
Programming Languages

Types

G22.2110

Summer 2010

What is a type?

2 / 45

■ A type consists of a set of values
■ The compiler/interpreter defines a mapping of these values onto the

underlying hardware.

Static vs Dynamic Type Systems

3 / 45

Static vs dynamic

■ Static

◆ Variables have types
◆ Compiler ensures that type rules are obeyed at compile time

■ Dynamic

◆ Variables do not have types, values do
◆ Compiler ensures that type rules are obeyed at run time

A language may have a mixture;
Java has a mostly static type system with some runtime checks.

Pros and cons

■ faster: static
dynamic typing requires run-time checks

■ more flexible: dynamic
■ easier to refactor code: static

Strong vs weak typing

4 / 45

■ A strongly typed language does not allow variables to be used in a way
inconsistent with their types (no loopholes)

■ A weakly typed language allows many ways to bypass the type system
(e.g., pointer arithmetic)

C is a poster child for the latter. Its motto is: “Trust the programmer”.

Scalar Types Overview

5 / 45

■ discrete types
must have clear successor, predecessor

■ floating-point types
typically 64 bit (double in C); sometimes 32 bit as well (float in C)

■ rational types
used to represent exact fractions (Scheme, Lisp)

■ complex
Fortran, Scheme, Lisp, C99, C++ (in STL)

Discrete Types

6 / 45

■ integer types
often several sizes (e.g., 16 bit, 32 bit, 64 bit)
sometimes have signed and unsigned variants (e.g., C/C++, Ada, C#)
SML/NJ has a 31-bit integer

■ boolean
Common type; C had no boolean until C99

■ character
See next slide

■ enumeration types

Other intrinsic types

7 / 45

■ character, string

◆ some languages have no character data type (e.g., Javascript)
◆ internationalization support

■ Java: UTF-16
■ C++: 8 or 16 bit characters; semantics implementation dependent

◆ string mutability
Most languages allow it, Java does not.

■ void, unit
Used as return type of procedures;
void: (C, Java) represents the absence of a type
unit: (ML, Haskell) a type with one value: ()

Enumeration types: abstraction at its best

8 / 45

■ trivial and compact implementation:
literals are mapped to successive integers

■ very common abstraction: list of names, properties
■ expressive of real-world domain, hides machine representation

Examples:

type Suit is (Hearts , Diamonds , Spades , Clubs);

type Direction is (East , West , North , South);

Order of list means that Spades > Hearts, etc.

Contrast this with C#:

‘‘arithmetics on enum numbers may produce results in the
underlying representation type that do not correspond to any
declared enum member; this is not an error”

Enumeration types and strong typing

9 / 45

type Fruit is (Apple , Orange , Grape , Apricot);

type Vendor is (Apple , IBM , HP, Dell);

My_PC : Vendor ;

Dessert : Fruit;

...

My_PC := Apple;

Dessert := Apple;

Dessert := My_PC; -- error

Apple is overloaded. It can be of type Fruit or Vendor.

Subranges

10 / 45

Ada and Pascal allow types to be defined which are subranges of existing
discrete types.

type Sub is new Positive range 2 .. 5; -- Ada

V: Sub;

type sub = 2 .. 5; (* Pascal *)

var v: sub;

Assignments to these variables are checked at runtime:

V := I + J; -- runtime error if not in range

Composite Types

11 / 45

■ arrays
■ records
■ variants, variant records, unions
■ classes
■ pointers, references
■ function types
■ lists
■ sets
■ maps

Arrays

12 / 45

■ index types
most languages restrict to an integral type
Ada, Pascal, Haskell allow any scalar type

■ index bounds
many languages restrict lower bound:
C, Java: 0, Fortran: 1, Ada, Pascal: no restriction

■ when is length determined
Fortran: compile time; most other languages: can choose

■ dimensions
some languages have multi-dimensional arrays (Fortran, C)
many simulate multi-dimensional arrays as arrays of arrays (Java)

■ literals
C/C++ has initializers, but not full-fledged literals
Ada: (23, 76, 14) Scheme: #(23, 76, 14)

■ first-classness
C, C++ does not allow arrays to be returned from functions

Composite Literals

13 / 45

Does the language support these?

■ array aggregates

A := (1, 2, 3, 10); -- positional

A := (1, others => 0); -- for default

A := (1..3 => 1, 4 => -999); -- named

■ record aggregates

R := (name => "NYU", zipcode => 10012);

Initializers in C++

14 / 45

Similar notion for declarations:

int v2[] = { 1, 2, 3, 4 }; // size from initializer

char v3[2] = { ’a’, ’z’}; // declared size

int v5[10] = { -1 }; // default: other components = 0

struct School r =

{ "NYU", 10012 }; // record initializer

char name[] = "Algol"; // string literals are aggregates

C has no array assignments, so initializer is not an expression
(less orthogonal)

Pointers and references

15 / 45

Related (but distinct) notions:

■ a value that denotes a memory location
■ a dynamic name that can designate different objects
■ a mechanism to separate stack and heap allocation

type Ptr is access Integer; -- Ada: named type

typedef int *ptr; // C, C++

Extra pointer capabilities

16 / 45

Questions:

■ Is it possible to get the address of a variable?

◆ Convenient, but aliasing causes optimization difficulties.
(the same way that pass by reference does)

◆ Unsafe if we can get the address of a stack allocated variable.

■ Is pointer arithmetic allowed?

◆ Unsafe if unrestricted.
◆ In C, no bounds checking:

// allocate space for 10 ints

int *p = malloc (10 * sizeof (int));

p += 42;

... *p ... // out of bounds , but no check

Dynamic data structures

17 / 45

type Cell; -- an incomplete type

type Ptr is access Cell; -- an access to it

type Cell is record -- the full declaration

Value: Integer;

Next , Prev: Ptr;

end record ;

List: Ptr := new Cell ’(10, null , null);

... -- A list is just a pointer to its first element

List.Next := new Cell ’(15, null , null);

List.Next.Prev := List;

Incomplete declarations in C++

18 / 45

struct cell {

int value;

cell *prev; // legal to mention name

cell *next; // before end of declaration

};

struct list; // incomplete declaration

struct link {

link *succ; // pointers to the

list *memberOf ; // incomplete type

};

struct list { // full definition

link *head; // mutually recursive references

};

Pointers and dereferencing

19 / 45

■ Need notation to distinguish pointer from designated object

◆ in Ada: Ptr vs Ptr.all
◆ in C: ptr vs *ptr
◆ in Java: no notion of pointer

■ For pointers to composite values, dereference can be implicit:

◆ in Ada: C1.Value equivalent to C1.all.Value

◆ in C/C++: c1.value and c1->value are different

”Generic” pointers

20 / 45

A pointer used for low-level memory manipulation, i.e., a memory address.
In C, void is requisitioned to indicate this.
Any pointer type can be converted to a void *.

int a[10];

void *p = &a[5];

A cast is required to convert back:

int *pi = (int *)p; // no checks

double *pd = (double *)p;

Pointers and arrays in C/C++

21 / 45

In C/C++, the notions:

■ an array
■ a pointer to the first element of an array

are almost the same.

void f (int *p) { ... }

int a[10];

f(a); // same as f(&a[0])

int *p = new int [4];

... p[0] ... // first element

... *p ... // ditto

... 0[p] ... // ditto

... p[10] ... // past the end; undetected error

Pointers and safety

22 / 45

Pointers create aliases: accessing the value through one name affects retrieval
through the other:

int *p1 , *p2;

...

p1 = new int [10]; // allocate

p2 = p1; // share

delete [] p1; // discard storage

p2[5] = ... // error:

// p2 does not denote anything

Pointer troubles

23 / 45

Several possible problems with low-level pointer manipulation:

■ dangling references
■ garbage (forgetting to free memory)
■ freeing dynamically allocated memory twice
■ freeing memory that was not dynamically allocated
■ reading/writing outside object pointed to

Dangling references

24 / 45

If we can point to local storage, we can create a reference to an undefined
value:

int *f () { // returns a pointer to an integer

int local; // variable on stack frame of f

...

return &local; // pointer to local entity

}

int *x = f ();

...

*x = 5; // stack may have been overwritten

Records

25 / 45

A record consists of a set of typed fields.
Choices:

■ Name or structural equivalence? Most statically typed languages choose
name equivalence.
ML, Haskell are exceptions.

■ Does order of fields matter?
Typically, same answer as previous question.

■ Any subtyping relationship with other record types?
Most statically typed languages say no.
Dynamically typed languages implicitly say yes.
This is know as duck typing.

Variant Records

26 / 45

A variant record is a record that provides multiple alternative sets of fields,
only one of which is valid at any given time.
Also known as a discriminated union.

Variant Records in Ada

27 / 45

Need to treat group of related representations as a single type:

type Figure_Kind is (Circle , Square , Line);

type Figure (Kind: Figure_Kind) is record

Color: Color_Type ;

Visible: Boolean;

case Kind is

when Line => Length : Integer;

Orientation: Float;

Start: Point;

when Square => Lower_Left , Upper_Right: Point;

when Circle => Radius : Integer;

Center : Point;

end case;

end record ;

Discriminant checking, part 1

28 / 45

C1: Figure(Circle); -- discriminant provides constraint

S1: Figure(Square);

...

C1.Radius := 15;

if S1.Lower_Left = C1.Center then ...

function Area (F: Figure) return Float is

-- applies to any figure , i.e., subtype

begin

case F.Kind is

when Circle => return Pi * Radius ** 2;

...

end Area;

Discriminant checking, part 2

29 / 45

L : Figure (Line);

F : Figure ; -- illegal , don ’t know which kind

P1 := Point;

...

C := (Circle , Red , False , 10, P1);

-- record aggregate

... C.Orientation ...

-- illegal , circles have no orientation

C := L;

-- illegal , different kinds

C.Kind := Square ;

-- illegal , discriminant is constant

Discriminant is a visible constant component of object.

Variants and classes

30 / 45

■ discriminated types and classes have overlapping functionalities
■ discriminated types can be allocated statically
■ run-time code uses less indirection
■ compiler can enforce consistent use of discriminants
■ adding new variants is disruptive; must modify every case statement
■ variant programming: one procedure at a time
■ class programming: one class at a time

Free Unions

31 / 45

Free unions can be used to bypass the type model:

union value {

char *s;

int i; // s and i allocated at same address

};

Keeping track of current type is programmer’s responsibility.
Can use an explicit tag:

struct entry {

int discr;

union { // anonymous component , either s or i.

char *s; // if discr = 0

int i; // if discr = 1, but system won’t check

};

};

Discriminated unions and dynamic typing

32 / 45

In dynamically-typed languages, only values have types, not names.

S = 13.45 # a floating -point number

...

S = [1,2,3,4] # now it’s a list

Run-time values are described by discriminated unions.
Discriminant denotes type of value.

S = X + Y # arithmetic or concatenation

Lists, sets and maps

33 / 45

■ list: ordered collection of elements
■ set: collection of elements with fast searching
■ map: collection of (key, value) pairs with fast key lookup

Low-level languages typically do not provide these. High-level and scripting
languages do, some as part of a library.

■ Perl, Python: built-in, lists and arrays merged.
■ C, Fortran, Cobol: no
■ C++: part of STL: list<T>, set<T>, map<K,V>
■ Java: yes, in library
■ Setl: built-in
■ ML, Haskell: lists built-in, set, map part of library
■ Scheme: lists built-in
■ Pascal: built-in sets

but only for discrete types with few elements, e.g., 32

Function types

34 / 45

■ not needed unless the language allows functions to be passed as
arguments or returned

■ variable number of arguments:
C/C++: allowed, type system loophole, Java: allowed, but no loophole

■ optional arguments: normally not part of the type.
■ missing arguments in call: in dynamically typed languages, typically OK.

Type equivalence

35 / 45

Name vs structural

■ name equivalence

Two types are the same only if they have the same name. (Each type
definition introduces a new type.)
Carried to extreme in Ada:
“If a type is useful, it deserves to have a name.”

■ structural equivalence

Two types are equivalent if they have the same structure.

Most languages have mixture, e.g., C: name equivalence for records (structs),
structural equivalence for almost everything else.

Type equivalence examples

36 / 45

Name equivalence in Ada:

type t1 is array (1 .. 10) of boolean;

type t2 is array (1 .. 10) of boolean;

v1: t1;

v2: t2; -- v1, v2 have different types

x1, x2: array (1 .. 10) of boolean;

-- x1 and x2 have different types too!

Structural equivalence in ML:

type t1 = { a: int , b: real };

type t2 = { b: real , a: int };

(* t1 and t2 are equivalent types *)

Accidental structural equivalence

37 / 45

type student = {

name: string ,

address: string

}

type school = {

name: string ,

address: string

}

type age = float;

type weight = float;

With structural equivalence, we can accidentally assign a school to a
student, or an age to a weight.

Polymorphisms

38 / 45

■ Subclass polymorphism:

◆ The ability to treat a class as one of its superclasses.
◆ The basis of OOP.

■ Subtype polymorphism:

◆ The ability to treat a value of a subtype as a value of a supertype.
◆ Related to subclass polymorphism.

■ Parametric polymorphism:

◆ The ability to treat any type uniformly.
◆ Found in ML, Haskell, and, in a very different form, in C++

templates and Java generics.

■ Ad hoc polymorphism:

◆ Multiple definitions of a function with the same name, each for a
different set of argument types (overloading)

Parametric polymorphism example

39 / 45

fun length xs =

if null xs

then 0

else 1 + length (tl xs)

length returns an int, and can take a list of any element type, because we
don’t care what the element type is. The type of this function is written
’a list -> int.

Subtyping

40 / 45

■ A relation between types; similar to but not the same as subclassing.
■ Can be used in two different ways:

◆ Subtype polymorphism
◆ Coercion

Subtype examples:

■ A record type containing fields a, b and c can be considered a subtype of
one containing only a and c.

■ A variant record type consisting of fields a or c can be considered a
subtype of one containing a or b or c.

■ The subrange 1..100 can be considered a subtype of the subrange
1..500.

Subtype polymorphism and coercion

41 / 45

■ subtype polymorphism: ability to treat a value of a subtype as a value of a
supertype.

■ coercion: ability to convert a value of a subtype to a value of a supertype.

Subtype polymorphism vs coercion

42 / 45

Let’s say type s is a subtype of r.

var vs: s;

var vr: r;

Subtype polymorphism:

function [t ≤ r] f (x: t): t { return x; }

f(vr); // returns a value of type r

f(vs); // returns a value of type s

Coercion:

function f (x: r): r { return x; }

f(vr); // returns a value of type r

f(vs); // returns a value of type r

Overloading

43 / 45

Overloading: Multiple definitions for a name, distinguished by their types.
Overload resolution: Process of determining which definition is meant in a
given use.

■ Usually restricted to functions
■ Usually only for static type systems
■ Related to coercion. Coercion can be simulated by overloading (but at a

high cost). If type a has subtypes b and c, we can define three overloaded
functions, one for each type. Simulation not practical for many subtypes
or number of arguments.

Overload resolution based on:

■ number of arguments (Erlang)
■ argument types (C++, Java)
■ return type (Ada)

Constness

44 / 45

Ability to declare that a variable will not be changed:

■ C/C++: const
■ Java: final

May or may not affect type system: C++: yes, Java: no

Type checking and inference

45 / 45

■ Type checking:

◆ Variables are declared with their type.
◆ Compiler determines if variables are used in accordance with their

type declarations.

■ Type inference: (ML, Haskell)

◆ Variables are declared, but not their type.
◆ Compiler determines type of a variable from its initialization/usage.

In both cases, type inconsistencies are reported at compile time.

fun f x =

if x = 5 (* There are two type errors here *)

then hd x

else tl x

	What is a type?
	Static vs Dynamic Type Systems
	Strong vs weak typing
	Scalar Types Overview
	Discrete Types
	Other intrinsic types
	Enumeration types: abstraction at its best
	Enumeration types and strong typing
	Subranges
	Composite Types
	Arrays
	Composite Literals
	Initializers in C++
	Pointers and references
	Extra pointer capabilities
	Dynamic data structures
	Incomplete declarations in C++
	Pointers and dereferencing
	''Generic'' pointers
	Pointers and arrays in C/C++
	Pointers and safety
	Pointer troubles
	Dangling references
	Records
	Variant Records
	Variant Records in Ada
	Discriminant checking, part 1
	Discriminant checking, part 2
	Variants and classes
	Free Unions
	Discriminated unions and dynamic typing
	Lists, sets and maps
	Function types
	Type equivalence
	Type equivalence examples
	Accidental structural equivalence
	Polymorphisms
	Parametric polymorphism example
	Subtyping
	Subtype polymorphism and coercion
	Subtype polymorphism vs coercion
	Overloading
	Constness
	Type checking and inference

