Programming Languages

Subprograms

N1

raleYa 1T N
G22.2110
Summer 2010

Subprograms

the basic abstraction mechanism
functions correspond to the mathematical notion of computation:

input — output

procedures affect the environment, and are called for their side-effects
pure functional model possible but rare (Haskell, Clean)
hybrid model most common: functions can have side effects

2 /28

Environment of the computation

declarations introduce names that denote entities

at execution-time, entities are bound to values or to locations:
name — value functional
name — location — value imperative

value binding takes place during function invocation

names are bound to locations on scope entry

locations are bound to values by assignment

3 /28

Parameter passing

The rules that describe the binding of arguments to formal parameters, i.e.,
the meaning of a reference to a formal in the execution of the subprogram.

function f (a, b, ¢) ... // parameters: a, b, c

f(i, 2/i, g(i,j)); // arguments: i, 2/1, g(i,7)

by value: formal is bound to value of actual
by reference: formal is bound to location of actual
by copy-return: formal is bound to value of actual; upon return from
routine, actual gets copy of formal

m by name: formal is bound to expression for actual; expression evaluated
whenever needed; writes to parameter are allowed (and can affect other
parameters!)

m by need: formal is bound to expression for actual; expression evaluated the
first time its value is needed; cannot write to parameters

428

Parameter passing in Ada

goal: separate semantic intent from implementation
parameter modes:

0 in : read-only in subprogram (default)
[0 out : write in subprogram
[0 in out : read-write in subprogram

independent of whether binding by value, by reference, or by copy-return
functions can only have in parameters

5/ 28

Syntactic sugar

m Default values for in-parameters (Ada)

function Incr (Base: Integer;
Inc: Integer := 1) return Integer;

m Incr(A(J)) equivalent to Incr(A(J), 1)
m also available in C4++

int £ (int first,
int second = O,

char *handle 0);
m named associations (Ada):

Incr (Delt => 17, Base => A(I));

6 / 28

Parameter passing in C

m (C: parameter passing by value, no semantic checks. Assignment to formal
Is assignment to local copy

m if argument is pointer, effect is similar to passing designated object by
reference

void incr (int *xx) {
(*kx)++;
+

incr (&counter); /* pointer to counter */

m no need to distinguish between functions and procedures:
void return type indicates side-effects only

7 /28

Parameter-passing in C++

default is by-value (same semantics as C)
explicit reference parameters:

void incr (int& y) A
y++;
+
incr (counter); // compiler knows profile of incr,
// butlds reference

m semantic intent indicated by qualifier:

void f (const double& val); // passed by reference,
// but call cannot
// modify 4t

8 /28

Parameter-passing in Java

by value only
semantics of assignment differs for primitive types and for classes:

[0 primitive types have value semantics
[0 objects have reference semantics

consequence: methods can modify objects
for formals of primitive types: assignment allowed, affects local copy
for objects: final means that formal is read-only

9 /28

Block structure

procedure Outer (X: Integer) is
Y: Boolean;
procedure Inner (Z: Integer) is

X: Float := 3.0; -- htdes outer «
function Innermost (V: Integer) return Float is
begin

return X * Float(V *x QOuter.X); -—- use Inner.X

-- and Outer.X
end Innermost;

begin
X := Innermost(Z); -- assign to Inner.X
end Inner;
begin
Inner (X); -- Outer.X, the other ome ts out of scope
end ;

10 / 28

Parameter passing anomalies

program example;

var
global: integer := 10;
another: integer := 2;
procedure confuse (var first, second: integer);
begin
first := first + global;
second := first * global;
end ;
begin
confuse (global, another); /*x first and global x*/
/* are aliased * /
end

m different results if by reference or by copy-return
m semantics should not depend on implementation of parameter passing

m passing by value with copy-return is less error-prone

11 / 28

Storage outside of the block

m with block structure, the lifetime of an entity usually coincides with the
invocation of the enclosing construct

m if the same entity is to be used for several invocations, it must be global
to the construct

[0 in C,C4++, can be declared static instead

simplest: declare in the outermost context
three storage classes:

[0 static
0 stack-based (automatic)
[0 heap-allocated

12 / 28

Bounded Nesting

m C, C++, Java:

[0 no nested functions
[0 blocks are merged with activation record of enclosing function
[0 static storage available

m Pascal, Ada:

[0 arbitrary nesting of packages and subprograms
[0 packages provide static storage

13 / 28

Run-time organization

each subprogram invocation creates an activation record

recursion imposes stack allocation

activation record hold actuals, linkage information, saved registers, local
entities

caller: place actuals on stack, return address, linkage information, then
transfer control to callee

prologue: save registers, allocate space for locals

epilogue: place return value in register or stack position, update actuals,
restore registers, then transfer control to caller

binding of locations: actuals and locals are at fixed offsets from frame
pointers

complications: variable # of actuals, dynamic objects

14 / 28

Activation record layout

actual 1
actual 2 | } Handled by caller
Frame pointer — | return addr
save area |3

local 1 | % Handled by callee
local 2

Stack pointer —

15 / 28

Variable number of parameters

printf ("this is %dyayformat %dystring", x, y);

m within body of printf, need to locate as many actuals as placeholders in
the format string

m solution: place parameters on stack in reverse order
(actuals at positive offset from FP, locals at negative offset from FP)

actual n
actual n-1

actual 1 (format string)
return address

16 / 28

Objects of dynamic size

declare
X: String(1..N); -- N global, non-constant
Y: String(1..N);

begin

Where is the start of Y in the activation record?

m Solution 1: use indirection: activation record holds pointers
simpler implementation, costly dynamic allocation/deallocation

m Solution 2: local indirection: activation record holds offset into stack
faster allocation /deallocation, complex implementation

17 / 28

Run-time access to globals

procedure (Outer 1is -— Trecursive
Gbl: Integer;
procedure Inner 1is -— Trecursive
Loc: Integer;
begin

if Gbl = Loc then -— how do we locate Gbl?

end ;
begin

end ;

m Need run-time structure to locate activation record of statically enclosing

scopes.
m Environment includes current activation record and activation records of

parent scopes.

18 / 28

Global linkage

static chain: pointer to activation record of statically enclosing scope
display: array of pointers to activation records
does not work for function values

[0 functional languages allocate activation records on heap
m may not work for pointers to functions

00 simpler if there is no nesting (C, C++, Java)
[0 can check static legality in many cases (Ada)

19 / 28

Static Links

Activation record holds pointer to activation record of enclosing scope.
Set up as part of call prologue.

outer to enclosing scope

outer

outer

inner

lnner

inner

inner

To retrieve entity n frames out, need n dereference operations.

20 / 28

Global array of pointers to current activation records

outermost

d Spl Y outer

outer

/

outer

inner

inner

inner

inner

To retrieve entity n frames out, need 1 indexing operation.

21 /28

Returning composite values

m intermediate problem: functions that return values of non-static sizes:

function Conc3 (X, Y, Z: String) return String is

begin
return X & ":" & Y & ":" & Z;
end ;
Str := Conc3(This, That, The_0Other);

best not to use heap, but still need indirection
simple solutions: forbid it (Pascal, C) or use heap automatically (Java)

22 /28

Subprogram parameters in C/C++

void (*xpf) (double);
// pf is a pointer to a functionm that takes
// a double argument and returns wvoid.

typedef void (*PROC) (int) ;

// Type abbreviation clarifies syntaczx.

// PROC ts the type of a pointer to a function
// that takes an <nt argument and returns votd.

void do_it (double d) { ... }
void use_it (PROC f) { ... f(5) ... }
PROC ptr = &do_it;

use_it (ptr);
use_it (&do_it);

23 / 28

Subprogram parameters in Ada

procedure QOuter (...) 1is
type Proc is access procedure (X: Integer);
procedure Perform (Helper: Proc) is begin
Helper (42) ;
end ;
procedure Action (X: Integer) is
procedure Proxy 1is begin
Perform (Action’access);
end ;
begin

end ;

Action’access creates pair: (ptr to Action, env of Action)

How does Proxzy know what Action’s environment is?

Simplest implementation of environment is a pointer (static link);
can be display instead.

24 / 28

The limits of stack allocation

type Ptr is access function (X: Integer) return Integer;

function Make_Incr (X: Integer) return Ptr is
function Incr (Base: Integer) return Integer is

begin
return Base + X; -- reference to formal of Make_Incr
end ;
begin
return Incr’access; --— wtll 2t work?
end ;
Add_Five: Ptr := Make_Incr (5);
Total: Integer := Add_Five (10); -- where does Add_Five

-~ find X ?

25 / 28

First-class functions: implementation

implications

Allowing functions as first-class values forces heap allocation of activation
records.

m environment of function definition must be preserved until the point of
call: activation record cannot be reclaimed if it creates functions
functional languages require more complex run-time management
higher-order functions: functions that take (other) functions as arguments
and /or return functions

O powerful

[0 complex to implement efficiently

[0 imperative languages restrict their use

0 (a function that takes/returns pointers to functions can be considered

a higher-order function)

26 / 28

Higher-order functions

Both arguments and result can be (pointers to) subprograms:

type Func is access function (X: Integer) return Integer;
function Compose (First, Second: Func) return Func is
declare

function Result (X: Integer) return Integer is

begin

return Second(First(X); -- 4mplicit dereference
-- on call

end ;
begin

return Result ’Access;
end ;

This is illegal in Ada, because First and Second won't exist at point of call.

27 / 28

Restricting higher-order functions

C: no nested definitions, so environment is always global

C++: ditto, except for nested classes

Ada: static checks to reject possible dangling references

Modula: pointer to function illegal if function not declared at top-level
ML, Haskell: no restrictions — compose is easily definable:

fun compose f g x = £ (g x)

28 / 28

	Subprograms
	Environment of the computation
	Parameter passing
	Parameter passing in Ada
	Syntactic sugar
	Parameter passing in C
	Parameter-passing in C++
	Parameter-passing in Java
	Block structure
	Parameter passing anomalies
	Storage outside of the block
	Bounded Nesting
	Run-time organization
	Activation record layout
	Variable number of parameters
	Objects of dynamic size
	Run-time access to globals
	Global linkage
	Static Links
	Display
	Returning composite values
	Subprogram parameters in C/C++
	Subprogram parameters in Ada
	The limits of stack allocation
	First-class functions: implementation implications
	Higher-order functions
	Restricting higher-order functions

