
Programming Languages

Modules and Exceptions

CSCI-GA.2110-001

Summer 2012



Modules

2 / 53

Programs are built out of components called modules.

Each module:

■ has a public interface that defines entities exported by the module
■ may include other (private) entities that are not exported
■ may depend on the entities defined in the interface of another module

(weak external coupling)
■ should define a set of logically related entities (strong internal coupling)



What is a module?

3 / 53

■ different languages use different terms
■ different languages have different semantics for this construct

(sometimes very different)
■ a module is somewhat like a record, but with an important distinction:

◆ record =⇒ consists of a set of names called fields, which refer to
values in the record.

◆ module =⇒ consists of a set of names, which can refer to values,
types, routines, other language-specific entities, and possibly other
modules



Language constructs for modularity

4 / 53

Issues:

■ public interface
■ private implementation
■ dependencies between modules
■ naming conventions of imported entities
■ relationship between modules and files
■ access control: module controls whether a client can access its contents
■ closed module: names must be explicitly imported from outside the

module
■ open module: outside names are accessible inside module (no explicit

import)



Language choices

5 / 53

■ Ada : package declaration and body, with and use clauses, renamings
■ C : header files, #include directives
■ C++ : header files, #include directives, namespaces, using

declarations/directives, namespace alias definitions
■ Java : packages, import statements
■ ML : signature, structure and functor definitions



Ada: Packages

6 / 53

package Queues is

Size: constant Integer := 1000;

type Queue is private; -- information hiding

procedure Enqueue (Q: in out Queue , Elem: Integer );

procedure Dequeue (Q: in out Queue; Elem: out Integer );

function Empty (Q: Queue) return Boolean;

function Full (Q: Queue) return Boolean;

function Slack (Q: Queue) return Integer;

-- overloaded operator "=":

function "=" (Q1 , Q2: Queue) return Boolean;

private

... -- concern of implementation , not of package client

end Queues;



Private parts and information hiding

7 / 53

package Queues is

... -- visible declarations

private

type Storage is

array (Integer range <>) of Integer;

type Queue is record

Front: Integer := 0; -- next elem to remove

Back: Integer := 0; -- next available slot

Contents: Storage (0 .. Size -1); -- actual contents

Num: Integer := 0;

end record;

end Queues;



Implementation of Queues

8 / 53

package body Queues is

procedure Enqueue (Q: in out Queue;

Elem: Integer) is

begin

if Full(Q) then

-- need to signal error: raise exception

else

Q.Contents(Q.Back) := Elem;

end if;

Q.Num := Q.Num + 1;

Q.Back := (Q.Back + 1) mod Size;

end Enqueue;



Predicates on queues

9 / 53

function Empty (Q: Queue) return Boolean is

begin

return Q.Num = 0; -- client cannot access

-- Num directly

end Empty;

function Full (Q: Queue) return Boolean is

begin

return Q.Num = Size;

end Full;

function Slack (Q: Queue) return Integer is

begin

return Size - Q.Num;

end Slack;



Operator Overloading

10 / 53

function "=" (Q1, Q2 : Queue) return Boolean is

begin

if Q1.Num /= Q2.Num then

return False;

else

for J in 1 .. Q1.Num loop

-- check corresponding elements

if Q1.Contents ((Q1.Front + J - 1) mod Size) /=

Q2.Contents ((Q2.Front + J - 1) mod Size)

then

return False;

end if;

end loop;

return True; -- all elements are equal

end if;

end "="; -- operator "/=" implicitly defined

-- as negation of "="



Client can only use visible interface

11 / 53

with Queues; use Queues; with Text_IO;

procedure Test is

Q1, Q2: Queue; -- local objects of a private type

Val : Integer;

begin

Enqueue(Q1, 200); -- visible operation

for J in 1 .. 25 loop

Enqueue(Q1 , J);

Enqueue(Q2 , J);

end loop;

Dequeue(Q1, Val); -- visible operation

if Q1 /= Q2 then

Text_IO.Put_Line("lousy implementation");

end if;

end Test;



Implementation

12 / 53

■ package body holds bodies of subprograms that implement interface
■ package may not require a body:

package Days is

type Day is (Mon , Tue , Wed , Thu , Fri , Sat , Sun);

subtype Weekday is Day range Mon .. Fri;

Tomorrow: constant array (Day) of Day

:= (Tue , Wed , Thu , Fri , Sat , Sun , Mon);

Next_Work_Day: constant array (Weekday) of Weekday

:= (Tue , Wed , Thu , Fri , Mon);

end Days;



Syntactic sugar: use and renames

13 / 53

Visible entities can be denoted with an expanded name:

with Text_IO;

...

Text_IO.Put_Line("hello");

use clause makes name of entity directly usable:

with Text_IO; use Text_IO;

...

Put_Line("hello");

renames clause makes name of entity more manageable:

with Text_IO;

package T renames Text_IO;

...

T.Put_Line("hello");



Sugar can be indispensable

14 / 53

with Queues;

procedure Test is

Q1 , Q2: Queues.Queue;

begin

if Q1 = Q2 then ...

-- error: "=" is not directly visible

-- must write instead: Queues ."="(Q1, Q2)

Two solutions:

■ import all entities:

use Queues;

■ import operators only:

use type Queues.Queue;



C++ namespaces

15 / 53

■ late addition to the language
■ an entity requires one or more declarations and a single definition
■ a namespace declaration can contain both, but definitions may also be

given separately

// in .h file

namespace util {

int f (int); /* declaration of f */

}

// in .cpp file

namespace util {

int f (int i) {

// definition provides body of function

...

}

}



Dependencies between modules in C++

16 / 53

■ files have semantic significance: #include directives means textual
substitution of one file in another

■ convention is to use header files for shared interfaces

#include <iostream > // import declarations

int main () {

std::cout << "C++ is really different"

<< std::endl;

return 0;

}



Header files are visible interfaces

17 / 53

namespace stack { // in file stack.h

void push (char);

char pop ();

}

#include "stack.h" // import into client file

void f () {

stack::push(’c’);

if (stack::pop() != ’c’) error("impossible");

}



Namespace Definitions

18 / 53

#include "stack.h" // import declarations

namespace stack { // the definition

const unsigned int MaxSize = 200;

char v[MaxSize ];

unsigned int numElems = 0;

void push (char c) {

if (numElems >= MaxSize)

throw std:: out_of_range("stack overflow");

v[numElems ++] = c;

}

char pop () {

if (numElems == 0)

throw std:: out_of_range("stack underflow");

return v[--numElems ];

}

}



Syntactic sugar: using declarations

19 / 53

namespace queue { // works on single queue

void enqueue (int);

int dequeue ();

}

#include "queue.h" // in client file

using queue:: dequeue; // selective: a single entity

void f () {

queue:: enqueue (10); // prefix needed for enqueue

queue:: enqueue ( -999);

if (dequeue () != 10) // but not for dequeue

error("buggy implementation");

}



Wholesale import: the using directive

20 / 53

#include "queue.h" // in client file

using namespace queue; // import everything

void f () {

enqueue (10); // prefix not needed

enqueue ( -999);

if (dequeue () != 10) // for anything

error("buggy implementation");

}



Shortening names

21 / 53

Sometimes, we want to qualify names, but with a shorter name.

In Ada:

package PN renames A.Very_Long.Package_Name;

In C++:

namespace pn = a:: very_long :: package_name;

We can now use PN as the qualifier instead of the long name.



Visibility: Koenig lookup

22 / 53

When an unqualified name is used as the postfix-expression in a function call
(expr.call), other namespaces not considered during the usual unqualified
look up (basic.lookup.unqual) may be searched; this search depends on the
types of the arguments.

For each argument type T in the function call, there is a set of zero or more
associated namespaces to be considered. The set of namespaces is determined
entirely by the types of the function arguments. typedef names used to
specify the types do not contribute to this set.

The set of namespaces are determined in the following way:



Koenig lookup: details

23 / 53

■ If T is a primitive type, its associated set of namespaces is empty.
■ If T is a class type, its associated namespaces are the namespaces in

which the class and its direct and indirect base classes are defined.
■ If T is a union or enumeration type, its associated namespace is the

namespace in which it is defined.
■ If T is a pointer to U, a reference to U, or an array of U, its associated

namespaces are the namespaces associated with U.
■ If T is a pointer to function type, its associated namespaces are the

namespaces associated with the function parameter types and the
namespaces associated with the return type. [recursive]



Koenig Example

24 / 53

namespace NS

{

class A {};

void f( A *&, int ) {}

}

int main()

{

NS::A *a;

f( a, 0 ); //calls NS::f

}



Linking

25 / 53

■ an external declaration for a variable indicates that the entity is defined
elsewhere

extern int x; // will be found later

■ a function declaration indicates that the body is defined elsewhere
■ multiple declarations may denote the same entity

extern int x; // in some other file

■ an entity can only be defined once
■ missing/multiple definitions cannot be detected by the compiler: link-time

errors



Modules in Java

26 / 53

■ package structure parallels file system
■ a package corresponds to a directory
■ a class is compiled into a separate object file
■ each class declares the package in which it appears (open structure)

package polynomials;

class poly {

... // in file .../ alg/polynomials/poly.java

}

package polynomials;

class iterator {

... // in file .../ alg/polynomials/iterator.java

}

Default: anonymous package in current directory.



Dependencies between classes

27 / 53

■ dependencies indicated with import statements:

import java.awt.Rectangle; // declared in java.awt

import java.awt.*; // import all classes

// in package

■ no syntactic sugar across packages: use expanded names
■ none needed in same package: all classes in package are directly visible to

each other



Modules in ML

28 / 53

There are three entities:

■ signature : an interface
■ structure : an implementation
■ functor : a parameterized structure

A structure implements a signature if it defines everything mentioned in
the signature (in the correct way).



ML signature

29 / 53

An ML signature specifies an interface for a module.

signature STACKS =

sig

type stack

exception Underflow

val empty : stack

val push : char * stack -> stack

val pop : stack -> char * stack

val isEmpty : stack -> bool

end



ML structure

30 / 53

A structure provides an implementation.

structure Stacks : STACKS =

struct

type stack = char list

exception Underflow

val empty = [ ]

val push = op::

fun pop (c::cs) = (c, cs)

| pop [] = raise Underflow

fun isEmpty [] = true

| isEmpty _ = false

end



ML functor

31 / 53

A functor creates a structure from a structure.

signature TOTALORDER = sig

type element;

val lt : element * element -> bool;

end;

functor MakeBST(Lt: TOTALORDER ):

sig

type ’label btree;

exception EmptyTree;

val create : Lt.element btree;

val lookup : Lt.element * Lt.element btree

-> bool;

val insert : Lt.element * Lt.element btree

-> Lt.element btree;



Functors (cont’d)

32 / 53

val deletemin : Lt.element btree ->

Lt.element * Lt.element btree;

val delete : Lt.element * Lt.element btree

-> Lt.element btree;

end = struct

open Lt;

datatype ’label btree = Empty |

Node of ’label * ’label btree * ’label btr

val create = Empty;

fun lookup(x, Empty) = ...;

fun insert(x, Empty) = ...;

exception EmptyTree;

fun deletemin(Empty) = ...;

fun delete(x,Empty) = ...;

end;



Comparisons

33 / 53

structure String : TOTALORDER =

struct

type element = string;

fun lt(x,y) =

let

fun lower(nil) = nil |

lower(c::cs) =

(Char.toLower c):: lower(cs);

in

implode(lower(explode(x))) <

implode(lower(explode(y)))

end;

end;

structure StringBST = MakeBST(String );



Comparisons

34 / 53

Ada C++ Java ML

used to avoid name clashes ✔ ✔ ✔ ✔

access control ✔ weak ✔ ✔

is closed ✔ ✘ ✘ ✔

Relation between interface and implementation:

■ Ada :

one package (interface) ⇔ one package body

■ ML :

one signature can be implemented by many structures
one structure can implement many signatures



Exceptions

35 / 53

General mechanism for handling abnormal conditions

One way to improve robustness of programs is to handle errors. How can we
do this?

We can check the result of each operation that can go wrong (e.g., popping
from a stack, writing to a file, allocating memory).

Unfortunately, this has a couple of serious disadvantages:

1. it is easy to forget to check
2. writing all the checks clutters up the code and obfuscates the common

case (the one where no errors occur)

Exceptions let us write clearer code and make it easier to catch errors.



Predefined exceptions in Ada

36 / 53

■ Defined in Standard:

◆ Constraint_Error : value out of range
◆ Program_Error : illegality not detectable at compile-time:

unelaborated package, exception during finalization, etc.
◆ Storage_Error : allocation cannot be satisfied (heap or stack)
◆ Tasking_Error : communication failure

■ Defined in Ada.IO_Exceptions:

◆ Data_Error, End_Error, Name_Error, Use_Error, Mode_Error,
Status_Error, Device_Error



Handling exceptions

37 / 53

Any begin-end block can have an exception handler:

procedure Test is

X: Integer := 25;

Y: Integer := 0;

begin

X := X / Y;

exception

when Constraint_Error =>

Put_Line("did you divide by 0?");

when others =>

Put_Line("out of the blue!");

end;



A common idiom

38 / 53

function Get_Data return Integer is

X: Integer;

begin

loop

begin

Get(X);

return X; -- if got here , input is valid ,

-- so leave loop

exception

when others =>

Put_Line("input must be integer , try again");

-- will restart loop to wait for a good input

end;

end loop;

end;



User-defined Exceptions

39 / 53

package Stacks is

Stack_Empty: exception;

...

end Stacks;

package body Stacks is

procedure Pop (X: out Integer;

From: in out Stack) is

begin

if Empty(From)

then raise Stack_Empty;

else ...

end Pop;

...

end Stacks;



The scope of exceptions

40 / 53

■ an exception has the same visibility as other declared entities: to handle
an exception it must be visible in the handler (e.g., caller must be able to
see Stack_Empty).

■ an others clause can handle unnamed exceptions

when others =>

Put_Line("disaster somewhere");

raise; -- propagate exception ,

-- program will terminate



Exception run-time model

41 / 53

How to propagate an exception:

1. When an exception is raised, the current sequence of statements is
abandoned (e.g., current Get and return in example)

2. Starting at the current frame, if we have an exception handler, it is
executed, and the current frame is completed.

3. Otherwise, the frame is discarded, and the enclosing dynamic scopes are
examined to find a frame that contains a handler for the current
exception (want dynamic as opposed to static scopes because those are
values that caused the problem).

4. If no handler is found, the program terminates.

Note: The current frame is never resumed.



Exception information

42 / 53

■ an Ada exception is a label, not a value: we cannot declare exception
variables and then assign to them

■ but an exception occurrence is a value that can be stored and examined
■ an exception occurrence may include additional information: source

location of occurrence, contents of stack, etc.
■ predefined package Ada.Exceptions contains needed machinery



Ada.Exceptions (part of std libraries)

43 / 53

package Ada.Exceptions is

type Exception_Id is private;

type Exception_Occurrence is limited private;

function Exception_Identity (X: Exception_Occurrence )

return Exception_Id;

function Exception_Name (X: Exception_Occurrence )

return String;

procedure Save_Occurrence

(Target: out Exception_Occurrence ;

Source: Exception_Occurrence );

procedure Raise_Exception (E: Exception_Id;

Message: in String := "")

...

end Ada.Exceptions;



Using exception information

44 / 53

begin

...

exception

when Expected: Constraint_Error =>

-- Expected has details

Save_Occurrence(Event_Log , Expected );

when Trouble: others =>

Put_Line("unexpected " &

Exception_Name(Trouble) &

" raised");

Put_Line("shutting down");

raise;

end;



Exceptions in C++

45 / 53

■ similar runtime model,...
■ but exceptions are bona-fide values,
■ handlers appear in try/catch blocks

try {

some_complex_calculation ();

} catch (const RangeError& e) {

// RangeError might be raised

// in some_complex_calculation

cerr << "oops\n";

} catch (const ZeroDivide& e) {

// same for ZeroDivide

cerr << "why is denominator zero?\n";

}



Defining and throwing exceptions

46 / 53

The program throws an object. There is nothing needed in the declaration of
the type to indicate it will be used as an exception.

struct ZeroDivide {

int lineno;

ZeroDivide (...) { ... } // constructor

...

};

...

if (x == 0)

throw ZeroDivide (...); // call constructor

// and go



Exceptions and inheritance

47 / 53

A handler names a class, and can handle an object of a derived class as well:

class Matherr { }; // a bare object , no info

class Overflow : public Matherr {...};

class Underflow : public Matherr {...};

class ZeroDivide : public Matherr {...};

try {

weatherPredictionModel (...);

} catch (const Overflow& e) {

// e.g., change parameters in caller

} catch (const Matherr& e) {

// Underflow , ZeroDivide handled here

} catch (...) {

// handle anything else (ellipsis)

}



Exceptions in Java

48 / 53

■ Model and terminology similar to C++:

◆ exceptions are objects that are thrown and caught
◆ try blocks have handlers, which are examined in succession
◆ a handler for an exception can handle any object of a derived class

■ Differences:

◆ all exceptions are extensions of predefined class Throwable
◆ checked exceptions are part of method declaration
◆ the finally clause specifies clean-up actions

■ in C++, cleanup actions are idiomatically done in destructors



Exception class hierarchy

49 / 53

Throwable

Error Exception

■ System errors are extensions of Error and RuntimeException; these are
unchecked exceptions. Examples: ClassCastException,
NullPointerException, OutOfMemoryError.

■ All other exception classes are checked. These exceptions must be either
handled or declared in the method that throws them; this is checked by
the compiler.



If a method might throw an exception,
callers should know about it

50 / 53

public void replace (String name ,

Object newValue) throws NoSuch

{

Attribute attr = find(name);

if (attr == null) throw new NoSuch(name);

newValue.update(attr);

}



Mandatory cleanup actions

51 / 53

Some cleanups must be performed whether the method terminates normally
or throws an exception.

public void parse (String file) throws IOException {

BufferedReader input =

new BufferedReader(new FileReader(file ));

try {

while (true) {

String s = input.readLine ();

if (s == null) break;

parseLine(s); // may fail somewhere

}

} finally {

if (input != null) input.close ();

} // regardless of how we exit

}



Exceptions in ML

52 / 53

■ runtime model similar to Ada/C++/Java
■ exception is a single type (like a datatype but dynamically extensible)
■ declaring new sorts of exceptions:

exception StackUnderflow

exception ParseError of { line: int , col: int }

■ raising an exception:

raise StackUnderflow

raise (ParseError { line = 5, col = 12 })

■ handling an exception:

expr1 handle pattern => expr2

If an exception is raised during evaluation of expr1, and pattern

matches that exception, expr2 is evaluated instead



A closer look

53 / 53

exception DivideByZero

fun f i j =

if j <> 0

then i div j

else raise DivideByZero

(f 6 2

handle DivideByZero => 42) (* evaluates to 3 *)

(f 4 0

handle DivideByZero => 42) (* evaluates to 42 *)

Typing issues:

■ the type of the body and the handler must be the same
■ the type of a raise expression can be any type

(whatever type is appropriate is chosen)


	Modules
	What is a module?
	Language constructs for modularity
	Language choices
	Ada: Packages
	Private parts and information hiding
	Implementation of Queues
	Predicates on queues
	Operator Overloading
	Client can only use visible interface
	Implementation
	Syntactic sugar: use and renames
	Sugar can be indispensable
	C++ namespaces
	Dependencies between modules in C++
	Header files are visible interfaces
	Namespace Definitions
	Syntactic sugar: using declarations
	Wholesale import: the using directive
	Shortening names
	Visibility: Koenig lookup
	Koenig lookup: details
	Koenig Example
	Linking
	Modules in Java
	Dependencies between classes
	Modules in ML
	ML signature
	ML structure
	ML functor
	Functors (cont'd)
	Comparisons
	Comparisons
	Exceptions
	Predefined exceptions in Ada
	Handling exceptions
	A common idiom
	User-defined Exceptions
	The scope of exceptions
	Exception run-time model
	Exception information
	Ada.Exceptions (part of std libraries)
	Using exception information
	Exceptions in C++
	Defining and throwing exceptions
	Exceptions and inheritance
	Exceptions in Java
	Exception class hierarchy
	If a method might throw an exception, callers should know about it
	Mandatory cleanup actions
	Exceptions in ML
	A closer look

