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ML overview
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■ originally developed for use in writing theorem provers
■ functional: functions are first-class values
■ garbage collection
■ strict
■ strong and static typing; powerful type system

◆ parametric polymorphism
◆ structural equivalence
◆ all with type inference!

■ advanced module system
■ exceptions
■ miscellaneous features:

◆ datatypes (merge of enumerated literals and variant records)
◆ pattern matching
◆ ref type constructor (like “const pointers” (“not pointers to const”))



A sample SML/NJ interactive session
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- val k = 5; user input
val k = 5 : int system response

- k * k * k;

val it = 125 : int ‘it’ denotes the last computation

- [1, 2, 3];

val it = [1,2,3] : int list

- ["hello", "world"];

val it = ["hello","world"] : string list

- 1 :: [ 2, 3 ];

val it = [1,2,3] : int list - [ 1, "hello"];

error



Operations on lists

4 / 33

- null [1, 2];

val it = false : bool

- null [ ];

val it = true : bool

- hd [1, 2, 3];

val it = 1 : int

- tl [1, 2, 3];

val it = [ 2, 3 ] : int list

- [ ];

val it = [ ] : ’a list this list is polymorphic



Simple functions
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A function declaration:

- fun abs x = if x >= 0.0 then x else -x

val abs = fn : real -> real

A function expression:

- fn x => if x >= 0.0 then x else -x

val it = fn : real -> real



Functions, II
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- fun length xs =

if null xs

then 0

else 1 + length (tl xs);

val length = fn : ’a list -> int

’a denotes a type variable; length can be applied to lists of any element type

The same function, written in pattern-matching style:

- fun length [] = 0

| length (x::xs) = 1 + length xs

val length = fn : ’a list -> int



Type inference and polymorphism
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Advantages of type inference and polymorphism:

■ frees you from having to write types.
A type can be more complex than the expression whose type it is, e.g.,
flip

■ with type inference, you get polymorphism for free:

◆ no need to specify that a function is polymorphic
◆ no need to ”instantiate” a polymorphic function when it is applied



Multiple arguments?
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■ All functions in ML take exactly one argument
■ If a function needs multiple arguments, we can

1. pass a tuple:
- (53, "hello"); (* a tuple *)

val it = (53, "hello") : int * string

We can also use tuples to return multiple results.

2. use currying (named after Haskell Curry, a logician)



The tuple solution
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Another function; takes two lists and returns their concatenation

- fun append1 ([ ], ys) = ys

| append1 (x::xs , ys) = x :: append1 (xs, ys);

val append1 = fn: ’a list * ’a list -> ’a list

- append1 ([1,2,3], [8 ,9]);

val it = [1,2,3,8,9] : int list



Currying
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The same function, written in curried style:

- fun append2 [ ] ys = ys

| append2 (x::xs) ys = x :: (append2 xs ys);

val append2 = fn: ’a list -> ’a list -> ’a list

- append2 [1,2,3] [8,9];

val it = [1,2,3,8,9] : int list

- val app123 = append2 [1,2,3];

val app123 = fn : int list -> int list

- app123 [8,9];

val it = [1,2,3,8,9] : int list



More partial application

11 / 33

But what if we want to provide the other argument instead, i.e., append
[8,9] to its argument?

■ here is one way: (the Ada/C/C++/Java way)

fun appTo89 xs = append2 xs [8,9]

■ here is another: (using a higher-order function)

val appTo89 = flip append2 [8,9]

flip is a function which takes a curried function f and returns a function
that works like f but takes its arguments in the reverse order.
In other words, it “flips” f’s two arguments.
We define it on the next slide...



Type inference example
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fun flip f y x = f x y

The type of flip is (α → β → γ) → β → α → γ. Why?

■ Consider (f x). f is a function; its parameter must have the same type as
x.

f : A → B x : A (f x) : B

■ Now consider (f x y). Because function application is left-associative,
f x y ≡ (f x) y. Therefore, (f x) must be a function, and its
parameter must have the same type as y:

(f x) : C → D y : C (f x y) : D

■ Note that B must be the same as C → D. We say that B must unify

with C → D.
■ The return type of flip is whatever the type of f x y is. After renaming

the types, we have the type given at the top.



Type rules
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The type system is defined in terms of inference rules. For example, here is
the rule for variables:

(x : τ) ∈ E

E ⊢ x : τ

and the one for function calls:

E ⊢ e1 : τ ′
→ τ E ⊢ e2 : τ ′

E ⊢ e1 e2 : τ

and here is the rule for if expressions:

E ⊢ e : bool E ⊢ e1 : τ E ⊢ e2 : τ

E ⊢ if e then e1 else e2 : τ



Passing functions
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- fun exists pred [ ] = false

| exists pred (x::xs) = pred x orelse

exists pred xs;

val exists = fn : (’a -> bool) -> ’a list -> bool

■ pred is a predicate : a function that returns a boolean

■ exists checks whether pred returns true for any member of the list

- exists (fn i => i = 1) [2, 3, 4];

val it = false : bool



Applying functionals
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- exists (fn i => i = 1) [2, 3, 4];

val it = false : bool

Now partially apply exists:

- val hasOne = exists (fn i => i = 1);

val hasOne = fn : int list -> bool

- hasOne [3,2,1];

val it = true : bool



Functionals 2
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fun all pred [ ] = true

| all pred (x::xs) = pred x andalso all pred xs

fun filter pred [ ] = [ ]

| filter pred (x::xs) = if pred x

then x :: filter pred xs

else filter pred xs

all : (α → bool) → α list → bool

filter : (α → bool) → α list → α list



Block structure and nesting
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let provides local scope:

(* standard Newton -Raphson *)

fun findroot (a, x, acc) =

let val nextx = (a / x + x) / 2.0

(* nextx is the next approximation *)

in

if abs (x - nextx) < acc * x

then nextx

else findroot (a, nextx , acc)

end



A classic in functional form: mergesort
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fun mrgSort op< [] = []

| mrgSort op< [x] = [x]

| mrgSort op< (a::bs) =

let fun partition (left , right , []) =

(left , right) (* done partitioning *)

| partition (left , right , x::xs) =

(* put x to left or right *)

if x < a

then partition (x::left , right , xs)

else partition (left , x::right , xs)

val (left , right) = partition ([], [a], bs)

in

mrgSort op < left @ mrgSort op< right

end

mrgSort : (α ∗ α → bool) → α list → α list



Another variant of mergesort
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fun mrgSort op< [] = []

| mrgSort op< [x] = [x]

| mrgSort op< (a::bs) =

let fun deposit (x, (left , right)) =

if x < a

then (x::left , right)

else (left , x::right)

val (left , right) = foldr deposit ([], [a]) bs

in

mrgSort op < left @ mrgSort op< right

end

mrgSort : (α ∗ α → bool) → α list → α list



The type system
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■ primitive types: bool, int, char, real, string, unit
■ constructors: list, array, product (tuple), function, record
■ “datatypes”: a way to make new types
■ structural equivalence (except for datatypes)

◆ as opposed to name equivalence in e.g., Ada

■ an expression has a corresponding type expression
■ the interpreter builds the type expression for each input
■ type checking requires that type of functions’ parameters match the type

of their arguments, and that the type of the context matches the the type
of the function’s result



ML records
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Records in ML obey structural equivalence (unlike records in many other
languages).

A type declaration: only needed if you want to refer to this type by name

type vec = { x : real , y : real }

A variable declaration:

val v = { x = 2.3, y = 4.1 }

Field selection:

#x v

Pattern matching in a function:

fun dist {x,y} =

sqrt (pow (x, 2.0) + pow (y, 2.0))



Datatypes
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A datatype declaration:

■ defines a new type that is not equivalent to any other type

(name equivalence)
■ introduces data constructors

◆ data constructors can be used in patterns
◆ they are also values themselves



Datatype example
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datatype tree = Leaf of int

| Node of tree * tree

Leaf and Node are data constructors:

■ Leaf : int → tree

■ Node : tree * tree → tree

We can define functions by pattern matching:

fun sum (Leaf t) = t

| sum (Node (t1, t2)) = sum t1 + sum t2



Parameterized datatypes
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fun flatten (Leaf t) = [t]

| flatten (Node (t1, t2)) =

flatten t1 @ flatten t2

flatten : tree → int list

datatype ’a gentree =

Leaf of ’a

| Node of ’a gentree * ’a gentree

val names = Node (Leaf "this", Leaf "that")

names : string gentree



The rules of pattern matching
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Pattern elements:

■ integer literals: 4, 19
■ character literals: #’a’
■ string literals: "hello"
■ data constructors: Node (· · ·)

◆ depending on type, may have arguments, which would also be patterns

■ variables: x, ys
■ wildcard: _

Convention is to capitalize data constructors, and start variables with
lower-case.



More rules of pattern matching

26 / 33

Special forms:

■ (), {} – the unit value
■ [] – empty list
■ [p1, p2, · · ·, pn]

means (p1 :: (p2 :: · · · (pn :: [])· · ·))

■ (p1, p2, · · ·, pn) – a tuple
■ {field1, field2, · · · fieldn} – a record
■ {field1, field2, · · · fieldn, ...}

– a partially specified record
■ v as p

– v is a name for the entire pattern p



Common idiom: option
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option is a built-in datatype:

datatype ’a option = NONE | SOME of ’a

Defining a simple lookup function:

fun lookup eq key [] = NONE

| lookup eq key ((k,v):: kvs) =

if eq (key , k)

then SOME v

else lookup eq key kvs

Is the type of lookup:

(α ∗ α → bool) → α → (α ∗ β) list → β option?

No! It’s slightly more general:

(α1 ∗ α2 → bool) → α1 → (α2 ∗ β) list → β option



Another lookup function
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We don’t need to pass two arguments when one will do:

fun lookup _ [] = NONE

| lookup checkKey ((k,v):: kvs) =

if checkKey k

then SOME v

else lookup checkKey kvs

The type of this lookup:

(α → bool) → (α ∗ β) list → β option



Useful library functions
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■ map : (α → β) → α list → β list

map (fn i => i + 1) [7, 15, 3]

=⇒ [8, 16, 4]

■ foldl : (α ∗ β → β) → β → α list → β

foldl (fn (a,b) => "(" ^ a ^ "+" ^ b ^ ")")

"0" ["1", "2", "3"]

=⇒ "(3+(2+(1+0))) "

■ foldr : (α ∗ β → β) → β → α list → β

foldr (fn (a,b) => "(" ^ a ^ "+" ^ b ^ ")")

"0" ["1", "2", "3"]

=⇒ "(1+(2+(3+0))) "

■ filter : (α → bool) → α list → α list



Overloading
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Ad hoc overloading interferes with type inference:

fun plus x y = x + y

Operator ‘+’ is overloaded, but types cannot be resolved from context
(defaults to int).

We can use explicit typing to select interpretation:

fun mix1 (x, y, z) = x * y + z : real

fun mix2 (x: real , y, z) = x * y + z



Parametric polymorphism vs. generics
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■ a function whose type expression has type variables applies to an infinite
set of types

■ equality of type expressions means structural not name equivalence
■ all applications of a polymorphic function use the same body: no need to

instantiate

let val ints = [1, 2, 3];

val strs = ["this", "that"];

in

len ints + (* int list -> int *)

len strs (* string list -> int *)

end;



ML signature
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An ML signature specifies an interface for a module.

signature STACKS =

sig

type stack

exception Underflow

val empty : stack

val push : char * stack -> stack

val pop : stack -> char * stack

val isEmpty : stack -> bool

end



ML structure

33 / 33

structure Stacks : STACKS =

struct

type stack = char list

exception Underflow

val empty = [ ]

val push = op::

fun pop (c::cs) = (c, cs)

| pop [] = raise Underflow

fun isEmpty [] = true

| isEmpty _ = false

end
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