
Programming Languages

ML

G22.2110

Summer 2010

ML overview

2 / 33

■ originally developed for use in writing theorem provers
■ functional: functions are first-class values
■ garbage collection
■ strict
■ strong and static typing; powerful type system

◆ parametric polymorphism
◆ structural equivalence
◆ all with type inference!

■ advanced module system
■ exceptions
■ miscellaneous features:

◆ datatypes (merge of enumerated literals and variant records)
◆ pattern matching
◆ ref type constructor (like “const pointers” (“not pointers to const”))

A sample SML/NJ interactive session

3 / 33

- val k = 5; user input
val k = 5 : int system response

- k * k * k;

val it = 125 : int ‘it’ denotes the last computation

- [1, 2, 3];

val it = [1,2,3] : int list

- ["hello", "world"];

val it = ["hello","world"] : string list

- 1 :: [2, 3];

val it = [1,2,3] : int list - [1, "hello"];

error

Operations on lists

4 / 33

- null [1, 2];

val it = false : bool

- null [];

val it = true : bool

- hd [1, 2, 3];

val it = 1 : int

- tl [1, 2, 3];

val it = [2, 3] : int list

- [];

val it = [] : ’a list this list is polymorphic

Simple functions

5 / 33

A function declaration:

- fun abs x = if x >= 0.0 then x else -x

val abs = fn : real -> real

A function expression:

- fn x => if x >= 0.0 then x else -x

val it = fn : real -> real

Functions, II

6 / 33

- fun length xs =

if null xs

then 0

else 1 + length (tl xs);

val length = fn : ’a list -> int

’a denotes a type variable; length can be applied to lists of any element type

The same function, written in pattern-matching style:

- fun length [] = 0

| length (x::xs) = 1 + length xs

val length = fn : ’a list -> int

Type inference and polymorphism

7 / 33

Advantages of type inference and polymorphism:

■ frees you from having to write types.
A type can be more complex than the expression whose type it is, e.g.,
flip

■ with type inference, you get polymorphism for free:

◆ no need to specify that a function is polymorphic
◆ no need to ”instantiate” a polymorphic function when it is applied

Multiple arguments?

8 / 33

■ All functions in ML take exactly one argument
■ If a function needs multiple arguments, we can

1. pass a tuple:
- (53, "hello"); (* a tuple *)

val it = (53, "hello") : int * string

We can also use tuples to return multiple results.

2. use currying (named after Haskell Curry, a logician)

The tuple solution

9 / 33

Another function; takes two lists and returns their concatenation

- fun append1 ([], ys) = ys

| append1 (x::xs , ys) = x :: append1 (xs, ys);

val append1 = fn: ’a list * ’a list -> ’a list

- append1 ([1,2,3], [8 ,9]);

val it = [1,2,3,8,9] : int list

Currying

10 / 33

The same function, written in curried style:

- fun append2 [] ys = ys

| append2 (x::xs) ys = x :: (append2 xs ys);

val append2 = fn: ’a list -> ’a list -> ’a list

- append2 [1,2,3] [8,9];

val it = [1,2,3,8,9] : int list

- val app123 = append2 [1,2,3];

val app123 = fn : int list -> int list

- app123 [8,9];

val it = [1,2,3,8,9] : int list

More partial application

11 / 33

But what if we want to provide the other argument instead, i.e., append
[8,9] to its argument?

■ here is one way: (the Ada/C/C++/Java way)

fun appTo89 xs = append2 xs [8,9]

■ here is another: (using a higher-order function)

val appTo89 = flip append2 [8,9]

flip is a function which takes a curried function f and returns a function
that works like f but takes its arguments in the reverse order.
In other words, it “flips” f’s two arguments.
We define it on the next slide...

Type inference example

12 / 33

fun flip f y x = f x y

The type of flip is (α → β → γ) → β → α → γ. Why?

■ Consider (f x). f is a function; its parameter must have the same type as
x.

f : A → B x : A (f x) : B

■ Now consider (f x y). Because function application is left-associative,
f x y ≡ (f x) y. Therefore, (f x) must be a function, and its
parameter must have the same type as y:

(f x) : C → D y : C (f x y) : D

■ Note that B must be the same as C → D. We say that B must unify

with C → D.
■ The return type of flip is whatever the type of f x y is. After renaming

the types, we have the type given at the top.

Type rules

13 / 33

The type system is defined in terms of inference rules. For example, here is
the rule for variables:

(x : τ) ∈ E

E ⊢ x : τ

and the one for function calls:

E ⊢ e1 : τ ′
→ τ E ⊢ e2 : τ ′

E ⊢ e1 e2 : τ

and here is the rule for if expressions:

E ⊢ e : bool E ⊢ e1 : τ E ⊢ e2 : τ

E ⊢ if e then e1 else e2 : τ

Passing functions

14 / 33

- fun exists pred [] = false

| exists pred (x::xs) = pred x orelse

exists pred xs;

val exists = fn : (’a -> bool) -> ’a list -> bool

■ pred is a predicate : a function that returns a boolean

■ exists checks whether pred returns true for any member of the list

- exists (fn i => i = 1) [2, 3, 4];

val it = false : bool

Applying functionals

15 / 33

- exists (fn i => i = 1) [2, 3, 4];

val it = false : bool

Now partially apply exists:

- val hasOne = exists (fn i => i = 1);

val hasOne = fn : int list -> bool

- hasOne [3,2,1];

val it = true : bool

Functionals 2

16 / 33

fun all pred [] = true

| all pred (x::xs) = pred x andalso all pred xs

fun filter pred [] = []

| filter pred (x::xs) = if pred x

then x :: filter pred xs

else filter pred xs

all : (α → bool) → α list → bool

filter : (α → bool) → α list → α list

Block structure and nesting

17 / 33

let provides local scope:

(* standard Newton -Raphson *)

fun findroot (a, x, acc) =

let val nextx = (a / x + x) / 2.0

(* nextx is the next approximation *)

in

if abs (x - nextx) < acc * x

then nextx

else findroot (a, nextx , acc)

end

A classic in functional form: mergesort

18 / 33

fun mrgSort op< [] = []

| mrgSort op< [x] = [x]

| mrgSort op< (a::bs) =

let fun partition (left , right , []) =

(left , right) (* done partitioning *)

| partition (left , right , x::xs) =

(* put x to left or right *)

if x < a

then partition (x::left , right , xs)

else partition (left , x::right , xs)

val (left , right) = partition ([], [a], bs)

in

mrgSort op < left @ mrgSort op< right

end

mrgSort : (α ∗ α → bool) → α list → α list

Another variant of mergesort

19 / 33

fun mrgSort op< [] = []

| mrgSort op< [x] = [x]

| mrgSort op< (a::bs) =

let fun deposit (x, (left , right)) =

if x < a

then (x::left , right)

else (left , x::right)

val (left , right) = foldr deposit ([], [a]) bs

in

mrgSort op < left @ mrgSort op< right

end

mrgSort : (α ∗ α → bool) → α list → α list

The type system

20 / 33

■ primitive types: bool, int, char, real, string, unit
■ constructors: list, array, product (tuple), function, record
■ “datatypes”: a way to make new types
■ structural equivalence (except for datatypes)

◆ as opposed to name equivalence in e.g., Ada

■ an expression has a corresponding type expression
■ the interpreter builds the type expression for each input
■ type checking requires that type of functions’ parameters match the type

of their arguments, and that the type of the context matches the the type
of the function’s result

ML records

21 / 33

Records in ML obey structural equivalence (unlike records in many other
languages).

A type declaration: only needed if you want to refer to this type by name

type vec = { x : real , y : real }

A variable declaration:

val v = { x = 2.3, y = 4.1 }

Field selection:

#x v

Pattern matching in a function:

fun dist {x,y} =

sqrt (pow (x, 2.0) + pow (y, 2.0))

Datatypes

22 / 33

A datatype declaration:

■ defines a new type that is not equivalent to any other type

(name equivalence)
■ introduces data constructors

◆ data constructors can be used in patterns
◆ they are also values themselves

Datatype example

23 / 33

datatype tree = Leaf of int

| Node of tree * tree

Leaf and Node are data constructors:

■ Leaf : int → tree

■ Node : tree * tree → tree

We can define functions by pattern matching:

fun sum (Leaf t) = t

| sum (Node (t1, t2)) = sum t1 + sum t2

Parameterized datatypes

24 / 33

fun flatten (Leaf t) = [t]

| flatten (Node (t1, t2)) =

flatten t1 @ flatten t2

flatten : tree → int list

datatype ’a gentree =

Leaf of ’a

| Node of ’a gentree * ’a gentree

val names = Node (Leaf "this", Leaf "that")

names : string gentree

The rules of pattern matching

25 / 33

Pattern elements:

■ integer literals: 4, 19
■ character literals: #’a’
■ string literals: "hello"
■ data constructors: Node (· · ·)

◆ depending on type, may have arguments, which would also be patterns

■ variables: x, ys
■ wildcard: _

Convention is to capitalize data constructors, and start variables with
lower-case.

More rules of pattern matching

26 / 33

Special forms:

■ (), {} – the unit value
■ [] – empty list
■ [p1, p2, · · ·, pn]

means (p1 :: (p2 :: · · · (pn :: [])· · ·))

■ (p1, p2, · · ·, pn) – a tuple
■ {field1, field2, · · · fieldn} – a record
■ {field1, field2, · · · fieldn, ...}

– a partially specified record
■ v as p

– v is a name for the entire pattern p

Common idiom: option

27 / 33

option is a built-in datatype:

datatype ’a option = NONE | SOME of ’a

Defining a simple lookup function:

fun lookup eq key [] = NONE

| lookup eq key ((k,v):: kvs) =

if eq (key , k)

then SOME v

else lookup eq key kvs

Is the type of lookup:

(α ∗ α → bool) → α → (α ∗ β) list → β option?

No! It’s slightly more general:

(α1 ∗ α2 → bool) → α1 → (α2 ∗ β) list → β option

Another lookup function

28 / 33

We don’t need to pass two arguments when one will do:

fun lookup _ [] = NONE

| lookup checkKey ((k,v):: kvs) =

if checkKey k

then SOME v

else lookup checkKey kvs

The type of this lookup:

(α → bool) → (α ∗ β) list → β option

Useful library functions

29 / 33

■ map : (α → β) → α list → β list

map (fn i => i + 1) [7, 15, 3]

=⇒ [8, 16, 4]

■ foldl : (α ∗ β → β) → β → α list → β

foldl (fn (a,b) => "(" ^ a ^ "+" ^ b ^ ")")

"0" ["1", "2", "3"]

=⇒ "(3+(2+(1+0))) "

■ foldr : (α ∗ β → β) → β → α list → β

foldr (fn (a,b) => "(" ^ a ^ "+" ^ b ^ ")")

"0" ["1", "2", "3"]

=⇒ "(1+(2+(3+0))) "

■ filter : (α → bool) → α list → α list

Overloading

30 / 33

Ad hoc overloading interferes with type inference:

fun plus x y = x + y

Operator ‘+’ is overloaded, but types cannot be resolved from context
(defaults to int).

We can use explicit typing to select interpretation:

fun mix1 (x, y, z) = x * y + z : real

fun mix2 (x: real , y, z) = x * y + z

Parametric polymorphism vs. generics

31 / 33

■ a function whose type expression has type variables applies to an infinite
set of types

■ equality of type expressions means structural not name equivalence
■ all applications of a polymorphic function use the same body: no need to

instantiate

let val ints = [1, 2, 3];

val strs = ["this", "that"];

in

len ints + (* int list -> int *)

len strs (* string list -> int *)

end;

ML signature

32 / 33

An ML signature specifies an interface for a module.

signature STACKS =

sig

type stack

exception Underflow

val empty : stack

val push : char * stack -> stack

val pop : stack -> char * stack

val isEmpty : stack -> bool

end

ML structure

33 / 33

structure Stacks : STACKS =

struct

type stack = char list

exception Underflow

val empty = []

val push = op::

fun pop (c::cs) = (c, cs)

| pop [] = raise Underflow

fun isEmpty [] = true

| isEmpty _ = false

end

	ML overview
	A sample SML/NJ interactive session
	Operations on lists
	Simple functions
	Functions, II
	Type inference and polymorphism
	Multiple arguments?
	The tuple solution
	Currying
	More partial application
	Type inference example
	Type rules
	Passing functions
	Applying functionals
	Functionals 2
	Block structure and nesting
	A classic in functional form: mergesort
	Another variant of mergesort
	The type system
	ML records
	Datatypes
	Datatype example
	Parameterized datatypes
	The rules of pattern matching
	More rules of pattern matching
	Common idiom: option
	Another lookup function
	Useful library functions
	Overloading
	Parametric polymorphism vs. generics
	ML signature
	ML structure

