

Programming Languages

 ML

G22.2110 Summer 2010

ML overview

- originally developed for use in writing theorem proversfunctional: functions are first-class values
- garbage collection
 - strict
 - strong and static typing; powerful type system
 - parametric polymorphism
 - structural equivalence
 - all with type inference!
- advanced module system
- exceptions
- miscellaneous features:
 - datatypes (merge of enumerated literals and variant records)
 - pattern matching
 - ref type constructor (like "const pointers" ("not pointers to const"))

A sample SML/NJ interactive session

- val k = 5; $val \ k = 5 : int$ - k * k * k; $val \ it = 125 : int$ - [1, 2, 3]; val it = [1,2,3] : int list - ["hello", "world"]; val it = ["hello", "world"] : string list -1::[2,3];val it = [1,2,3] : int list - [1, "hello"]; error

user input system response

'it' denotes the last com

Operations on lists

```
- null [1, 2];
val it = false : bool
- null [];
val it = true : bool
- hd [1, 2, 3];
val it = 1 : int
- tl [1, 2, 3];
val it = [2, 3] : int list
- [];
val it = [] : 'a list this list is polymorphic
```

Simple functions

A function *declaration*:

```
- fun abs x = if x >= 0.0 then x else -x
val abs = fn : real -> real
```

A function *expression*:

- fn x => if x >= 0.0 then x else -x val it = fn : real -> real

Functions, II

- fun length xs =
 if null xs
 then 0
 else 1 + length (tl xs);

val length = fn : 'a list -> int

'a denotes a type variable; length can be applied to lists of any element type

The same function, written in pattern-matching style:

- fun length [] = 0 | length (x::xs) = 1 + length xs

val length = fn : 'a list -> int

Advantages of type inference and polymorphism:

- frees you from having to write types.
 A type can be more complex than the expression whose type it is, e.g., flip
- with type inference, you get polymorphism for free:
 - no need to specify that a function is polymorphic
 - no need to "instantiate" a polymorphic function when it is applied

Multiple arguments?

- All functions in ML take exactly one argumentIf a function needs multiple arguments, we can
 - 1. pass a tuple:
 - (53, "hello"); (* a tuple *) val it = (53, "hello") : int * string

We can also use tuples to return multiple results.

2. use currying (named after Haskell Curry, a logician)

The tuple solution

Another function; takes two lists and returns their concatenation

- fun append1 ([], ys) = ys
| append1 (x::xs, ys) = x :: append1 (xs, ys);
val append1 = fn: 'a list * 'a list -> 'a list

- append1 ([1,2,3], [8,9]);

val it = [1,2,3,8,9] : int list

Currying

The same function, written in curried style:

- fun append2 [] ys = ys
| append2 (x::xs) ys = x :: (append2 xs ys);
val append2 = fn: 'a list -> 'a list -> 'a list

- append2 [1,2,3] [8,9]; val it = [1,2,3,8,9] : int list

- val app123 = append2 [1,2,3];
val app123 = fn : int list -> int list

- app123 [8,9]; val it = [1,2,3,8,9] : int list But what if we want to provide the other argument instead, i.e., append [8,9] to its argument?

```
    here is one way: (the Ada/C/C++/Java way)
    fun appTo89 xs = append2 xs [8,9]
    here is another: (using a higher-order function)
    val appTo89 = flip append2 [8,9]
```

flip is a function which takes a curried function f and returns a function that works like f but takes its arguments in the reverse order. In other words, it "flips" f's two arguments. We define it on the next slide...

Type inference example

fun flip f y x = f x y

The type of flip is $(\alpha \to \beta \to \gamma) \to \beta \to \alpha \to \gamma$. Why?

Consider (f x). f is a function; its parameter must have the same type as x.

 $f : A \to B \qquad x : A \qquad (f x) : B$

Now consider (f x y). Because function application is left-associative, f x y ≡ (f x) y. Therefore, (f x) must be a function, and its parameter must have the same type as y:

(f x) : $C \rightarrow D$ y : C (f x y) : D

Note that B must be the same as $C \to D$. We say that B must unify with $C \to D$.

The return type of flip is whatever the type of f x y is. After renaming the types, we have the type given at the top.

Type rules

The type system is defined in terms of inference rules. For example, here is the rule for variables:

$$\frac{(x:\tau)\in E}{E\vdash x:\tau}$$

and the one for function calls:

$$\frac{E \vdash e_1 : \tau' \to \tau \quad E \vdash e_2 : \tau'}{E \vdash e_1 \; e_2 : \tau}$$

and here is the rule for if expressions:

$$E \vdash e : \texttt{bool} \quad E \vdash e_1 : \tau \quad E \vdash e_2 : \tau$$
$$E \vdash \texttt{if} \ e \ \texttt{then} \ e_1 \ \texttt{else} \ e_2 : \tau$$

Passing functions

Applying functionals

```
- exists (fn i => i = 1) [2, 3, 4];
val it = false : bool
```

Now partially apply exists:

- val hasOne = exists (fn i => i = 1); val hasOne = fn : int list -> bool - hasOne [3,2,1]; val it = true : bool

Functionals 2

```
fun all pred [] = true
 | all pred (x::xs) = pred x andalso all pred xs
fun filter pred [] = []
 | filter pred (x::xs) = if pred x
 then x :: filter pred xs
 else filter pred xs
```

$$\texttt{all}: (\alpha \to \texttt{bool}) \to \alpha \texttt{list} \to \texttt{bool}$$

 $\texttt{filter}: (\alpha \to \texttt{bool}) \to \alpha \texttt{list} \to \alpha \texttt{list}$

Block structure and nesting

let provides local scope:

```
(* standard Newton-Raphson *)
fun findroot (a, x, acc) =
    let val nextx = (a / x + x) / 2.0
        (* nextx is the next approximation *)
    in
        if abs (x - nextx) < acc * x
        then nextx
        else findroot (a, nextx, acc)
    end</pre>
```

A classic in functional form: mergesort

```
fun mrgSort op< [] = []</pre>
  | mrgSort op< [x] = [x]</pre>
  | mrgSort op< (a::bs) =</pre>
    let fun partition (left, right, []) =
            (left, right) (* done partitioning *)
          | partition (left, right, x::xs) =
            (* put x to left or right *)
            if x < a
            then partition (x::left, right, xs)
            else partition (left, x::right, xs)
        val (left, right) = partition ([], [a], bs)
    in
        mrgSort op< left @ mrgSort op< right</pre>
    end
```

```
\texttt{mrgSort}: (\alpha \ast \alpha \to \texttt{bool}) \to \alpha \texttt{list} \to \alpha \texttt{list}
```

Another variant of mergesort

$$\texttt{mrgSort}: (\alpha \ast \alpha \to \texttt{bool}) \to \alpha \texttt{list} \to \alpha \texttt{list}$$

The type system

- primitive types: bool, int, char, real, string, unit
- constructors: list, array, product (tuple), function, record
- "'datatypes": a way to make new types
- structural equivalence (except for datatypes)
 - as opposed to name equivalence in e.g., Ada
- an expression has a corresponding type expression
- the interpreter builds the type expression for each input
- type checking requires that type of functions' parameters match the type of their arguments, and that the type of the context matches the type of the function's result

ML records

Records in ML obey structural equivalence (unlike records in many other languages).

A type declaration: only needed if you want to refer to this type by name

type vec = { x : real, y : real }

A variable declaration:

val v = { x = 2.3, y = 4.1 }

Field selection:

#x v

Pattern matching in a function:

fun dist {x,y} =
 sqrt (pow (x, 2.0) + pow (y, 2.0))

Datatypes

A datatype declaration:

- defines a new type that is not equivalent to any other type (name equivalence)
- introduces data constructors
 - *data constructors* can be used in patterns
 - they are also values themselves

Datatype example

Leaf and Node are *data constructors*:

We can define functions by pattern matching:

```
fun sum (Leaf t) = t
| sum (Node (t1, t2)) = sum t1 + sum t2
```

Parameterized datatypes

```
fun flatten (Leaf t) = [t]
  | flatten (Node (t1, t2)) =
    flatten t1 @ flatten t2
```

 $\texttt{flatten}: \texttt{tree} \rightarrow \texttt{int} \texttt{list}$

```
datatype 'a gentree =
   Leaf of 'a
   Node of 'a gentree * 'a gentree
val names = Node (Leaf "this", Leaf "that")
```

names : string gentree

The rules of pattern matching

Pattern elements:

- integer literals: 4, 19
- character literals: #'a'
- string literals: "hello"
 - data constructors: Node (···)

depending on type, may have arguments, which would also be patterns

- variables: x, ys
- wildcard:

Convention is to capitalize data constructors, and start variables with lower-case.

More rules of pattern matching

Special forms:

```
(), {} - the unit value
[] - empty list
[p1, p2, ..., pn]
means (p1 :: (p2 :: ... (pn :: [])...))
(p1, p2, ..., pn) - a tuple
{field1, field2, ... fieldn} - a record
{field1, field2, ... fieldn, ...}
- a partially specified record
v as p
```

-v is a name for the entire pattern p

Common idiom: option

option is a built-in datatype:

datatype 'a option = NONE | SOME of 'a

Defining a simple lookup function:

Is the type of lookup:

$$(\alpha * \alpha \to \texttt{bool}) \to \alpha \to (\alpha * \beta) \texttt{list} \to \beta \texttt{option}?$$

No! It's slightly more general:

 $(\alpha_1 * \alpha_2 \to \texttt{bool}) \to \alpha_1 \to (\alpha_2 * \beta) \texttt{list} \to \beta \texttt{option}$

We don't need to pass two arguments when one will do:

```
fun lookup _ [] = NONE
| lookup checkKey ((k,v)::kvs) =
if checkKey k
then SOME v
else lookup checkKey kvs
```

The type of this lookup:

$$(\alpha \rightarrow \texttt{bool}) \rightarrow (\alpha * \beta) \texttt{list} \rightarrow \beta \texttt{option}$$

Useful library functions

Overloading

Ad hoc overloading interferes with type inference:

fun plus x y = x + y

Operator '+' is overloaded, but types cannot be resolved from context (defaults to int).

We can use explicit typing to select interpretation:

fun mix1 (x, y, z) = x * y + z : real fun mix2 (x: real, y, z) = x * y + z

Parametric polymorphism vs. generics

- a function whose type expression has type variables applies to an infinite set of types
- equality of type expressions means structural not name equivalence
 all applications of a polymorphic function use the same body: no need to instantiate

let val ints = [1, 2, 3]; val strs = ["this", "that"]; in len ints + (* int list -> int *) len strs (* string list -> int *) end;

ML signature

An ML *signature* specifies an interface for a module.

```
signature STACKS =
sig
    type stack
    exception Underflow
    val empty : stack
    val push : char * stack -> stack
    val pop : stack -> char * stack
    val isEmpty : stack -> bool
end
```

ML structure

```
structure Stacks : STACKS =
struct
   type stack = char list
    exception Underflow
   val empty = [ ]
   val push = op::
    fun pop (c::cs) = (c, cs)
      | pop [] = raise Underflow
    fun isEmpty [] = true
      isEmpty _ = false
```

end