
Programming Languages

Memory Allocation & Garbage Collection

CSCI.GA-2110-001

Summer 2012



Dynamic memory management

2 / 26

For most languages, the amount of memory used by a program cannot be
determined at compile time

■ earlier versions of FORTRAN are exceptions!

Some features that require dynamic memory allocation:

■ recursion
■ pointers, explicit allocation (e.g., new)
■ higher order functions



Types of Allocation

3 / 26

■ Static – absolute address retained throughout program’s execution.

◆ Static variables
◆ Global variables
◆ Certain fixed data (e.g., string literals, constants)

■ Stack – last-in, first-out (LIFO) ordering.

◆ Subroutine arguments
◆ Local variables
◆ Runtime system data structures (displays, etc.)

■ Heap – general storage, for allocation at arbitary times.

◆ Explicitly or automatically allocated
◆ Resizable types (e.g., String)
◆ Java class instances
◆ All objects and data structures in Python



Stack vs Heap allocation

4 / 26

In imperative languages, space for local variables and parameters is allocated
in activation records, on the stack.

The lifetime of such values follows a LIFO discipline – when the routine
returns, we don’t need its locals or arguments any more.

The lifetime (aka extent) of local variables may be longer than the lifetime of
the procedure in which they were created.

These are allocated on the heap.



Heap Allocation

5 / 26

The heap is finite – if we allocate too much space, we will run out.

Solution: deallocate space when it is no longer necessary.

Methods:

■ Manual deallocation, with e.g., free, delete (C, Pascal)
■ Automatic deallocation via garbage collection (Java, C#, Scheme, ML,

Perl)
■ Semi-automatic deallocation, using destructors (C++, Ada)

◆ Automatic because the destructor is called at certain points
automatically

◆ Manual because the programmer writes the code for the destructor

Manual deallocation is dangerous (because not all current references to an
object may be visible).



Heap Allocation

6 / 26

Most languages permit custom memory allocation/deallocation.
Some permit overloading the allocation/deallocation operators (new, delete,
etc.). in C++:

class Foo {

// data members here

public:

static void* operator new (unsigned int num_bytes) {}

static void operator delete(void* p) {}

};

Usage:

Foo* f = new Foo;



Heap Allocation

7 / 26

Programming language C contains a library of helpful memory functions:

1. malloc : allocate memory from the heap.
2. alloca : allocates memory from the stack. Automatically freed.
3. calloc : allocate zero-initialized memory from the heap.
4. realloc : increases the size of an already allocated block.

Use free to deallocate memory allocated above (except alloca).



Heap Allocation

8 / 26

Control over allocation is essential in some applications.

Object construction often accompanies allocation. C++ example:

Foo myArray[250]; // allocate and call constructor 250 times.

Sometimes we can’t afford to slow down the program like this. Also, C++
won’t let us use anything but a default constructor.

Solution: allocate the memory now, do the construction later.

Foo* myArray = (Foo*)malloc(sizeof(Foo)*250);

...

new (myArray+x) Foo(); // construct index x of myArray

This is called placement-new. Any constructor can be called. The memory
can be “reinitialized” at any time without deallocating/allocating.



Allocation Methods

9 / 26

Two basic methods:

■ free list – typically for manual and semi-automatic deallocation
■ heap pointer – typically for automatic deallocation

Free list method:

■ a linked list of unused blocks of memory is maintained (the free list)
■ Allocation: a search is done to find a free block of adequate size; it’s

removed from the free list

◆ first-fit, best-fit

■ Deallocation: the block is placed on the free list

Problems:

■ may take some time to find a free block of the right size
■ memory eventually becomes fragmented



Allocation Methods

10 / 26

■ First fit: select the first block large enough to satisfy the request.
■ Best fit: select the smallest block large enough to satisfy the request.

Both suffer from fragmentation:

■ Internal fragmentation: memory allocated but not used.
■ External fragmentation: memory not allocated, but too small to be used.



First Fit

11 / 26



Best Fit

12 / 26



Allocation: Heap pointer

13 / 26

Heap pointer method:

■ initially, the heap pointer is set to bottom of heap
■ Allocation: the heap pointer is incremented an appropriate amount
■ Deallocation: defragmentation eventually required

Problems:

■ requires moving of live objects in memory



Automatic deallocation

14 / 26

Basic garbage collection algorithms:

■ mark/sweep – needs run-time support

◆ variant: compacting
◆ variant: non-recursive

■ copying – needs run-time support

◆ variant: incremental
◆ variant: generational

■ reference counting – usually done by programmer



Mark/sweep & Copying GC

15 / 26

An object x is live (i.e., can be referenced) if:

■ x is pointed to by some variable located

◆ on the stack (e.g., in an activation record)
◆ in static memory

■ there is a register (containing a temporary or intermediate value) that
points to x

■ there is another object on the heap (e.g., y) that is live and points to x

All live objects in the heap can be found by a graph traversal:

■ start at the roots – local variables on the stack, static memory, registers.
■ any object not reachable from the roots is dead and can be reclaimed



Mark/sweep

16 / 26

■ each object has an extra bit called the mark bit

■ mark phase: the collector traverses the heap and sets the mark bit of
each object encountered

■ sweep phase: each object whose mark bit is not set goes on the free list

name definition

GC()
for each root pointer p do

mark(p);

sweep ();

mark(p)

if p->mark /= 1 then

p->mark = 1;

for each pointer field p->x do

mark(p->x);

sweep()
for each object x in heap do

if x.mark = 0 then insert(x, free_list );

else x.mark = 0;



Copying

17 / 26

■ heap is split into 2 parts: FROM space, and TO space
■ objects allocated in FROM space
■ when FROM space is full, garbage collection begins
■ during traversal, each encountered object is copied to TO space
■ when traversal is done, all live objects are in TO space
■ now we flip the spaces – FROM space becomes TO space and vice versa
■ Note: since we are moving objects, any pointers to them must be updated

This is done by leaving a forwarding address

heap pointer method used for allocation – fast



Copying

18 / 26

name definition

GC() for each root pointer p do

p := traverse(p);

traverse(p)

if *p contains forwarding address then

p := *p; // follow forwarding address

return p;

else {

new_p := copy (p, TO_SPACE );

*p := new_p; // write forwarding address

for each pointer field p->x do

new_p ->x := traverse(p->x);

return new_p;

}



Generational GC

19 / 26

■ a variant of a copying garbage collector
■ Observation: the older an object gets, the longer it is expected to stay

around.
Why?

◆ many objects are very short-lived (e.g., intermediate values)
◆ objects that live for a long time tend to make up central data

structures in the program, and will probably be live until the end of
the program

■ Idea: instead of 2 heaps, use many heaps, one for each “generation”

◆ younger generations collected more frequently than older generations
(because younger generations will have more garbage to collect)

◆ when a generation is traversed, live objects are copied to the
next-older generation

◆ when a generation fills up, we garbage collect it



Reference Counting

20 / 26

The problem:

■ we have several references to some data on the heap
■ we want to release the memory when there are no more references to it
■ may not have “built-in” garbage collection

Idea: Keep track of how many references point to the data, and free it when
there are no more.

■ set reference count to 1 for newly created objects
■ increment reference count whenever we make a copy of a pointer to the

object
■ decrement reference count whenever a pointer to the object goes out of

scope or stops pointing to the object
■ when an object’s reference count becomes 0, we can free it



Reference Counting

21 / 26

Advantages:

■ Memory can be reclaimed as soon as no longer needed.
■ Simple, can be done by the programmer for languages not supporting GC.

Disadvantages:

■ Additional space needed for the reference count.
■ Will not reclaim circular references.
■ Can be inefficient (e.g., if many objects are reclaimed at once).



Comparison

22 / 26

Costs of various methods:

L = amount of storage occupied by live data
M = size of heap (number of objects)
S = size of heap (in bytes)

■ Mark/sweep: O(M) (assuming constant time reclamation)
■ Copying: O(L)

experimental data for LISP: L ≈ 0.3 ∗ S

Harder to compare with reference counting, but mark/sweep and copying are
generally faster.



C++: Important events in the lifetime of
an object

23 / 26

Event what gets called (declaration)

Creation C (...) // constructors

Pass by value C (const C&) //copy constructor

Assignment C& operator= (const C&)

Destruction ~C () // destructor

A chief reason C++ has destructors is to enable implementation of reference
counting.



Reference Counting: Example

24 / 26

class C {

public:

C () : p(NULL) { }

C (const C& c) : p(c.p) { if (p) p->refCount ++; }

~C () { if (p && --p->refCount == 0) delete p; }

C& operator= (const C&);

...

private:

struct RefCounted {

int refCount;

...

RefCounted (...) : refCount (1), ... { ... }

};

RefCounted *p;

}



Reference Counting: assignment

25 / 26

const C& C:: operator= (const C& c) {

if (c.p)

c.p->refCount ++;

if (p && --p->refCount == 0) delete p;

p = c.p;

return *this;

}



Conservative collection

26 / 26

■ What about weakly typed languages?
■ What about languages not designed for GC? (hostile environments)

It turns out that strong typing is not necessary for garbage collection.

Approach: traverse the stack, static memory, heap and guess whether bit
patterns “look like” a pointer.

■ If memory beginning at address x was previously allocated and there is no
pointer-like memory address pointing to x, then deallocate the block at x.

■ If some bit pattern in memory points to x, do not deallocate x.
■ Worst case: some objects may not be deallocated.


	Dynamic memory management
	Types of Allocation
	Stack vs Heap allocation
	Heap Allocation
	Heap Allocation
	Heap Allocation
	Heap Allocation
	Allocation Methods
	Allocation Methods
	First Fit
	Best Fit
	Allocation: Heap pointer
	Automatic deallocation
	Mark/sweep & Copying GC
	Mark/sweep
	Copying
	Copying
	Generational GC
	Reference Counting
	Reference Counting
	Comparison
	C++: Important events in the lifetime of an object
	Reference Counting: Example
	Reference Counting: assignment
	Conservative collection

