

ActionScript Java

+
User input and Math Expressions

n  We can capture input from the user (via the input() function)
and use that input in our calculations

n  However, the input() function “returns” a string – this means
that the data type that “comes out” of the input() function is a
series of printed characters

n  We need to convert the result of the input function from a
string into one of the two numeric data types that Python
supports (float and int)

+
Solution: The float() and int()
functions
n  float() and int() are data type conversation functions. They each take

one argument and convert that argument into the specified data type

n  Example:

ask the user for their monthly salary  
monthly_salary = input(‘how much do you make in a
month?’)  
 
convert the salary into a float  
monthly_salary_float = float(monthly_salary)  
 
calculate the yearly salary  
yearly_salary = monthly_salary_float * 12  
 
print the result  
print (‘that means you make’, yearly_salary, ‘in a
year’)!

+
Nesting data type conversions

n  In the previous example we performed our data type
conversion in two lines

n  We could have done that in a single line using a technique
called “nesting”

n  Example:

mynum = float(input(‘give me a number!’))

+
Nesting data type conversions

+
Programming Challenge

n  Ask the user for two numbers.
You can assume they will be
floating point numbers.

n  Compute the following and
print it out to the user:

n  The sum of the numbers

n  The product of the numbers

n  The difference between the
numbers

n  The first number divided by
the second number

+
Programming Challenge - Coins

n  Write a program that asks the
user for a number of pennies,
nickels, dimes and quarters

n  Calculate the total amount of
money that the user has and
print it out

+
Programming Challenge – Subway
Ride Calculator

n  Write a program that asks the
user for the value of their
current Metro card

n  Compute how many rides they
have left on their card. Only
provide whole number results
(i.e. you cannot have 3.5 rides
left on a card)

+
Errors, Bugs and Debugging

+
The Software Error

“...an analyzing process must
equally have been performed
in order to furnish the
Analytical Engine with the
necessary operative data; and
that herein may also lie a
possible source of error.
Granted that the actual
mechanism is unerring in
its processes, the cards may
give it wrong orders.”

- Lady Augusta Ada King,
Countess of Lovelace (1843)

+
Mechanical Malfunctions

“It has been just so in all of my
inventions. The first step is an
intuition, and comes with a
burst, then difficulties arise—
this thing gives out and [it is]
then that 'Bugs' — as such little
faults and difficulties are
called—show themselves and
months of intense watching,
study and labor are requisite
before commercial success or
failure is certainly reached.”

- Thomas Edison, 1878

+
“Debugging”
1947, Harvard Mark II Computer

+
“Debugging”

De-bugging a program is the process of finding and resolving
errors.

+
Types of Errors

n  Syntax errors: The code does not follow the rules of the
language; for example, a single quote is used where a double
quote is needed; a colon is missing; a keyword is used as a
variable name.

n  Runtime errors: In this case, your code is fine but the program
does not run as expected (it “crashes”). For example, if your
program is meant to divide two numbers, but does not test for a
zero divisor, a run-time error would occur when the program
attempts to divide by zero.

n  Logic errors: These can be the hardest to find. In this case, the
program is correct from a syntax perspective; and it runs; but the
result is unanticipated or outright wrong. For example, if your
program prints “2+2 = 5” the answer is clearly wrong J

+
Example Errors

print (“hello, world!’)!

+
Example Errors

print (“hello, world!’)!

Syntax error (delimiters don’t
match)

+
Example Errors

num = input ('give me a
number: ’)!

num_float = float(num)!

new_num = 10 + num_float!

print (new_num)!

give me a number: apple!

Traceback (most recent
call last):!

 File "/Users/
HarryPotter/Documents/
madlibs01.py", line 6, in
<module>!

 new_num = 10 + num!

TypeError: unsupported
operand type(s) for +:
'int' and 'str'

Source Execution

+
(that was a runtime error)
The program ran, but when given bad data it crashed

+
Example Errors

num_1 = float (input
(‘give me a num: ’))!

num_2 = float (input
(‘give me another num:
’))!

print (‘the sum is: ‘,
num_1 – num_2)!

give me a num: 5!

give me another num: 2!

the sum is: 3.0!

Source Execution

+
(that was a logic error)
The program ran, but it didn’t do what it set out to do (i.e. it gave us
the wrong answer)

+
Basic Debugging Techniques

n  Set small, incremental goals for your program. Don’t try and write large
programs all at once.

n  Stop and test your work often as you go. Celebrate small successes J

n  Use comments to have Python ignore certain lines that are giving you
trouble

+
Advanced Math Operations

+
Division Operations

n  Python contains two different division operators

n  The “/” operator is used to calculate the floating-point result
of a division operation

n  The “//” operator is used to calculate the integer result of a
division operation (essentially throwing away the remainder).
This operation will always round down.

n  Most times you will use the floating point division operator
(“/”)

+
Division Operations

print (5/2)!

print (5//2)!

print (-5/2)!

print (-5//2)!

2.5!

2!

-2.5!

-3!

+
Order of Operations

n  Python supports the standard
order of operations (PEMDAS)

n  You can use parenthetical
notation inside your math
expressions to group
operations

n  Ex:

((5+10+20)/60) * 100  
!

+
Programming Challenge

n  Write a program that asks the
user for three price values.

n  Calculate the average price in
a single variable and output it
to the user

+
Calculating an average in a single
step

average_score = (100 + 50 + 88) / 300

+
Exponents

n  You can raise any number to a power by using the “**”
operator

n  Example: 24

!2 ** 4!

+
Programming Challenge:
Calculating the area of a square

+
Remainder Operator (modulo)

n  The modulo operator (“%”) returns the remainder portion of
a division operation

n  Example:

5/2 ! ! !# 2.5  
5%2 ! ! !# 1!

+
Programming Challenge: Time
Calculations

Ask the user to input a number of
seconds as a whole number.
Then express the time value
inputted as a combination of
minutes and seconds.

Enter seconds: 110!

That’s 1 minute and 50
seconds!

+
Converting Math Formulas into
Programming Statements

n  Most math formulas need to be converted into a format that
Python can understand before they can be evaluated

+
Converting Math Formulas into
Programming Statements

10b

(3)(12)

4xy

10 * b

3 * 12

4 * x * y

y = 3 * x / 2

€

y = 3 x
2

+
Programming Challenge:
Investment Planning

n  In this exercise you will ask the user to input the following
values
n  How much money they want to generate

n  An interest rate value

n  How long they’d like to invest their money

n  Calculate how much they will need as an initial investment
Example:
n  You will need ______ dollars to generate ______ dollars at ______

% over _____ years.

+
Programming Challenge:
Investment Planning

n  P = Present Value

n  F = Future Value

n  R = Rate or Return

n  N = Number of Years

€

P =
F

(1+ r)n

+
Mixed Type Expressions

n  Python allows you to mix ints and floats when performing
calculations.

n  The result of a mixed-type expression will evaluate based on
the operands used in the expression

+
Mixed Type Expressions

Operand 1 Operand 2 Result

int int int

float float float

float int float

+
Line Continuation

n  Sometimes expressions can get to be very long

n  You can use the “\” symbol to indicate to Python that you’d
like to continue the expression onto another line

n  Example:

x = 5 + 2 / 7 \  
 + 8 – 12  
!

n  This also works for print() function calls as well

+
Formatting Output with the
print() function

+
Line endings

n  When using the print() function you probably have noticed
that Python automatically places a newline character at the
end of each line

n  You can override this behavior and have Python use a
character of your choice by using the optional ‘end’ argument
when using the print() function

n  Example:

print (‘one’, end=‘’)  
print (‘two’, end=‘’)!

+
Separating print() function
arguments

n  By default, Python will place a space between arguments that
you use in print() function calls

n  You can override this behavior by using the optional ‘sep’
argument

n  Example:

print (‘one’, ‘two’, sep=‘*’)  
 
output: one*two!

+
Combing both line endings and
separators

n  You can use both the ‘sep’ and the ‘end’ arguments at the
same time in the same print() function call.

n  Example:

print (‘a’, ‘b’, ‘c’, sep=‘*’, end=‘’)!

+
Escape Characters

n  Most programming languages support an “escape character”
that allows you to perform special actions inside the confines of
a delimiter.

n  In Python the escape character is the “\” character

n  It causes Python to treat the next character as a “special”
character – in most cases this means that you will ignore the next
character and prevent it from interfering with your delimiter

n  Example:

print ('Hi, I\'m Harry Potter, your professor')!

+
Escape Characters

n  There are a number of special characters you can use in
conjunction with the escape character to perform special
string operations.

n  Example – “\n” – forces a line break.
 
print (‘line 1\nline 2\nline 3\n’)  
 
line 1  
line 2  
line 3!

+
Escape Characters

n  Example – “\t” – forces a tab:

x = 5  
y = 4  
 
print ('X', '\t', 'Y', '\t', 'X*Y’)  
print (x, '\t', y, '\t', x*y)  
 
 
 
X ! Y ! X*Y  
5 ! 4 ! 20!

+
Programming Challenge

n  Write a program that asks the user to enter in 3 products and
3 prices.

n  Format your output to look like the following:

Product ! !Price  
product1 ! !price1  
product2 ! !price2  
product3 ! !price3!

+
String Concatenation

n  You can’t “add” strings together, but you can “concatenate”
them into a single compound string

n  Example:
 
a = input(‘first name’)  
b = input(‘last name’)  
 
c = b + ‘,’ + a  
 
print (c)!

+
String Repetition

n  You can also “multiply” a string by an integer value to
produce a larger string

n  Example:

lyrics = 'Fa ' + 'La ' * 8  
print (lyrics)  
 
Fa La La La La La La La La !

+
The format() function

+
Formatting Strings

n  The format() function can be used to format a string before
you decide to print it out to the user

n  format() takes two arguments – a number and a formatting
pattern (expressed as a string)

n  format() returns a string which can be treated like any other
string (i.e. you can print it out immediately, store its value in a
variable, etc)

+
The Format function

n  The first argument passed to the format function is the item
that you wish to format

n  The second argument passed to the function is the formatting
“pattern” you wish to apply to this item

n  This pattern varies based on what you would like to do to the
item in question

n  Once the pattern is applied to the item the format function
will return a string version of your item with the formatting
pattern applied

+
String Formatting

n  One common use of string formatting is to generate a string
that contains a known # of characters

n  For example, say you have the strings “Harry” and
“Computer Science”. You might want to generate output that
looks like the following given these items:

Name! !Department  
Harry !Computer Science!

n  In this case we need to ensure that the strings “Name” and
“Harry” are the same width so that the strings that come after
them (“Department” and “Computer Science”) line up
correctly.!

+
String Formatting

n  You can use the format() function to “pad” a string with extra
spaces at the beginning or the end of the string.

n  For example:

x = format(‘Harry’, ‘<20s’)!

n  This will generate a new string (x) that contains the string
‘Harry’ plus 15 spaces at the end of the string. The total
length of the string in this case will be 20 characters.

n  The ‘<‘ character in the formatting pattern tells Python to left
justify the string and place the extra spaces at the end of the
new string

+
String Formatting

n  You can also have Python right justify the string and place the
spaces at the beginning of the new string by doing the
following:

b = format(‘Harry’, ‘>20s’)!

+
String Formatting

x = “Hello, World!”!

y = format(x, ‘>20s’)!

print (x)!

>> Hello, World!!

print (y)!

>> Hello, World!!

+
Formatting Numbers

n  The format() function can also be used to generate a
printable string version of a float or integer number

n  format() takes two arguments – a number and a formatting
pattern (expressed as a string)

n  format() returns a string which can be treated like any other
string (i.e. you can print it out immediately, store its value in a
variable, etc)

+
Limiting decimal precision

a = 1/6!

print (a)!

!

b = format (a, '.2f')!

print (b)!

!

0.16666666666666666!

!

0.17!

+
Formatting patterns

a = 10000/6!

b = format (a, ‘.2f’)!

c = format (a, ‘.5f’)!

d = format (a, ‘,.5f’)!

e = format (a, ‘>20,.2f’)!

!

format a as a 2 digit float!

format a as a 5 digit float!

5 digit float + comma separators!

2 digit float, commas + 20
character minimum field width,  
justified to the right!

+
Formatting Percentages

a = 0.52!

!

print (format(a, '%'))!

print (format(a, '.2%'))!

print (format(a, ‘.0%’))!

52.000000%!

52.00%!

52%!

+
Formatting Integers

a = 20000!

!

print (format(a, ',d'))!

print (format(a, ’>20,d'))!

!

!

20,000!

 20,000!

+
Programming Challenge

n  Write a program that generates the 2 times table, like this:

Number 1 ! !Number 2 ! !N1 * N2  
2 ! ! !1 ! ! !2  
2 ! ! !2 ! ! !4  
2 ! ! !3 ! ! !6  
2 ! ! !4 ! ! !8!

