
Programming Languages

Exceptions and Concurrency

G22.2110

Summer 2010



Exceptions

2 / 40

General mechanism for handling abnormal conditions

Category Examples How raised

predefined constraint violations,
I/O errors,
communication errors,
other illegalities

by the runtime system

user-defined pop from empty stack explicitly by user code

■ exception handlers specify remedial actions or proper shutdown
■ exceptions can be stored and re-raised later



Error handling

3 / 40

One way to improve robustness of programs is to handle errors. How can we
do this?

We can check the result of each operation that can go wrong (e.g., popping
from a stack, writing to a file, allocating memory).

Unfortunately, this has a couple of serious disadvantages:

1. it is easy to forget to check
2. writing all the checks clutters up the code and obfuscates the common

case (the one where no errors occur)

Exceptions let us write clearer code and make it easier to catch errors.



Predefined exceptions in Ada

4 / 40

■ Defined in Standard:

◆ Constraint_Error : value out of range
◆ Program_Error : illegality not detectable at compile-time:

unelaborated package, exception during finalization, etc.
◆ Storage_Error : allocation cannot be satisfied (heap or stack)
◆ Tasking_Error : communication failure

■ Defined in Ada.IO_Exceptions:

◆ Data_Error, End_Error, Name_Error, Use_Error, Mode_Error,
Status_Error, Device_Error



Handling exceptions

5 / 40

Any begin-end block can have an exception handler:

procedure Test is

X: Integer := 25;

Y: Integer := 0;

begin

X := X / Y;

exception

when Constraint_Error =>

Put_Line ("did you divide by 0?");

when others =>

Put_Line ("out of the blue!");

end;



A common idiom

6 / 40

function Get_Data return Integer is

X: Integer ;

begin

loop

begin

Get(X);

return X; -- if got here , input is valid ,

-- so leave loop

exception

when others =>

Put_Line ("input must be integer , try again");

-- will restart loop to wait for a good input

end;

end loop;

end;



User-defined Exceptions

7 / 40

package Stacks is

Stack_Empty: exception ;

...

end Stacks ;

package body Stacks is

procedure Pop (X: out Integer;

From: in out Stack) is

begin

if Empty(From)

then raise Stack_Empty;

else ...

end Pop;

...

end Stacks ;



The scope of exceptions

8 / 40

■ an exception has the same visibility as other declared entities: to handle
an exception it must be visible in the handler (e.g., caller must be able to
see Stack_Empty).

■ an others clause can handle unnamable exceptions partially

when others =>

Put_Line ("disaster somewhere ");

raise; -- propagate exception ,

-- program will terminate



Exception run-time model

9 / 40

How to propagate an exception:

1. When an exception is raised, the current sequence of statements is
abandoned (e.g., current Get and return in example)

2. Starting at the current frame, if we have an exception handler, it is
executed, and the current frame is completed.

3. Otherwise, the frame is discarded, and the enclosing dynamic scopes are
examined to find a frame that contains a handler for the current
exception (want dynamic as opposed to static scopes because those are
values that caused the problem).

4. If no handler is found, the program terminates.

Note: The current frame is never resumed.



Exception information

10 / 40

■ an Ada exception is a label, not a value: we cannot declare exception
variables and assign to them

■ but an exception occurrence is a value that can be stored and examined
■ an exception occurrence may include additional information: source

location of occurrence, contents of stack, etc.
■ predefined package Ada.Exceptions contains needed machinery



Ada.Exceptions (part of std libraries)

11 / 40

package Ada.Exceptions is

type Exception_Id is private ;

type Exception_Occurrence is limited private ;

function Exception_Identity (X: Exception_Occurrence)

return Exception_Id ;

function Exception_Name (X: Exception_Occurrence)

return String;

procedure Save_Occurrence

(Target: out Exception_Occurrence;

Source: Exception_Occurrence);

procedure Raise_Exception (E: Exception_Id ;

Message : in String := "")

...

end Ada.Exceptions;



Using exception information

12 / 40

begin

...

exception

when Expected : Constraint_Error =>

-- Expected has details

Save_Occurrence (Event_Log , Expected );

when Trouble: others =>

Put_Line ("unexpected " &

Exception_Name (Trouble) &

" raised ");

Put_Line ("shutting down");

raise;

end;



Exceptions in C++

13 / 40

■ similar runtime model,...
■ but exceptions are bona-fide values,
■ handlers appear in try/catch blocks

try {

some_complex_calculation ();

} catch (const RangeError & e) {

// RangeError might be raised

// in some_complex_calculation

cerr << "oops\n";

} catch (const ZeroDivide & e) {

// same for ZeroDivide

cerr << "why is denominator zero ?\n";

}



Defining and throwing exceptions

14 / 40

The program throws an object. There is nothing needed in the declaration of
the type to indicate it will be used as an exception.

struct ZeroDivide {

int lineno ;

ZeroDivide (...) { ... } // constructor

...

};

...

if (x == 0)

throw ZeroDivide (...); // call constructor

// and go



Exceptions and inheritance

15 / 40

A handler names a class, and can handle an object of a derived class as well:

class Matherr { }; // a bare object , no info

class Overflow : public Matherr {...};

class Underflow : public Matherr {...};

class ZeroDivide : public Matherr {...};

try {

weatherPredictionModel (...);

} catch (const Overflow & e) {

// e.g., change parameters in caller

} catch (const Matherr& e) {

// Underflow , ZeroDivide handled here

} catch (...) {

// handle anything else (ellipsis )

}



Exceptions in Java

16 / 40

■ Model and terminology similar to C++:

◆ exceptions are objects that are thrown and caught
◆ try blocks have handlers, which are examined in succession
◆ a handler for an exception can handle any object of a derived class

■ Differences:

◆ all exceptions are extensions of predefined class Throwable
◆ checked exceptions are part of method declaration
◆ the finally clause specifies clean-up actions

■ in C++, cleanup actions are idiomatically done in destructors



Exception class hierarchy

17 / 40

Throwable

Error Exception

■ any class extending Exception is a checked exception
■ system errors are extensions of Error; these are unchecked exceptions

Checked exceptions must be either handled or declared in the method that
throws them; this is checked by the compiler.



If a method might throw an exception,

callers should know about it

18 / 40

public void replace (String name ,

Object newValue ) throws NoSuch

{

Attribute attr = find(name );

if (attr == null) throw new NoSuch (name );

newValue .update (attr );

}



Mandatory cleanup actions

19 / 40

Some cleanups must be performed whether the method terminates normally
or throws an exception.

public void parse (String file) throws IOException {

BufferedReader input =

new BufferedReader (new FileReader (file ));

try {

while (true) {

String s = input.readLine ();

if (s == null) break;

parseLine (s); // may fail somewhere

}

} finally {

if (input != null) input.close ();

} // regardless of how we exit

}



Exceptions in ML

20 / 40

■ runtime model similar to Ada/C++/Java
■ exception is a single type (like a datatype but dynamically extensible)
■ declaring new sorts of exceptions:

exception StackUnderflow

exception ParseError of { line: int , col: int }

■ raising an exception:

raise StackUnderflow

raise (ParseError { line = 5, col = 12 })

■ handling an exception:

expr1 handle pattern => expr2

If an exception is raised during evaluation of expr1, and pattern

matches that exception, expr2 is evaluated instead



A closer look

21 / 40

exception DivideByZero

fun f i j =

if j <> 0

then i div j

else raise DivideByZero

(f 6 2

handle DivideByZero => 42) (* evaluates to 3 *)

(f 4 0

handle DivideByZero => 42) (* evaluates to 42 *)

Typing issues:

■ the type of the body and the handler must be the same
■ the type of a raise expression can be any type

(whatever type is appropriate is chosen)



Call-with-current-continuation

22 / 40

Available in Scheme and SML/NJ; usually abbreviated to call/cc.
In Scheme, it is called call-with-current-continuation.

A continuation represents the computation of “rest of the program”.

call/cc takes a function as an argument. It calls that function with the
current continuation (which is packaged up as a function) as an argument. If
this continuation is called with some value as an argument, the effect is as if
call/cc had itself returned with that argument as its result.

The current continuation is the “rest of the program”, starting from the point
when call/cc returns.

(call/cc (lambda (c) (c 5))) ;; returns 5

(call/cc (lambda (c) 5)) ;; so does this

(call/cc (lambda (c) (+ 1 (c 5)))) ;; ditto



The power of continuations

23 / 40

We can implement many control structures with call/cc:

■ return:
(lambda (x)

(call/cc (lambda (ret)
... ;; body of function
(ret 76) ;; call continuation with result
...

))
)

■ goto:

(begin
...
(call/cc (lambda (k) (set! here k)) ;; set label
...
(here ()) ;; ‘‘goto ’’ here
...

)



Exceptions via call/cc

24 / 40

Exceptions can also be implemented by call/cc:

■ Need global stack: handlers
■ For each try/catch:

(call/cc (lambda (k)
(begin

(push handlers (lambda ()
(begin

(pop handlers )
(catch-block)
(k ()))))

(try-block)
(pop handlers ))))

■ For each raise:

((top handlers )) ; call the top function on

; the handlers stack



Tasking

25 / 40

■ concurrent programming
■ declaration, creation, activation, termination
■ synchronization and communication
■ time and delays
■ conditional communication
■ non-determinism



Concurrent programming

26 / 40

■ synchronous and asynchronous models of communication
■ description of concurrent, independent activities
■ a task is an independent thread of control, with own stack, program

counter and local environment.
■ Ada tasks communicate through

◆ rendezvous (think ”meeting someone for a date”)
◆ protected objects
◆ shared variables

■ Java threads communicate through shared objects (preferably
synchronized)

■ C++ has no core language support for concurrency



Task Declarations

27 / 40

A task type is a limited type

task type Worker; -- declaration ;

-- public interface

type Worker_Id is access Worker;

task body Worker is -- actions performed in lifetime

begin

loop -- Runs forever;

compute ; -- will be shutdown

end loop; -- from the outside .

end Worker;



More Task Declarations

28 / 40

■ a task type can be a component of a composite
■ number of tasks in a program is not fixed at compile-time.

W1, W2: Worker ; -- two individual tasks

type Crew is array (Integer range <>) of Worker ;

First_Shift: Crew (1 .. 10); -- group of tasks

type Monitored is record

Counter: Integer;

Agent: Worker ;

end record ;



Task Activation

29 / 40

When does a task start running?

• if statically allocated =⇒ at the next begin
• if dynamically allocated =⇒ at the point of allocation

declare

W1, W2: Worker ;

Joe: Worker_Id := new Worker ; -- Starts working now

Third_Shift: Crew (1..N); -- N tasks

begin -- activate W1, W2, and the Third_Shift

...

end; -- wait for them to complete

-- Joe will keep running



Task Services

30 / 40

■ a task can perform some actions on request from another task
■ the interface (declaration) of the task specifies the available actions

(entries)
■ a task can also execute some actions on its own behalf, without external

requests or communication

task type Device is

entry Read (X: out Integer );

entry Write (X: Integer );

end Device ;



Synchronization: The Rendezvous

31 / 40

■ caller makes explicit request: entry call

■ callee (server) states its availability: accept statement

■ if server is not available, caller blocks and queues up on the entry for later
service

■ if both present and ready, parameters are transmitted to server
■ server performs action
■ out parameters are transmitted to caller
■ caller and server continue execution independently



Example: semaphore

32 / 40

Simple mechanism to prevent simultaneous access to a critical section: code
that cannot be executed by more than one task at a time

task type semaphore is

entry P; -- Dijkstra ’s terminology

entry V; -- from the Dutch

-- Proberen te verlangen (wait) [P];

-- verhogen [V] (post when done)

end semaphore;

task body semaphore is

begin

loop

accept P;

-- won ’t accept another P

-- until a caller asks for V

accept V;

end loop;

end semaphore;



Using a semaphore

33 / 40

■ A task that needs exclusive access to the critical section executes:

Sema : semaphore ;

...

Sema.P;

-- critical section code

Sema.V;

■ If in the meantime another task calls Sema.P, it blocks, because the
semaphore does not accept a call to P until after the next call to V: the
other task is blocked until the current one releases by making an entry call
to V.

■ programming hazards:
• someone else may call V =⇒ race condition
• no one calls V =⇒ other callers are livelocked



Delays and Time

34 / 40

■ A delay statement can be executed anywhere at any time, to make
current task quiescent for a stated interval:

delay 0.2; -- type is Duration , unit is seconds

■ We can also specify that the task stop until a certain specified time:

delay until Noon; -- Noon defined elsewhere



Conditional Communication

35 / 40

■ need to protect against excessive delays, deadlock, starvation, caused by
missing or malfunctioning tasks

■ timed entry call: caller waits for rendezvous a stated amount of time:

select

Disk.Write(Value => 12,

Track => 123); -- Disk is a task

or

delay 0.2;

end select ;

■ if Disk does not accept within 0.2 seconds, go do something else



Conditional Communication (ii)

36 / 40

■ conditional entry call: caller ready for rendezvous only if no one else is
queued, and rendezvous can begin at once:

select

Disk.Write(Value => 12, Track => 123);

else

Put_Line ("device busy");

end select ;

■ print message if call cannot be accepted immediately



Conditional communication (iii)

37 / 40

■ the server may accept a call only if the internal state of the task is
appropriate:

select

when not Full =>

accept Write (Val: Integer) do ... end;

or

when not Empty =>

accept Read (Var: out Integer) do ... end;

or

delay 0.2; -- maybe something will happen

end select ;

■ if several guards are open and callers are present, any one of the calls may
be accepted – non-determinism



Concurrency in Java

38 / 40

■ Two notions

◆ class Thread

◆ interface Runnable

■ An object of class Thread is mapped into an operating system primitive

interface Runnable {

public void run ();

}

■ Any class can become a thread of control by supplying a run method

class R implements Runnable { ... }

Thread t = new Thread (new R(...));

t.start ();



Threads at work

39 / 40

class PingPong extends Thread {

private String word;

private int delay;

PingPong (String whatToSay , int delayTime) {

word = whatToSay; delay = delayTime;

}

public void run () {

try {

for (;;) { // infinite loop

System.out.print(word + " ");

sleep(delay); // yield processor

}

} catch (InterruptedException e) {

return; // terminate thread

}

}

}



Activation and execution

40 / 40

public static void main (String [] args) {

new PingPong ("ping", 33). start (); // activate

new PingPong ("pong", 100). start (); // activate

}

■ call to start activates thread, which executes run method
■ threads can communicate through shared objects
■ classes can have synchronized methods to enforce critical sections


	Exceptions
	Error handling
	Predefined exceptions in Ada
	Handling exceptions
	A common idiom
	User-defined Exceptions
	The scope of exceptions
	Exception run-time model
	Exception information
	Ada.Exceptions (part of std libraries)
	Using exception information
	Exceptions in C++
	Defining and throwing exceptions
	Exceptions and inheritance
	Exceptions in Java
	Exception class hierarchy
	If a method might throw an exception, callers should know about it
	Mandatory cleanup actions
	Exceptions in ML
	A closer look
	Call-with-current-continuation
	The power of continuations
	Exceptions via call/cc
	Tasking
	Concurrent programming
	Task Declarations
	More Task Declarations
	Task Activation
	Task Services
	Synchronization: The Rendezvous
	Example: semaphore
	Using a semaphore
	Delays and Time
	Conditional Communication
	Conditional Communication (ii)
	Conditional communication (iii)
	Concurrency in Java
	Threads at work
	Activation and execution

