
Programming Languages

G22.2110
Summer 2010

Scoping and control structures

Names

2 / 31

What can we name?

■ mutable variables
■ values
■ functions
■ types
■ type constructors (e.g., list or vector)
■ classes
■ modules/packages
■ execution points (labels)
■ execution points with environment (continuation)

Binding times

3 / 31

A binding is an association of two things. The first is usually a name.
Binding time is the time at which the association is made.
Binding times:

■ Language design time: semantics of most language constructs
■ Language implementation time: implementation dependent semantics
■ Compile time
■ Link time
■ Run time

Static means before run time, dynamic means during run time.

Scope and lifetime

4 / 31

Scope: the region of program text where a binding is active.

Lifetime: the period of time between the creation of an entity and its
destruction.

Note that these talk about two different things.

Lifetimes

5 / 31

For objects residing in memory, there are typically three areas of storage,
corresponding to different lifetimes:

■ static objects: lifetime of entire program execution

◆ globals, static variables

■ stack objects: from the time the function or block is entered until the
time it is exited

◆ local variables

■ heap objects: arbitrary lifetimes, not corresponding to the entrance or
exit of a function or block

◆ dynamically allocated objects, e.g., with new

Scopes

6 / 31

Two major scoping disciplines:

■ static: binding of a name is given by its declaration in the innermost
enclosing block

◆ Most languages use some variant of this

■ dynamic: binding of a name is given by the most recent declaration
encountered at runtime

◆ Used in Lisp, Snobol, APL

Scoping example

7 / 31

var x = 1;

function f () { print x; }

function g () { var x = 10; f(); }

function h () { var x = 100; f(); }

f(); g(); h();

Scoping Output

Static 1 1 1

Dynamic 1 10 100

Static scoping variations

8 / 31

What is the scope of x?

{

statements1;

var x = 5;

statements2;

}

■ C++, Ada: statements2
■ Javascript: entire block
■ Pascal: entire block, but not allowed to be used in statements1!

Control Structures

9 / 31

A control structure is any mechanism that departs from the default of
straight-line execution.

■ selection

◆ if statements
◆ case statements

■ iteration

◆ while loops (unbounded)
◆ for loops
◆ iteration over collections

■ other

◆ goto
◆ call/return
◆ exceptions
◆ continuations

The Infamous GoTo

10 / 31

■ In machine language, there are no if statements or loops.
■ We only have branches, which can be either unconditional or conditional

(on a very simple condition).
■ With this, we can implement loops, if statements, and case statements. In

fact, we only need

1. increment
2. decrement
3. branch on zero

to build a universal machine (one that is Turing complete).
■ We don’t do this in high-level languages because unstructured use of the

goto can lead to confusing programs. See “Go To Statement Considered
Harmful” by Edgar Dijkstra.

Selection

11 / 31

■ if Condition then Statement – Pascal, Ada
■ if (Condition) Statement – C/C++, Java
■ To avoid ambiguities, use end marker: end if, “}”
■ To deal with multiple alternatives, use keyword or bracketing:

if Condition then

Statements

elsif Condition then

Statements

else

Statements

end if;

Nesting

12 / 31

if Condition1 then

if Condition2 then

Statements1

end if;

else

Statements2

end if;

Statement Grouping

13 / 31

■ Pascal introduces begin-end pair to mark sequence
■ C/C++/Java abbreviate keywords to { }

■ Ada dispenses with brackets for sequences; keywords for the enclosing
control structure are sufficient
for J in 1..N loop ... end loop

◆ More writing but more readable

■ Another possibility – make indentation significant (e.g., ABC, Python,
Haskell)

Short-circuit evaluation

14 / 31

if x/y > 5 then z := ... -- what if y = 0?

if y /= 0 and x/y > 5 then z := ...

But binary operators normally evaluate both arguments.

Solutions:

■ a lazy evaluation rule for logical operators (Lisp, C)

C1 && C2 // don’t evaluate C2 if C1 is false

C1 || C2 // don’t evaluate C2 if C1 is true

■ a control structure with a different syntax (Ada)

-- don ’t evaluate C2

if C1 and then C2 then -- if C1 is false

if C1 or else C2 then -- if C1 is true

Multiway selection

15 / 31

Case statement needed when there are many possibilities “at the same logical
level” (i.e., depending on the same condition)

case Next_Char is

when ’I’ => Val := 1;

when ’V’ => Val := 5;

when ’X’ => Val := 10;

when ’C’ => Val := 100;

when ’D’ => Val := 500;

when ’M’ => Val := 1000;

when others => raise Illegal_Numeral ;

end case;

Can be simulated by sequence of if-statements, but logic is obscured.

The Ada case statement

16 / 31

■ no flow-through (unlike C/C++)
■ all possible choices are covered

◆ mechanism to specify default action for choices not given explicitly

■ no inaccessible branches:

◆ no duplicate choices (C/C++, Ada, Java)

■ choices must be static (Ada, C/C++, Java, ML)
■ in many languages, type of expression must be discrete (e.g., no floating

point, no string)

Implementation of case

17 / 31

A possible implementation for C/C++/Java/Ada style case:

(If we have a finite set of possibilities, and the choices are computable at
compile-time.)

■ build table of addresses, one for each choice
■ compute value
■ transform into table index
■ get table element at index and branch to that address
■ execute
■ branch to end of case statement

This is not the typical implementation for a ML/Haskell style case.

Complications

18 / 31

case (n+1) is

when integer ’first ..0 ⇒ Put_Line ("negative ");

when 1 ⇒ Put_Line ("unit");

when 3 | 5 | 7 | 11 ⇒ Put_Line ("small prime");

when 2 | 4 | 6 | 8 | 10 ⇒ Put_Line ("small even");

when 21 ⇒ Put_Line ("house wins");

when 12..20 | 22..99 ⇒ Put_Line ("manageable ");

when others ⇒ Put_Line ("irrelevant ");

end case;

Implementation would be a combination of tables and if statements.

Unstructured Flow (Duff’s device)

19 / 31

void send (int *to, int *from , int count) {

int n = (count + 7) / 8;

switch (count % 8) {

case 0: do { *to++ = *from ++;

case 7: *to++ = *from ++;

case 6: *to++ = *from ++;

case 5: *to++ = *from ++;

case 4: *to++ = *from ++;

case 3: *to++ = *from ++;

case 2: *to++ = *from ++;

case 1: *to++ = *from ++;

} while (--n > 0);

}

}

Indefinite loops

20 / 31

■ All loops can be expressed as while-loops

◆ good for invariant/assertion reasoning

■ condition evaluated at each iteration
■ if condition initially false, loop is never executed

while condition loop ... end loop;

is equivalent to

if condition then

while condition loop ... end loop;

end if;

if condition has no side-effects

Executing while at least once

21 / 31

Sometimes we want to check condition at end instead of at beginning; this
will guarantee loop is executed at least once.

■ repeat ... until condition; (Pascal)
■ do { ... } while (condition); (C)

can be simulated by while + a boolean variable:

first := True;

while (first or else condition) loop

...
first := False;

end loop;

Breaking out

22 / 31

A more common need is to be able to break out of the loop in the middle of
an iteration.

■ break (C/C++, Java)
■ last (Perl)
■ exit (Ada)

loop

... part A ...
exit when condition ;

... part B ...
end loop;

Breaking way out

23 / 31

Sometimes, we want to break out of several levels of a nested loop

■ give names to loops (Ada, Perl)
■ use a goto (C/C++)

Outer: while C1 loop ...
Inner: while C2 loop ...

Innermost : while C3 loop ...
exit Outer when Major_Failure ;

exit Inner when Small_Annoyance ;

...
end loop Innermost ;

end loop Inner;

end loop Outer;

Definite Loops

24 / 31

Counting loops are iterators over discrete domains:

■ for J in 1..10 loop ... end loop;

■ for (int i = 0; i < n; i++) { ... }

Design issues:

■ evaluation of bounds
■ scope of loop variable
■ empty loops
■ increments other than 1
■ backwards iteration
■ non-numeric domains

Evaluation of bounds

25 / 31

for J in 1..N loop

...
N := N + 1;

end loop; -- terminates ?

Yes – in Ada, bounds are evaluated once before iteration starts.
Note: the above loop uses abominable style.

C/C++/Java loop has hybrid semantics:

for (int j = 0; j < last; j++) {

...
last ++; -- terminates ?

}

No – the condition “j < last” is evaluated at the end of each iteration.

The loop variable

26 / 31

■ is it mutable?
■ what is its scope? (i.e., local to loop?)

Constant and local is a better choice:

■ constant: disallows changes to the variable, which can affect the loop
execution and be confusing

■ local: don’t need to worry about value of variable after loop exits

Count: integer := 17;

...
for Count in 1..10 loop

...
end loop;

... -- Count is still 17

Different increments

27 / 31

Algol60:

for j from exp1 to exp2 by exp3 do ...

■ too rich for most cases; typically, exp3 is +1 or -1.
■ what are semantics if exp1 > exp2 and exp3 < 0?

C/C++:

for (int j = exp1; j <= exp2; j += exp3) ...

Ada:

for J in 1..N loop ...
for J in reverse 1..N loop ...

Everything else can be programmed with a while loop

Non-numeric domains

28 / 31

Ada form generalizes to discrete types:

for M in months loop ... end loop;

Basic pattern on other data types:

■ define primitive operations: first, next, more_elements
■ implement for loop as:

iterator = Collection .Iterate ();

element thing = iterator .first;

for (element thing = iterator .first;

iterator .more_elements ();

thing = iterator .next ()) {

...
}

Pre- and Post-conditions

29 / 31

How can we prove that a loop does what we want? pre-conditions and

post-conditions:

{P} S {Q}

If proposition P holds before executing S, and the execution of S
terminates, then proposition Q holds afterwards.

Need to formulate:

■ pre- and post-conditions for all statement forms
■ syntax-directed rules of inference

{P and C} S {P}

{P and C} while C do S endloop {P and not C}

Efficient exponentiation

30 / 31

function Exp (Base: Integer;

Expon: Integer) return Integer is

N: Integer := Expon; -- successive bits of exponent

Res: Integer := 1; -- running result

Pow: Integer := Base; -- successive powers : Base2I

begin

while N > 0 loop

if N mod 2 = 1 then

Res := Res * Pow;

end if;

Pow := Pow * Pow;

N := N / 2;

end loop;

return Res;

end Exp;

Adding invariants

31 / 31

function Exp (Base: Integer;

Expon: Integer) return Integer is

N: Integer := Expon; -- successive bits of exponent

Res: Integer := 1; -- running result

Pow: Integer := Base; -- successive powers : Base2I

begin {i = 0} -- count iterations

while N > 0 loop {i := i + 1}
if N mod 2 = 1 then -- ith bit of Expon from left

Res := Res * Pow; {Res := Base(Expon mod 2i)}
end if;

Pow := Pow * Pow; {Pow := Base2i

}
N := N / 2; {N := Expon/(2i)}

end loop;

return Res; {i = lg Expon; Res = BaseExpon; N = 0}
end Exp;

	Names
	Binding times
	Scope and lifetime
	Lifetimes
	Scopes
	Scoping example
	Static scoping variations
	Control Structures
	The Infamous GoTo
	Selection
	Nesting
	Statement Grouping
	Short-circuit evaluation
	Multiway selection
	The Ada case statement
	Implementation of case
	Complications
	Unstructured Flow (Duff's device)
	Indefinite loops
	Executing while at least once
	Breaking out
	Breaking way out
	Definite Loops
	Evaluation of bounds
	The loop variable
	Different increments
	Non-numeric domains
	Pre- and Post-conditions
	Efficient exponentiation
	Adding invariants

