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What is a type?
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■ A type consists of a set of values
■ The compiler/interpreter defines a mapping of these values onto the

underlying hardware.



Static vs Dynamic Type Systems
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Static vs dynamic

■ Static

◆ Variables have types
◆ Compiler ensures that type rules are obeyed at compile time

■ Dynamic

◆ Variables do not have types, values do
◆ Compiler ensures that type rules are obeyed at run time

A language may have a mixture;
Java has a mostly static type system with some runtime checks.

Pros and cons

■ faster: static
dynamic typing requires run-time checks

■ more flexible: dynamic
■ easier to refactor code: static



Strong vs weak typing
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■ A strongly typed language does not allow variables to be used in a way
inconsistent with their types (no loopholes)

■ A weakly typed language allows many ways to bypass the type system
(e.g., pointer arithmetic)

C is a poster child for the latter. Its motto is: “Trust the programmer”.



Scalar Types Overview
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■ discrete types
must have clear successor, predecessor

■ floating-point types
typically 64 bit (double in C); sometimes 32 bit as well (float in C)

■ rational types
used to represent exact fractions (Scheme, Lisp)

■ complex
Fortran, Scheme, Lisp, C99, C++ (in STL)



Discrete Types
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■ integer types
often several sizes (e.g., 16 bit, 32 bit, 64 bit)
sometimes have signed and unsigned variants (e.g., C/C++, Ada, C#)
SML/NJ has a 31-bit integer

■ boolean
Common type; C had no boolean until C99

■ character
See next slide

■ enumeration types



Other intrinsic types
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■ character, string

◆ some languages have no character data type (e.g., Javascript)
◆ internationalization support

■ Java: UTF-16
■ C++: 8 or 16 bit characters; semantics implementation dependent

◆ string mutability
Most languages allow it, Java does not.

■ void, unit
Used as return type of procedures;
void: (C, Java) represents the absence of a type
unit: (ML, Haskell) a type with one value: ()



Enumeration types: abstraction at its best
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■ trivial and compact implementation:
literals are mapped to successive integers

■ very common abstraction: list of names, properties
■ expressive of real-world domain, hides machine representation

Examples:

type Suit is (Hearts , Diamonds , Spades , Clubs );

type Direction is (East , West , North , South );

Order of list means that Spades > Hearts, etc.

Contrast this with C#:

‘‘arithmetics on enum numbers may produce results in the
underlying representation type that do not correspond to any
declared enum member; this is not an error”



Enumeration types and strong typing
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type Fruit is (Apple , Orange , Grape , Apricot );

type Vendor is (Apple , IBM , HP, Dell );

My_PC : Vendor ;

Dessert : Fruit;

...

My_PC := Apple;

Dessert := Apple;

Dessert := My_PC; -- error

Apple is overloaded. It can be of type Fruit or Vendor.



Subranges

10 / 45

Ada and Pascal allow types to be defined which are subranges of existing
discrete types.

type Sub is new Positive range 2 .. 5; -- Ada

V: Sub;

type sub = 2 .. 5; (* Pascal *)

var v: sub;

Assignments to these variables are checked at runtime:

V := I + J; -- runtime error if not in range



Composite Types
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■ arrays
■ records
■ variants, variant records, unions
■ classes
■ pointers, references
■ function types
■ lists
■ sets
■ maps



Arrays
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■ index types
most languages restrict to an integral type
Ada, Pascal, Haskell allow any scalar type

■ index bounds
many languages restrict lower bound:
C, Java: 0, Fortran: 1, Ada, Pascal: no restriction

■ when is length determined
Fortran: compile time; most other languages: can choose

■ dimensions
some languages have multi-dimensional arrays (Fortran, C)
many simulate multi-dimensional arrays as arrays of arrays (Java)

■ literals
C/C++ has initializers, but not full-fledged literals
Ada: (23, 76, 14) Scheme: #(23, 76, 14)

■ first-classness
C, C++ does not allow arrays to be returned from functions



Composite Literals

13 / 45

Does the language support these?

■ array aggregates

A := (1, 2, 3, 10); -- positional

A := (1, others => 0); -- for default

A := (1..3 => 1, 4 => -999); -- named

■ record aggregates

R := (name => "NYU", zipcode => 10012);



Initializers in C++
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Similar notion for declarations:

int v2[] = { 1, 2, 3, 4 }; // size from initializer

char v3[2] = { ’a’, ’z’}; // declared size

int v5[10] = { -1 }; // default: other components = 0

struct School r =

{ "NYU", 10012 }; // record initializer

char name[] = "Algol"; // string literals are aggregates

C has no array assignments, so initializer is not an expression
(less orthogonal)



Pointers and references
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Related (but distinct) notions:

■ a value that denotes a memory location
■ a dynamic name that can designate different objects
■ a mechanism to separate stack and heap allocation

type Ptr is access Integer; -- Ada: named type

typedef int *ptr; // C, C++



Extra pointer capabilities
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Questions:

■ Is it possible to get the address of a variable?

◆ Convenient, but aliasing causes optimization difficulties.
(the same way that pass by reference does)

◆ Unsafe if we can get the address of a stack allocated variable.

■ Is pointer arithmetic allowed?

◆ Unsafe if unrestricted.
◆ In C, no bounds checking:

// allocate space for 10 ints

int *p = malloc (10 * sizeof (int ));

p += 42;

... *p ... // out of bounds , but no check



Dynamic data structures
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type Cell; -- an incomplete type

type Ptr is access Cell; -- an access to it

type Cell is record -- the full declaration

Value: Integer;

Next , Prev: Ptr;

end record ;

List: Ptr := new Cell ’(10, null , null );

... -- A list is just a pointer to its first element

List.Next := new Cell ’(15, null , null );

List.Next.Prev := List;



Incomplete declarations in C++
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struct cell {

int value;

cell *prev; // legal to mention name

cell *next; // before end of declaration

};

struct list; // incomplete declaration

struct link {

link *succ; // pointers to the

list *memberOf ; // incomplete type

};

struct list { // full definition

link *head; // mutually recursive references

};



Pointers and dereferencing
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■ Need notation to distinguish pointer from designated object

◆ in Ada: Ptr vs Ptr.all
◆ in C: ptr vs *ptr
◆ in Java: no notion of pointer

■ For pointers to composite values, dereference can be implicit:

◆ in Ada: C1.Value equivalent to C1.all.Value

◆ in C/C++: c1.value and c1->value are different



”Generic” pointers
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A pointer used for low-level memory manipulation, i.e., a memory address.
In C, void is requisitioned to indicate this.
Any pointer type can be converted to a void *.

int a[10];

void *p = &a[5];

A cast is required to convert back:

int *pi = (int *)p; // no checks

double *pd = (double *)p;



Pointers and arrays in C/C++

21 / 45

In C/C++, the notions:

■ an array
■ a pointer to the first element of an array

are almost the same.

void f (int *p) { ... }

int a[10];

f(a); // same as f(&a[0])

int *p = new int [4];

... p[0] ... // first element

... *p ... // ditto

... 0[p] ... // ditto

... p[10] ... // past the end; undetected error



Pointers and safety
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Pointers create aliases: accessing the value through one name affects retrieval
through the other:

int *p1 , *p2;

...

p1 = new int [10]; // allocate

p2 = p1; // share

delete [] p1; // discard storage

p2[5] = ... // error:

// p2 does not denote anything



Pointer troubles
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Several possible problems with low-level pointer manipulation:

■ dangling references
■ garbage (forgetting to free memory)
■ freeing dynamically allocated memory twice
■ freeing memory that was not dynamically allocated
■ reading/writing outside object pointed to



Dangling references
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If we can point to local storage, we can create a reference to an undefined
value:

int *f () { // returns a pointer to an integer

int local; // variable on stack frame of f

...

return &local; // pointer to local entity

}

int *x = f ();

...

*x = 5; // stack may have been overwritten



Records
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A record consists of a set of typed fields.
Choices:

■ Name or structural equivalence? Most statically typed languages choose
name equivalence.
ML, Haskell are exceptions.

■ Does order of fields matter?
Typically, same answer as previous question.

■ Any subtyping relationship with other record types?
Most statically typed languages say no.
Dynamically typed languages implicitly say yes.
This is know as duck typing.



Variant Records
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A variant record is a record that provides multiple alternative sets of fields,
only one of which is valid at any given time.
Also known as a discriminated union.



Variant Records in Ada
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Need to treat group of related representations as a single type:

type Figure_Kind is (Circle , Square , Line );

type Figure (Kind: Figure_Kind) is record

Color: Color_Type ;

Visible: Boolean;

case Kind is

when Line => Length : Integer;

Orientation: Float;

Start: Point;

when Square => Lower_Left , Upper_Right: Point;

when Circle => Radius : Integer;

Center : Point;

end case;

end record ;



Discriminant checking, part 1
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C1: Figure(Circle ); -- discriminant provides constraint

S1: Figure(Square );

...

C1.Radius := 15;

if S1.Lower_Left = C1.Center then ...

function Area (F: Figure) return Float is

-- applies to any figure , i.e., subtype

begin

case F.Kind is

when Circle => return Pi * Radius ** 2;

...

end Area;



Discriminant checking, part 2
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L : Figure (Line );

F : Figure ; -- illegal , don ’t know which kind

P1 := Point;

...

C := (Circle , Red , False , 10, P1);

-- record aggregate

... C.Orientation ...

-- illegal , circles have no orientation

C := L;

-- illegal , different kinds

C.Kind := Square ;

-- illegal , discriminant is constant

Discriminant is a visible constant component of object.



Variants and classes
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■ discriminated types and classes have overlapping functionalities
■ discriminated types can be allocated statically
■ run-time code uses less indirection
■ compiler can enforce consistent use of discriminants
■ adding new variants is disruptive; must modify every case statement
■ variant programming: one procedure at a time
■ class programming: one class at a time



Free Unions
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Free unions can be used to bypass the type model:

union value {

char *s;

int i; // s and i allocated at same address

};

Keeping track of current type is programmer’s responsibility.
Can use an explicit tag:

struct entry {

int discr;

union { // anonymous component , either s or i.

char *s; // if discr = 0

int i; // if discr = 1, but system won’t check

};

};



Discriminated unions and dynamic typing
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In dynamically-typed languages, only values have types, not names.

S = 13.45 # a floating -point number

...

S = [1,2,3,4] # now it’s a list

Run-time values are described by discriminated unions.
Discriminant denotes type of value.

S = X + Y # arithmetic or concatenation



Lists, sets and maps
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■ list: ordered collection of elements
■ set: collection of elements with fast searching
■ map: collection of (key, value) pairs with fast key lookup

Low-level languages typically do not provide these. High-level and scripting
languages do, some as part of a library.

■ Perl, Python: built-in, lists and arrays merged.
■ C, Fortran, Cobol: no
■ C++: part of STL: list<T>, set<T>, map<K,V>
■ Java: yes, in library
■ Setl: built-in
■ ML, Haskell: lists built-in, set, map part of library
■ Scheme: lists built-in
■ Pascal: built-in sets

but only for discrete types with few elements, e.g., 32



Function types
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■ not needed unless the language allows functions to be passed as
arguments or returned

■ variable number of arguments:
C/C++: allowed, type system loophole, Java: allowed, but no loophole

■ optional arguments: normally not part of the type.
■ missing arguments in call: in dynamically typed languages, typically OK.



Type equivalence
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Name vs structural

■ name equivalence

Two types are the same only if they have the same name. (Each type
definition introduces a new type.)
Carried to extreme in Ada:
“If a type is useful, it deserves to have a name.”

■ structural equivalence

Two types are equivalent if they have the same structure.

Most languages have mixture, e.g., C: name equivalence for records (structs),
structural equivalence for almost everything else.



Type equivalence examples
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Name equivalence in Ada:

type t1 is array (1 .. 10) of boolean;

type t2 is array (1 .. 10) of boolean;

v1: t1;

v2: t2; -- v1, v2 have different types

x1, x2: array (1 .. 10) of boolean;

-- x1 and x2 have different types too!

Structural equivalence in ML:

type t1 = { a: int , b: real };

type t2 = { b: real , a: int };

(* t1 and t2 are equivalent types *)



Accidental structural equivalence
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type student = {

name: string ,

address: string

}

type school = {

name: string ,

address: string

}

type age = float;

type weight = float;

With structural equivalence, we can accidentally assign a school to a
student, or an age to a weight.



Polymorphisms
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■ Subclass polymorphism:

◆ The ability to treat a class as one of its superclasses.
◆ The basis of OOP.

■ Subtype polymorphism:

◆ The ability to treat a value of a subtype as a value of a supertype.
◆ Related to subclass polymorphism.

■ Parametric polymorphism:

◆ The ability to treat any type uniformly.
◆ Found in ML, Haskell, and, in a very different form, in C++

templates and Java generics.

■ Ad hoc polymorphism:

◆ Multiple definitions of a function with the same name, each for a
different set of argument types (overloading)



Parametric polymorphism example
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fun length xs =

if null xs

then 0

else 1 + length (tl xs)

length returns an int, and can take a list of any element type, because we
don’t care what the element type is. The type of this function is written
’a list -> int.



Subtyping
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■ A relation between types; similar to but not the same as subclassing.
■ Can be used in two different ways:

◆ Subtype polymorphism
◆ Coercion

Subtype examples:

■ A record type containing fields a, b and c can be considered a subtype of
one containing only a and c.

■ A variant record type consisting of fields a or c can be considered a
subtype of one containing a or b or c.

■ The subrange 1..100 can be considered a subtype of the subrange
1..500.



Subtype polymorphism and coercion
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■ subtype polymorphism: ability to treat a value of a subtype as a value of a
supertype.

■ coercion: ability to convert a value of a subtype to a value of a supertype.



Subtype polymorphism vs coercion
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Let’s say type s is a subtype of r.

var vs: s;

var vr: r;

Subtype polymorphism:

function [t ≤ r] f (x: t): t { return x; }

f(vr); // returns a value of type r

f(vs); // returns a value of type s

Coercion:

function f (x: r): r { return x; }

f(vr); // returns a value of type r

f(vs); // returns a value of type r



Overloading
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Overloading: Multiple definitions for a name, distinguished by their types.
Overload resolution: Process of determining which definition is meant in a
given use.

■ Usually restricted to functions
■ Usually only for static type systems
■ Related to coercion. Coercion can be simulated by overloading (but at a

high cost). If type a has subtypes b and c, we can define three overloaded
functions, one for each type. Simulation not practical for many subtypes
or number of arguments.

Overload resolution based on:

■ number of arguments (Erlang)
■ argument types (C++, Java)
■ return type (Ada)



Constness
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Ability to declare that a variable will not be changed:

■ C/C++: const
■ Java: final

May or may not affect type system: C++: yes, Java: no



Type checking and inference
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■ Type checking:

◆ Variables are declared with their type.
◆ Compiler determines if variables are used in accordance with their

type declarations.

■ Type inference: (ML, Haskell)

◆ Variables are declared, but not their type.
◆ Compiler determines type of a variable from its initialization/usage.

In both cases, type inconsistencies are reported at compile time.

fun f x =

if x = 5 (* There are two type errors here *)

then hd x

else tl x
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