
Programming Languages

Concurrency & Generics

CSCI-GA.2110-001

Summer 2012

Concurrent programming

2 / 58

■ synchronous and asynchronous models of communication
■ description of concurrent, independent activities
■ a task is an independent thread of control, with own stack, program

counter and local environment.
■ Ada tasks communicate through

◆ rendezvous (think “meeting someone for a date”)
◆ shared variables
◆ protected objects

■ Java threads communicate through shared objects (preferably
synchronized)

■ C++ has had no core language support for concurrency. Now supported
in the new standard.

Task Declarations (Ada)

3 / 58

A task type is a limited type

task type Worker; -- declaration;

-- public interface

type Worker_Id is access Worker;

task body Worker is -- actions performed in lifetime

begin

loop -- Runs forever;

compute; -- will be shutdown

end loop; -- from the outside.

end Worker;

More Task Declarations

4 / 58

■ a task type can be a component of a composite
■ number of tasks in a program is not fixed at compile-time.

W1 , W2: Worker; -- two individual tasks

type Crew is array (Integer range <>) of Worker;

First_Shift: Crew (1 .. 10); -- group of tasks

type Monitored is record

Counter: Integer;

Agent: Worker;

end record;

Task Activation

5 / 58

When does a task start running?

• if statically allocated =⇒ at the next begin
• if dynamically allocated =⇒ at the point of allocation

declare

W1, W2: Worker;

Joe: Worker_Id := new Worker; -- Starts working now

Third_Shift: Crew (1..N); -- N tasks

begin -- activate W1, W2, and the Third_Shift

...

end; -- wait for them to complete

-- Joe will keep running

Task Services

6 / 58

■ a task can perform some actions on request from another task
■ the interface (declaration) of the task specifies the available actions

(entries)
■ a task can also execute some actions on its own behalf, without external

requests or communication

task type Device is

entry Read (X: out Integer);

entry Write (X: Integer);

end Device;

Synchronization: The Rendezvous

7 / 58

■ caller makes explicit request: entry call

■ callee (server) states its availability: accept statement

■ if server is not available, caller blocks and queues up on the entry for later
service

■ if both present and ready, parameters are transmitted to server
■ server performs action
■ out parameters are transmitted to caller
■ caller and server continue execution independently

Example: semaphore

8 / 58

Simple mechanism to prevent simultaneous access to a critical section: code
that cannot be executed by more than one task at a time

task type semaphore is

entry P; -- Dijkstra ’s terminology

entry V; -- from the Dutch

-- Proberen te verlangen (wait) [P];

-- verhogen [V] (post when done)

end semaphore;

task body semaphore is

begin

loop

accept P;

-- won ’t accept another P

-- until a caller asks for V

accept V;

end loop;

end semaphore;

Using a semaphore

9 / 58

■ A task that needs exclusive access to the critical section executes:

Sema : semaphore;

...

Sema.P;

-- critical section code

Sema.V;

■ If in the meantime another task calls Sema.P, it blocks, because the
semaphore does not accept a call to P until after the next call to V: the
other task is blocked until the current one releases by making an entry call
to V.

■ programming hazards:
• someone else may call V =⇒ race condition
• no one calls V =⇒ other callers are livelocked

Delays and Time

10 / 58

■ A delay statement can be executed anywhere at any time, to make
current task quiescent for a stated interval:

delay 0.2; -- type is Duration , unit is seconds

■ We can also specify that the task stop until a certain specified time:

delay until Noon; -- Noon defined elsewhere

Conditional Communication

11 / 58

■ need to protect against excessive delays, deadlock, starvation, caused by
missing or malfunctioning tasks

■ timed entry call: caller waits for rendezvous a stated amount of time:

select

Disk.Write(Value => 12,

Track => 123); -- Disk is a task

or

delay 0.2;

end select;

■ if Disk does not accept within 0.2 seconds, go do something else

Conditional Communication (ii)

12 / 58

■ conditional entry call: caller ready for rendezvous only if no one else is
queued, and rendezvous can begin at once:

select

Disk.Write(Value => 12, Track => 123);

else

Put_Line("device busy");

end select;

■ print message if call cannot be accepted immediately

Conditional communication (iii)

13 / 58

■ the server may accept a call only if the internal state of the task is
appropriate:

select

when not Full =>

accept Write (Val: Integer) do ... end;

or

when not Empty =>

accept Read (Var: out Integer) do ... end;

or

delay 0.2; -- maybe something will happen

end select;

■ if several guards are open and callers are present, any one of the calls may
be accepted – non-determinism

Concurrency in Java

14 / 58

■ Two notions

◆ class Thread

◆ interface Runnable

■ An object of class Thread is mapped into an operating system primitive

interface Runnable {

public void run ();

}

■ Any class can become a thread of control by supplying a run method

class R implements Runnable { ... }

Thread t = new Thread(new R(...));

t.start ();

Threads at work

15 / 58

class PingPong extends Thread {

private String word;

private int delay;

PingPong (String whatToSay , int delayTime) {

word = whatToSay; delay = delayTime;

}

public void run () {

try {

for (;;) { // infinite loop

System.out.print(word + " ");

sleep(delay); // yield processor

}

} catch (InterruptedException e) {

return; // terminate thread

}

}

}

Activation and execution

16 / 58

public static void main (String [] args) {

new PingPong("ping", 33). start (); // activate

new PingPong("pong", 100). start (); // activate

}

■ call to start activates thread, which executes run method
■ threads can communicate through shared objects
■ classes can have synchronized methods to enforce critical sections

Threads in C++11

17 / 58

■ C++ didn’t have native thread support until C++11.
■ Previously had to use external libraries like pthreads, Boost

OpenThreads, etc.
■ Full state-of-the-art thread support now included in C++.
■ One-to-one mapping to operating system threads.
■ Based on the Boost thread library.

Example Thread Class

18 / 58

class Runnable

{

std:: thread mthread;

Runnable(Runnable const&) = delete;

Runnable& operator =(Runnable const&) = delete;

public:

virtual ~Runnable () { try { stop (); }

catch (...) { /* clean up */ } }

virtual void run() = 0;

void stop() { mthread.join (); }

void start()

{ mthread = std:: thread (& Runnable ::run , *this); }

};

Use of Thread Class

19 / 58

class myThread : public Runnable

{

protected:

void run() { /* do something */ }

};

Mutual exclusion can be acheived as follows:

static std::mutex pmm;

void mySynchronizedFunction () {

std::lock_guard <std::mutex > myLock(pmm);

// critical area

// unlocked automatically on return

}

Automatic Threads & Futures

20 / 58

int main()

{

std::future <int > sol=std:: launch ::async(subset_sum);

do_other_stuff (); // while subset sum is computing

std::cout <<"The solution to subset sum is: "

<< sol.get()<<std::endl;

}

Variable sol is called a future (a promise to deliver a result in the future).
Method get blocks until the future returns.

Invocation of the asynchronous thread, synchronization and communication
between main and asynchronous threads all happen automatically.

Replacing async with sync will cause subset_sum to become a deferred

function, which runs entirely during the call to get.

C++ Thread Summary

21 / 58

■ Future: an object held by the receiver of a communication.
■ To get the value from a future, call future::get.
■ Function future::get will block until the value is available.
■ Can also call future::has_value which checks for a waiting result

without blocking.

■ Promise: a channel through which a value is communicated to a future.
■ The promise object (if any) is handled by the communication sender.
■ Promises can be implicit or explicit.
■ Values are sent through promises implicitly when the thread returns.
■ Values are sent explicitly ordinarily using promise::set_value.
■ Explicit normally used for manual thread management (e.g., multiple

values must be communicated during the lifetime of a thread.)

Generic programming

22 / 58

Allows for type-independent data structures and functions.

Examples:

■ A sorting algorithm has the same structure, regardless of the types being
sorted

■ Stack primitives have the same semantics, regardless of the objects stored
on the stack.

One common use:

■ algorithms on containers: updating, iteration, search

Language models:

■ C: macros (textual substitution) or unsafe casts
■ Ada: generic units and instantiations
■ C++, Java, C#: templates
■ ML: parametric polymorphism, functors

Parameterizing software components

23 / 58

Construct generic parameter(s) are:

array bounds, element type
Ada generic package values, types, packages
Ada generic subprogram values, types
C++ class template values, types
C++ function template values, types
Java generics (all) classes, interfaces
ML function implicit
ML type constructor types
ML functor structures (containing types, values)

Templates in C++

24 / 58

template <typename T>

class Vector {

public:

explicit Vector (size_t); // constructor

T& operator [] (size_t); // subscript operator

... // other operations

private:

... // a size and a pointer to an array

};

Vector <int > V1 (100); // instantiation

Vector <int > V2; // use default constructor

typedef Vector <employee > Dept; // named instance

Class and value parameters

25 / 58

template <typename T, unsigned int i>

class Buffer {

T v[i]; // storage for buffer

unsigned int sz; // total capacity

unsigned int count; // current contents

public:

Buffer () : sz(i), count (0) { }

T read ();

void write (const T& elem);

};

Buffer <Shape *, 100> picture;

Type operations—static duck typing?

26 / 58

template <typename T> class List {

struct Link { // for a list node

Link *pre , *succ; // doubly linked

T val;

Link (Link *p, Link *s, const T& v)

: pre(p), succ(s), val(v) { }

};

Link *head;

public:

void print (std:: ostream& os) {

for (Link *p = head; p; p = p->succ)

// operator << must exist for T

// if print will be used.

os << p->val << "\n";

}

};

Function templates

27 / 58

Instantiated implicitly at point of call:

template <typename T>

void sort (vector <T>&) { ... }

void testit (vector <int >& vi) {

sort(vi); // implicit instantiation

// can also write sort <int >(vi);

}

Implementation of C++ templates

28 / 58

■ Template types are not initially not known.
■ Uninstantiated templates are not & cannot be compiled.
■ Generic definitions must be written completely in header files.
■ Once fully instantiated, all types become known.
■ Compiler generates classes, functions from the template.
■ Compilation proceeds in the usual manner after this.
■ Compiler may optimize by reusing multiple occurrences of a fully

instantiated template.

Partial and Explicit Specialization

29 / 58

Templates and regular functions overload each other:

template <typename T> class Complex {...};

template <typename T> T sqrt (T); // template

template <typename T> Complex <T> sqrt (Complex <T>);

// partial specialization

double sqrt (double); // explicit specialization

void testit (Complex <double > cd) {

sqrt (2); // sqrt <int >

sqrt (2.0); // sqrt (double): regular function

sqrt(cd); // sqrt <complex <double > >

}

Partial specialization narrows the set of acceptable template parameters.
Compiler will select the most specialized (specific) type.

Iterators and containers

30 / 58

■ Containers are data structures to manage collections of items
■ Typical operations: insert, delete, search, count
■ Typical algorithms over collections use:

◆ imperative languages: iterators
◆ functional languages: map, fold, recursion

interface Iterator <E> {

boolean hasNext (); // returns true if there are

// more elements

E next (); // returns the next element

void remove (); // removes the current element

// from the collection

};

The Standard Template Library

31 / 58

STL: A set of useful data structures and algorithms in C++, mostly to
handle collections.

■ Sequential containers: list, vector, deque
■ Associative containers: set, map

We can iterate over these using (what else?) iterators.

Iterators provided (for vector<T>):

vector <T>:: iterator

vector <T>:: const_iterator

vector <T>:: reverse_iterator

vector <T>:: const_reverse_iterator

Iterator concepts: trivial, input, output, forward, bidirectional, and random
access.

Iterators in C++

32 / 58

For standard collection classes, we have member functions begin and end

that return iterators.

We can do the following with an iterator p:
*p “Dereference” it to get the element it points to (trivial)
++p, p++ Advance it to point to the next element (forward)
--p, p-- Retreat it to point to the previous element (bidirectional)
p+i, p-i Advance/retreat it i times (random access)
p[i] Access index i (random access)

A sequence is defined by a pair of iterators:

■ the first points to the first element in the sequence.
■ the second points to one past the last element in the sequence. Cannot

deference, but must still be valid.

There are a wide variety of operations that work on sequences.

Iterator example

33 / 58

#include <vector >

#include <string >

#include <iostream >

int main () {

using namespace std;

vector <string > ss(20); // initialize to 20 empty strings

for (int i = 0; i < 20; i++)

ss[i] = string(1, ’a’+i); // assign "a", "b", etc.

vector <string >:: iterator loc =

find(ss.begin(), ss.end(), "d"); // find first "d"

cout << "found: " << *loc

<< " at position " << loc - ss.begin()

<< endl;

}

STL algorithms, part 1

34 / 58

STL provides a wide variety of standard “algorithms” on sequences.

Example: finding an element that matches a given condition

// Find first 7 in the sequence

list <int >:: iterator p = find(c.begin(), c.end(), 7);

// Find first number less than 7 in the sequence

bool less_than_7 (int v) {

return v < 7;

}

list <int >:: iterator p = find_if(c.begin(), c.end(),

less_than_7);

// C++11:

auto p = find_if(c.begin(), c.end(), less_than_7);

STL algorithms, part 2

35 / 58

Example: doing something for each element of a sequence

It is often useful to pass a function or something that acts like a function:

template <typename T>

class Sum {

T res;

public:

Sum (T i = 0) : res(i) { } // initialize

void operator () (T x) { res += x; } // accumulate

T result () const { return res; } // return sum

};

void f (list <double >& ds) {

Sum <double > sum;

sum = for_each(ds.begin(), ds.end(), sum);

cout << "the sum is " << sum.result () << "\n";

}

Function objects

36 / 58

template <typename Arg , typename Res > struct unary_function {

typedef Arg argument_type;

typedef Res result_type;

};

struct R { string name; ... };

class R_name_eq : public unary_function <R, bool > {

string s;

public:

explicit R_name_eq (const string& ss) : s(ss) { }

bool operator () (const R& r) const { return r.name == s; }

};

void f (list <R>& lr) {

list <R>:: iterator p = find_if(lr.begin(), lr.end(),

R_name_eq("Joe"));

...

}

Binary function objects

37 / 58

template <typename Arg , typename Arg2 , typename Res >

struct binary_function {

typedef Arg first_argument_type;

typedef Arg2 second_argument_type ;

typedef Res result_type;

};

template <typename T>

struct less : public binary_function <T,T,bool > {

bool operator () (const T& x, const T& y) const {

return x < y;

}

};

Currying with function objects

38 / 58

template <typename BinOp >

class binder2nd

: public unary_function <typename BinOp :: first_argument_type ,

typename BinOp :: result_type > {

protected:

BinOp op;

typename BinOp :: second_argument_type arg2;

public:

binder2nd (const BinOp& x,

const typename BinOp :: second_argument_type& v)

: op(x), arg2(v) { }

return_type operator () (const argument_type& x) const {

return op(x, arg2);

}

};

template <typename BinOp , typename T>

binder2nd <BinOp > bind2nd (const BinOp& op, const T& v) {

return binder2nd <BinOp > (op , v);

}

Partial application with function objects

39 / 58

void f (const list <int >& xs , int limit) {

list <int >:: const_iterator it =

find_if(xs.begin(), xs.end(),

bind2nd(less <int >(), limit));

int num = it != xs.end() ? *it : limit;

...

}

“Is this readable? ... The notation is logical, but it takes some
getting used to.” – Stroustrup, p. 520

Equivalent to the following in ML:

fun f xs limit =

let val optNum = List.find (fn x => x < limit) xs

val num = Option.getOpt (optNum , limit)

in ...

end

C++ templates are Turing complete

40 / 58

Templates in C++ allow for arbitrary computation to be done
at compile time!

template <int N> struct Factorial {

enum { V = N * Factorial <N-1>::V };

};

template <> struct Factorial <1> {

enum { V = 1 };

};

void f () {

const int fact12 = Factorial <12 >::V;

cout << fact12 << endl; // 479001600

}

Generics in Java

41 / 58

Only class parameters (no value)

Implementation by type erasure: all instances share the same code

Unlike C++, generics are fully compilable (uninstantiated).

interface Collection <E> {

public void add (E x);

public Iterator <E> iterator ();

}

Collection <Thing> is a parametrized type

Collection (by itself) is a raw type!

Generic methods in Java

42 / 58

class Collection <A extends Comparable <A>> {

public A max () {

Iterator <A> xi = this.iterator ();

A biggest = xi.next ();

while (xi.hasNext ()) {

A x = xi.next ();

if (biggest.compareTo(x) < 0)

biggest = x;

}

return biggest;

}

...

}

Functors in ML

43 / 58

Functors yield structures, similar to the way C++ templates yield concrete
classes.

Why functors, when we have parametric polymorphic functions and type
constructors (e.g., containers)?

■ Functors can take structures as arguments. This is not possible with
functions or type constructors.

■ Sometimes a type needs to be parameterized on a value. This is not
possible with type constructors.

Example functor: the signature

44 / 58

Similar to an interface (Java) or forward declaration (C++).

signature SET =

sig

type elem

type set

val empty : set

val singleton : elem -> set

val member : elem * set -> bool

val union : set * set -> set

...

end

Example functor: the implementation

45 / 58

functor SetFn (type elem
val compare : elem * elem -> order) : SET =

structure
type elem = elem
datatype set = EMPTY

| SINGLE of elem
| PAIR of set * set

val empty = EMPTY
val singleton = SINGLE

fun member (e, EMPTY) = false
| member (e, SINGLE e’) = compare (e, e’) = EQUAL
| member (e, PAIR (s1,s2)) = member (e, s1) orelse

member (e, s2)
...

end

Example functor: the instantiation

46 / 58

structure IntSet =

SetFn (type elem = int

compare = Int.compare)

structure StringSet =

SetFn (type elem = string

compare = String.compare)

fun cmp (is1 , is2) = ...

structure IntSetSet = SetFn (type elem = IntSet.set

compare = cmp)

Compare functor implementation with a polymorphic type: how are element
comparisons done?

Generics in Ada95

47 / 58

I/O for integer types.

Identical implementations, but need separate procedures for strong-typing
reasons.

generic

type Elem is range <>; -- any integer type

package Integer_IO is

procedure Put (Item: Elem);

...

end Integer_IO;

A generic Package

48 / 58

generic

type Elem is private; -- parameter

package Stacks is

type Stack is private;

procedure Push (X: Elem; On: in out Stack);

...

private

type Cell; -- linked list

type Stack is access Cell; -- representation

type Cell is record

Val: Elem;

Next: Ptr;

end record;

end Stacks;

Instantiations

49 / 58

with Stacks;
procedure Test_Stacks is

package Int_Stack
is new Stacks (Integer); -- list of integers

package Float_Stack
is new Stacks (Float); -- list of floats

S1: Int_Stack.Stack; -- stack objects
S2: Float_Stack.Stack;

use Int_Stack , Float_Stack; -- OK, regular packages
begin

Push(15, S1);
Push (3.5 * Pi, S2);
...

end Test_Stacks;

Type parameter restrictions

50 / 58

The syntax is: type T is ...;

Restriction Meaning

private any type with basic operations (e.g., assignment, equality)
limited private any type (no required operations)
range <> any integer type (arithmetic operations)
(<>) any discrete type (enumeration or integer)
digits <> any floating-point type
delta <> any fixed-point type

Within the generic, the operations that apply to any type of the class can be
used.

The instantiation must use a specific type of the class.

A generic function

51 / 58

generic
type T is range <>; -- parameter of some integer type
type Arr is array (Integer range <>) of T;

-- parameter is array of those
function Sum_Array (A: Arr) return T;

-- Body identical to non -generic version

function Sum_Array (A: Arr) return T is

Result: T := 0; -- some integer type

begin

for J in A’range loop -- array: ’range available

Result := Result + A(J); -- integer: "+" available

end loop;

return Result;

end;

Instantiating a generic function

52 / 58

type Apple is range 1..2**15 - 1;

type Production is array (1..12) of Apple;

type Sick_Days is range 1..5;

type Absences is array (1..52) of Sick_Days;

function Get_Crop is new Sum_Array (Apple ,

Production);

function Lost_Work is new Sum_Array (Sick_Days ,

Absences);

Generic private types

53 / 58

The only available operations are basic operations, which include assignment
and equality.

generic

type T is private;

procedure Swap (X, Y: in out T);

procedure Swap (X, Y: in out T) is

Temp: constant T := X;

begin

X := Y;

Y := Temp;

end Swap;

Subprogram parameters

54 / 58

A generic sorting routine should apply to any array whose components are
comparable, i.e., for which an ordering predicate exists. This class includes
more than the numeric types:

generic

type T is -- parameter

private;

with function "<" (X, Y: T) -- parameter

return Boolean;

type Arr is -- parameter

array (Integer range <>) of T;

procedure Sort (A: in out Arr);

Supplying subprogram parameters

55 / 58

The actual must have a matching signature, not necessarily the same name:

procedure Sort_Up is

new Sort (Integer , "<", ...);

procedure Sort_Down is

new Sort (Integer , ">", ...);

type Employee is record ... end record;

function Senior (E1, E2: Employee) return Boolean;

function Rank is new Sort (Employee , Senior , ...);

Value parameters

56 / 58

Useful to parameterize containers by size:

generic

type Elem is private; -- type parameter

Size: Positive; -- value parameter

package Queues is

type Queue is private;

procedure Enqueue (X: Elem; On: in out Queue);

procedure Dequeue (X: out Elem; From: in out Queue);

function Full (Q: Queue) return Boolean;

function Empty (Q: Queue) return Boolean;

private

type Contents is array (Natural range <>) of Elem;

type Queue is record

Front , Back: Natural;

C: Contents (0 .. Size);

end record;

end Queues;

Packages as parameters

57 / 58

generic

type Real is digits <>; -- any floating type

package Generic_Complex_Types is

-- complex is a record with two real components

-- package declares all complex operations:

-- +, -, Re , Im...

...

end Generic_Complex_Types;

We also want to define a package for elementary functions (sin, cos, etc.)
on complex numbers. This needs the complex operations, which are
parameterized by the corresponding real value.

The instantiation requires an instance of
the package parameter

58 / 58

with Generic_Complex_Types;
generic

with package Compl is
new Generic_Complex_Types (<>);

package Generic_Complex_Functions is
-- trigonometric , exponential ,
-- hyperbolic functions.
...

end Generic_Complex_Functions;

■ Instantiate complex types with long_float components:

package Long_Complex is

new Generic_Complex_Types (long_float);

■ Instantiate complex functions for long_complex types:

package Long_Complex_Functions is

new Generic_Complex_Functions (long_complex);

	Concurrent programming
	Task Declarations (Ada)
	More Task Declarations
	Task Activation
	Task Services
	Synchronization: The Rendezvous
	Example: semaphore
	Using a semaphore
	Delays and Time
	Conditional Communication
	Conditional Communication (ii)
	Conditional communication (iii)
	Concurrency in Java
	Threads at work
	Activation and execution
	Threads in C++11
	Example Thread Class
	Use of Thread Class
	Automatic Threads & Futures
	C++ Thread Summary
	Generic programming
	Parameterizing software components
	Templates in C++
	Class and value parameters
	Type operations—static duck typing?
	Function templates
	Implementation of C++ templates
	Partial and Explicit Specialization
	Iterators and containers
	The Standard Template Library
	Iterators in C++
	Iterator example
	STL algorithms, part 1
	STL algorithms, part 2
	Function objects
	Binary function objects
	Currying with function objects
	Partial application with function objects
	C++ templates are Turing complete
	Generics in Java
	Generic methods in Java
	Functors in ML
	Example functor: the signature
	Example functor: the implementation
	Example functor: the instantiation
	Generics in Ada95
	A generic Package
	Instantiations
	Type parameter restrictions
	A generic function
	Instantiating a generic function
	Generic private types
	Subprogram parameters
	Supplying subprogram parameters
	Value parameters
	Packages as parameters
	The instantiation requires an instance of the package parameter

