
Programming Languages

Lambda Calculus (and a bit of Scheme)

G22.2110

Summer 2010



λ-Calculus

2 / 31

■ invented by Alonzo Church in 1932 as a model of computation
■ basis for functional languages (e.g., Lisp, Scheme, ML, Haskell)
■ typed and untyped variants
■ has syntax and reduction rules



Syntax

3 / 31

We will discuss the pure, untyped variant of the λ-calculus.

The syntax is simple:

M ::= λx . M function
| M M function application
| x variable

Shorthands:

■ We can use parentheses to indicate grouping
■ We can omit parentheses when intent is clear
■ λx y z . M is a shorthand for λx . (λy . (λz . M))
■ M1 M2 M3 is a shorthand for (M1 M2)M3



Free and bound variables

4 / 31

■ In a term λx . M , the scope of x is M .
■ We say that x is bound in M .
■ Variables that are not bound are free.

Example:
(λx . (λy . (x (z y)))) y

■ The z is free.
■ The last y is free.
■ The x and remaining y are bound.

We can perform α-conversion at will:

λx . (. . . x . . .) −→α λy . (. . . y . . .)



β-reduction

5 / 31

The main reduction rule in the λ-calculus is function application:

(λx . M)N −→β [x 7→ N ]M

The notation [x 7→ N ]M means:

M , with all free occurrences of x replaced by N .

Restriction: N should not have any free variables which are bound in M .

Example:
(λx . (λy . (x y))) (λy . y) −→β λy . (λy.y) y

An expression that cannot be β-reduced any further is a normal form.



Evaluation strategies

6 / 31

We have the β-rule, but if we have a complex expression, where should we
apply it first?

(λx . λy . y x x) ((λx . x)(λy . z))

Two popular strategies:

■ normal-order: Reduce the outermost “redex” first.

[x 7→ (λx . x)(λy . z)](λy . y x x) −→β λy . y ((λx . x)(λy . z)) ((λx . x)(λy . z)

■ applicative-order: Arguments to a function evaluated first, from left to
right.

(λx . λy . y x x) ([x 7→ (λy . z)]x) −→β (λx . λy . y x x) ((λy . z))



Computational power

7 / 31

Fact: The untyped λ-calculus is Turing complete. (Turing, 1937)

But how can this be?

■ There are no built-in types other than “functions” (e.g., no booleans,
integers, etc.)

■ There are no loops
■ There are no imperative features
■ There are no recursive definitions



Numbers and numerals

8 / 31

■ number: an abstract idea
■ numeral: the representation of a number

Example: 15, fifteen, XV, 0F

These are different numerals that all represent the same number.

Alien numerals:

frobnitz − frobnitz = wedgleb
wedgleb + taksar = ?



Booleans in the λ-calculus

9 / 31

How can a value of “true” or “false” be represented in the λ-calculus?

Any way we like, as long as we define all the boolean operations correctly.

One reasonable definition:

■ true takes two values and returns the first
■ false takes two values and returns the second

TRUE ≡ λa . λb . a

FALSE ≡ λa . λb . b

IF ≡ λc . λt . λe . (c t e)

AND ≡ λm . λn . λa . λb . m (na b) b

OR ≡ λm . λn . λa . λb . m a (na b)
NOT ≡ λm . λa . λb . m b a



Arithmetic in the λ-calculus

10 / 31

We can represent the number n in the λ-calculus by a function which maps f

to f composed with itself n times: f ◦ f ◦ . . . ◦ f .

Some numerals:
p0q ≡ λfx . x
p1q ≡ λfx . fx
p2q ≡ λfx . f(fx)
p3q ≡ λfx . f(f(fx))

Some operations:

ISZERO ≡ λn . n (λx . FALSE) TRUE
SUCC ≡ λn f x . f (n f x)
PLUS ≡ λm nf x . m f (n f x)
MULT ≡ λm nf . m (n f)
EXP ≡ λm n . nm

PRED ≡ λn . n (λg k . (g p1q) (λu . PLUS (g k) p1q) k) (λv . p0q) p0q



Recursion

11 / 31

How can we express recursion in the λ-calculus?

Example: the factorial function

fact(n) = if n = 0 then 1 else n ∗ fact(n − 1)

In the λ-calculus, we can start to express this as:

fact = λn . (ISZEROn) p1q (MULTn (fact (PREDn)))

But we need a way to give the factorial function a name.

Idea: Pass in fact as an extra parameter somehow:

λfact . λn . (ISZEROn) p1q (MULTn (fact (PREDn)))

We want the fix-point of this function:

FIX(f) ≡ f(FIX(f))



Fix point combinator, rationale

12 / 31

Definition of a fix-point operator:

FIX(f) ≡ f(FIX(f))

One step of fact is: λf . λx . (ISZERO x) p1q (MULT x (f (PRED x)))

Call this F . If we apply FIX to this, we get

FIX(F )(n) = F (FIX(F )) (n)
FIX(F )(n) = λx . (ISZERO x) p1q (MULT x (FIX(F ) (PRED x)))(n)
FIX(F )(n) = (ISZEROn) p1q (MULTn (FIX(F ) (PREDn)))

If we rename “FIX(F )” as “fact”, we have exactly what we want:

fact(n) = (ISZEROn) p1q (MULTn (fact (PREDn)))

Conclusion: fact = FIX(F ). (But we still need to define FIX.)



Fix point combinator, definition

13 / 31

There are many fix-point combinators. Here is the simplest, due to Haskell
Curry:

FIX = λf . (λx . f (xx)) (λx . f (xx))

Let’s prove that it actually works:

FIX(g) = (λf . (λx . f (xx)) (λx . f (xx))) g

−→β ((λx . g (xx)) (λx . g (xx)))
−→β g ((λx . g (xx)) (λx . g (xx)))

But this is exactly g(FIX(g))!



Scheme overview

14 / 31

■ related to Lisp, first description in 1975
■ designed to have clear and simple semantics (unlike Lisp)
■ statically scoped (unlike Lisp)
■ dynamically typed

◆ types are associated with values, not variables

■ functional: first-class functions
■ garbage collection
■ simple syntax; lots of parentheses

◆ homogeneity of programs and data

■ continuations
■ hygienic macros



A sample Scheme session

15 / 31

(+ 1 2)

⇒ 3

(1 2 3)

⇒ procedure application: expected procedure; given: 1
a

⇒ reference to undefined identifier: a
(quote (+ 1 2)) ; a shorthand is ’(+ 1 2)

⇒ (+ 1 2)

(car ’(1 2 3))

⇒ 1

(cdr ’(1 2 3))

⇒ (2 3)

(cons 1 ’(2 3))

⇒ (1 2 3)



Uniform syntax: lists

16 / 31

■ expressions are either atoms or lists
■ atoms are either constants (e.g., numeric, boolean, string) or symbols
■ lists nest, to form full trees
■ syntax is simple because programmer supplies what would otherwise be

the internal representation of a program:

(+ (* 10 12) (* 7 11)) ; means (10*12 + 7*11)

■ a program is a list:

(define (factorial n)

(if (eq n 0)

1

(* n (factorial (- n 1))))



List manipulation

17 / 31

Three primitives and one constant:

■ car: get head of list
■ cdr: get rest of list
■ cons: prepend an element to a list
■ nil or (): null list

Add equality (= or eq) and recursion, and you’ve got yourself a universal
model of computation



Rules of evaluation

18 / 31

■ a number evaluates to itself
■ an atom evaluates to its current binding
■ a list is a computation:

◆ must be a form (e.g., if, lambda), or
◆ first element must evaluate to an operation
◆ remaining elements are actual parameters
◆ result is the application of the operation to the evaluated actuals



Quoting data

19 / 31

Q: If every list is a computation, how do we describe data?

A: Another primitive: quote

(quote (1 2 3 4))

⇒ (1 2 3 4)

(quote (Baby needs a new pair of shoes)

⇒ (Baby needs a new pair of shoes)

’(this also works)

⇒ (this also works)



List decomposition

20 / 31

(car ’(this is a list of symbols ))

⇒ this

(cdr ’(this is a list of symbols ))

⇒ (is a list of symbols)

(cdr ’(this that ))

⇒ (that) ; a list

(cdr ’(singleton ))

⇒ () ; the empty list

(car ’())

⇒ car: expects argument of type <pair>; given ()



List building

21 / 31

(cons ’this ’(that and the other ))

⇒ (this that and the other)

(cons ’a ’())

⇒ (a)

useful shortcut:

(list ’a ’b ’c ’d ’e)

⇒ (a b c d e)

equivalent to:

(cons ’a

(cons ’b

(cons ’c

(cons ’d

(cons ’e ’())))))



List decomposition shortcuts

22 / 31

Operations like:

(car (cdr xs))

(cdr (cdr (cdr ys)))

are common. Scheme provides shortcuts:

(cadr xs) is (car (cdr xs))

(cdddr xs) is (cdr (cdr (cdr ys)))

Up to 4 a’s and/or d’s can be used.



What lists are made of

23 / 31

(cons ’a ’(b)) ⇒ (a b) a list
(car ’(a b)) ⇒ a

(cdr ’(a b)) ⇒ (b)

(cons ’a ’b) ⇒ (a . b) a dotted pair
(car ’(a . b)) ⇒ a

(cdr ’(a . b)) ⇒ b

A list is a special form of dotted pair, and can be written using a shorthand:

’(a b c) is shorthand for ’(a . (b . (c . ()))))

We can mix the notations:

’(a b . c) is shorthand for ’(a . (b . c))



Booleans

24 / 31

Scheme has true and false values:

■ #t – true
■ #f – false

However, when evaluating a condition (e.g., in an if), any value not equal to
#f is considered to be true.



Simple control structures

25 / 31

■ Conditional

(if condition expr1 expr2)

■ Generalized form

(cond

(pred1 expr1)

(pred2 expr2)

...

(else exprn ))

Evaluate the pred’s in order, until one evaluates to true. Then evaluate the
corresponding expr. That is the value of the cond expression.

if and cond are not regular functions



Global definitions

26 / 31

define is also special:

(define (sqr n) (* n n))

The body is not evaluated; a binding is produced: sqr is bound to the body
of the computation:

(lambda (n) (* n n))

We can define non-functions too:

(define x 15)

(sqr x)

⇒ 225

define can only occur at the top level, and creates global variables.



Recursion on lists

27 / 31

(define (member elem lis)

(cond

((null? lis) #f)

((eq elem (car lis )) lis)

(else (member elem (cdr lis )))))

Note: every non-false value is true in a boolean context.

Convention: return rest of the list, starting from elem, rather than #t.



Standard predicates

28 / 31

If variables do not have associated types, we need a way to find out what a
variable is holding:

■ symbol?

■ number?

■ pair?

■ list?

■ null?

■ zero?

Different dialects may have different naming conventions, e.g., symbolp,
numberp, etc.



Functional arguments

29 / 31

(define (map fun lis)

(cond

((null? lis) ’())

(else (cons (fun (car lis))

(map fun (cdr lis ))))))

(map sqr (map sqr ’(1 2 3 4)))

⇒ (1 16 81 256)



Locals

30 / 31

Basic let skeleton:

(let

((v1 init1) (v2 init2) ... (vn initn))

body)

To declare locals, use one of the let variants:

■ let : Evaluate all the inits in the current environment; the vs are
bound to fresh locations holding the results.

■ let* : Bindings are performed sequentially from left to right, and each
binding is done in an environment in which the previous bindings are
visible.

■ letrec : The vs are bound to fresh locations holding undefined values,
the inits are evaluated in the resulting environment (in some unspecified
order), each v is assigned to the result of the corresponding init. This is
what we need for mutually recursive functions.



Tail recursion

31 / 31

“A Scheme implementation is properly tail-recursive if it supports
an unbounded number of active tail calls.”

(define (factorial n)

(if (zero? n) 1

(* n (factorial (- n 1))))) ; not tail recursive

; stack grows to size n

(define (fact-iter prod count var)

(if (> count var) prod

(fact-iter (* count prod) ; tail recursive

(+ count 1) ; implemented as loop

var )))

(define (factorial n) (fact-iter 1 1 n)) ; OK


	-Calculus
	Syntax
	Free and bound variables
	-reduction
	Evaluation strategies
	Computational power
	Numbers and numerals
	Booleans in the -calculus
	Arithmetic in the -calculus
	Recursion
	Fix point combinator, rationale
	Fix point combinator, definition
	Scheme overview
	A sample Scheme session
	Uniform syntax: lists
	List manipulation
	Rules of evaluation
	Quoting data
	List decomposition
	List building
	List decomposition shortcuts
	What lists are made of
	Booleans
	Simple control structures
	Global definitions
	Recursion on lists
	Standard predicates
	Functional arguments
	Locals
	Tail recursion

