
Programming Languages

OOP

G22.2110

Summer 2010

What is OOP? (part I)

2 / 31

The object idea:

■ bundling of data (data members) and operations (methods) on that data
■ restricting access to the data

An object contains:

■ data members : arranged as a set of named fields
■ methods : routines which take the object they are associated with as an

argument
(known as member functions in C++)

■ constructors : routines which create a new object

A class is a construct which defines the data, methods and constructors
associated with all of its instances (objects).

What is OOP? (part II)

3 / 31

The inheritance and dynamic binding ideas:

■ classes can be extended (inheritance):

◆ by adding new fields
◆ by adding new methods
◆ by overriding existing methods (changing behavior)

If class B extends class A, we say that B is a subclass or derived class of
A, and A is a superclass or base class of B.

■ dynamic binding : wherever an instance of a class is required, we can also
use an instance of any of its subclasses; when we call one of its methods,
the overridden versions are used.

■ There should be an is-a relationship between a derived class and its base
class.

Styles of OOLs

4 / 31

■ in class-based OOLs, each object is an instance of a class (Java, C++,
C#, Ada95, Smalltalk, OCaml, etc.)

■ in prototype-based OOLS, each object is a clone of another object,
possibly with modifications and/or additions (Self, Javascript)

Other common OOP features

5 / 31

■ multiple inheritance

◆ C++
◆ Java (of interfaces only)
◆ problem: how to handle diamond shaped inheritance hierarchy

■ classes often provide package-like capabilities:

◆ visibility control
◆ ability to define types and classes in addition to data fields and

methods

Java Features

6 / 31

■ an imperative language (like C++, Ada, C, Pascal)
■ is interpreted (like Scheme, APL)
■ is garbage-collected (like Scheme, ML, Smalltalk, Eiffel, Modula-3)
■ can be compiled
■ is object-oriented (like Eiffel, more so than C++, Ada)
■ a successful hybrid for a specific-application domain
■ a reasonable general-purpose language for non-real-time applications

■ Work in progress: language continues to evolve
■ C# is latest, incompatible variant

Original design goals (white paper 1993)

7 / 31

■ simple
■ object-oriented (inheritance, polymorphism)
■ distributed
■ interpreted
■ multi-threaded
■ robust
■ secure
■ architecture-neutral

Obviously, “simple” was dropped.

Portability

8 / 31

Critical concern: write once – run everywhere

Consequences:

■ portable interpreter
■ definition through virtual machine: the JVM
■ run-time representation has high-level semantics
■ supports dynamic loading
■ high-level representation can be queried at run-time to provide reflection
■ dynamic features make it hard to fully compile, safety requires numerous

run-time checks

Contrast with conventional systems

languages

9 / 31

Conventional imperative languages are fully compiled:

■ run-time structure is machine language
■ minimal run-time type information
■ language provides low-level tools for accessing storage
■ safety requires fewer run-time checks because compiler (least for Ada and

somewhat for C++) can verify correctness statically
■ languages require static binding, run-time image cannot be easily modified
■ different compilers may create portability problems

Notable omissions

10 / 31

■ no operator overloading (syntactic annoyance)
■ no separation of specification and body
■ no enumerations until latest language release
■ no generic facilities until latest language release

Statements

11 / 31

Most statements are like their C counterparts:

■ switch (including C’s falling through behavior)
■ for

■ if

■ while

■ do ... while

■ break and continue

◆ Java also has labeled versions of break and continue, like Ada.

■ return

Java has no goto!

The simplest Java program

12 / 31

class HelloWorld {

public static void main (String [] args) {

System .out.println("Hello , world");

}

}

Classes in Java

13 / 31

Encapsulation of type and related operations

class Point {
private double x, y; // private data members

public Point (double x, double y) { // constructor
this.x = x; this.y = y;

}

public void move (double dx, double dy) {
x += dx; y += dy;

}

public double distance (Point p) {
double xdist = x - p.x, ydist = y - p.y;
return Math.sqrt(xdist * xdist + ydist * ydist);

}

public void display () { ... }
}

Extending a class

14 / 31

class ColoredPoint extends Point {
private Color color;

public ColoredPoint (double x, double y,
Color c) {

super(x, y);
color = c;

}

public ColoredPoint (Color c) {
super(0.0, 0.0);
color = c;

}

public Color getColor () { return color; }

public void display () { ... } // now in color!
}

Dynamic dispatching

15 / 31

Point p1 = new Point (2.0, 3.0);

ColoredPoint cp1 = new ColoredPoint (2.0, 3.0, Blue);

Point p2 = p1; // OK

Point p3 = cp1; // OK

ColoredPoint cp2 = cp1; // OK

ColoredPoint cp3 = p1; // Error

cp1.move (1.0, 1.0); // cp1 and p3 affected

p1.display (); // Point ’s display

cp1.display (); // ColoredPoint ’s display

p3.display (); // ColoredPoint ’s display

Classes in C++

16 / 31

The same classes, translated into C++:

class Point {
double m_x , m_y; // private data members

public:

Point (double x, double y) // constructor
: m_x(x), m_y(y) { }

virtual ~Point () { }

virtual void move (double dx, double dy) {
m_x += dx; m_y += dy;

}

virtual double distance (const Point& p) {
double xdist = m_x - p.m_x , ydist = m_y - p.m_y;
return sqrt(xdist * xdist + ydist * ydist);

}

virtual void display () { ... }
};

Extending a class

17 / 31

class ColoredPoint : public Point {
Color color;

public:

ColoredPoint (double x, double y,
Color c) : Point(x, y), color(c) {

color = c;
}

ColoredPoint (Color c) : Point(0.0, 0.0), color(c) { }

virtual Color getColor () { return color; }

virtual void display () { ... } // now in color!
};

Dynamic dispatching

18 / 31

Point *p1 = new Point (2.0, 3.0);

ColoredPoint *cp1 = new ColoredPoint (2.0, 3.0, Blue);

Point *p2 = p1; // OK

Point *p3 = cp1; // OK

ColoredPoint *cp2 = cp1; // OK

ColoredPoint *cp3 = p1; // Error

cp1 ->move (1.0, 1.0); // cp1 and p3 affected

p1->display (); // Point ’s display

cp1 ->display (); // ColoredPoint ’s display

p3->display (); // ColoredPoint ’s display

Implementation: the vtable

19 / 31

A typical implementation of a class in C++; using Point as an example:

x
y

Point instance Point vtable

Point version

Point version

Point version

distance
display

move

Point versiond’tor

An extended vtable

20 / 31

For ColoredPoint, we have:

x
y

color

ColoredPoint vtable

Point version

ColoredPoint version

ColoredPoint version

Point versiondistance
move
d’tor ColoredPoint version

ColoredPoint instance

getColor
display

Non-virtual member functions are never put in the vtable

Method modifiers

21 / 31

■ access modifiers:

◆ public

◆ protected

◆ package

◆ private

■ abstract

■ static

■ final

■ synchronized

■ native

■ strictfp (strict floating point)

A new construct: interfaces

22 / 31

A Java interface allows otherwise unrelated classes to satisfy a given
requirement.

This is orthogonal to inheritance.

■ inheritance: an A is-a B (has the attributes of a B, and possibly others)
■ interface: an A can-do X (and possibly other unrelated actions)
■ interfaces are a better model for multiple inheritance

See blackboard for implementation details (also in Scott, section 9.4.3)

Interface Comparable

23 / 31

public interface Comparable {

public int CompareTo (Object x) throws

ClassCastException ;

// returns -1 if this < x,

// 0 if this = x,

// +1 if this > x

};

// Implementation needs to cast x to the proper class.

// Any class that may appear in a container should

// implement Comparable , so the container can support

// sorting.

Comparison with C++

24 / 31

Java C++

methods virtual member functions
public/protected/private
members

similar

static members same
abstract methods pure virtual member

functions
final methods no analogous feature
interface pure virtual class with no

data members
implementation of an
interface

virtual inheritance

Simulating a first-class function with an

object

25 / 31

A simple first-class function:

fun mkAdder nonlocal = (fn arg => arg + nonlocal)

The corresponding C++ class:

class Adder {

int nonlocal ;

public:

Adder (int i) : nonlocal (i) { }

int operator () (int arg) { return arg + nonlocal ; }

};

mkAdder 10 is roughly equivalent to Adder(10).

First-class functions strike back

26 / 31

A simple unsuspecting object (in Java, for variety):

class Account {

private float theBalance;

private float theRate;

Account (float b, float r) { theBalance = b;

theRate = r; }

public void deposit (float x) {

theBalance = theBalance + x;

}

public void compound () {

theBalance = theBalance * (1.0 + rate);

}

public float balance () { return theBalance; }

}

First-class functions strike back, part 2

27 / 31

The corresponding first-class function:

(define (Account b r)

(let ((theBalance b) (theRate r))

(lambda (method)

(case method

((deposit)

(lambda (x) (set! theBalance

(+ theBalance x))))

((compound)

(set! theBalance (* theBalance

(+ 1.0 theRate))))

((balance)

theBalance)))))

new Account(100.0, 0.05) is roughly equivalent to
(Account 100.0 0.05).

Comparing ML datatypes with inheritance

28 / 31

ML datatypes and OO inheritance organize data and routines in orthogonal
ways:

data variants data operations

datatypes all together/closed scattered/open
classes scattered/open all together/closed

datatypes easy to add new operations
harder to add new variants

classes easy to add new variants
harder to add new operations

OOP Pitfalls: the circle and the ellipse

29 / 31

A couple of facts:

■ In mathematics, an ellipse (from the Greek for absence) is a curve where
the sum of the distances from any point on the curve to two fixed points
is constant. The two fixed points are called foci (plural of focus).

from http://en.wikipedia.org/wiki/Ellipse
■ A circle is a special kind of ellipse, where the two foci are the same point.

If we need to model circles and ellipses using OOP, what happens if we have
class Circle inherit from class Ellipse?

Circles and ellipses

30 / 31

class Ellipse {

...

public move (double dx, double dy) { ... }

public resize (double x, double y) { ... }

}

class Circle extends Ellipse {

...

public resize (double x, double y) { ??? }

}

We can’t implement a resize for Circle that lets us make it asymmetric!

Pitfalls: Array subclassing

31 / 31

In Java, if class B is a subclass of class A, then Java considers “array of B” to
be a subclass of “array of A”:

class A { ... }

class B extends A { ... }

B[] b = new B[5];

A[] a = b; // allowed (a and b are now aliases)

a[1] = new A(); // Bzzzt! (Type error)

The problem is that arrays are mutable; they allow us to replace an element
with a different element.

	What is OOP? (part I)
	What is OOP? (part II)
	Styles of OOLs
	Other common OOP features
	Java Features
	Original design goals (white paper 1993)
	Portability
	Contrast with conventional systems languages
	Notable omissions
	Statements
	The simplest Java program
	Classes in Java
	Extending a class
	Dynamic dispatching
	Classes in C++
	Extending a class
	Dynamic dispatching
	Implementation: the vtable
	An extended vtable
	Method modifiers
	A new construct: interfaces
	Interface Comparable
	Comparison with C++
	Simulating a first-class function with an object
	First-class functions strike back
	First-class functions strike back, part 2
	Comparing ML datatypes with inheritance
	OOP Pitfalls: the circle and the ellipse
	Circles and ellipses
	Pitfalls: Array subclassing

