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Names
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What can we name?

■ mutable variables
■ values
■ functions
■ types
■ type constructors (e.g., list or vector)
■ classes
■ modules/packages
■ execution points (labels)
■ execution points with environment (continuation)



Binding times
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A binding is an association of two things. The first is usually a name.
Binding time is the time at which the association is made.
Binding times:

■ Language design time: semantics of most language constructs
■ Language implementation time: implementation dependent semantics
■ Compile time
■ Link time
■ Run time

Static means before run time, dynamic means during run time.



Scope and lifetime
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Scope: the region of program text where a binding is active.

Lifetime: the period of time between the creation of an entity and its
destruction.

Note that these talk about two different things.



Lifetimes
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For objects residing in memory, there are typically three areas of storage,
corresponding to different lifetimes:

■ static objects: lifetime of entire program execution

◆ globals, static variables

■ stack objects: from the time the function or block is entered until the
time it is exited

◆ local variables

■ heap objects: arbitrary lifetimes, not corresponding to the entrance or
exit of a function or block

◆ dynamically allocated objects, e.g., with new



Scopes
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Two major scoping disciplines:

■ static: binding of a name is given by its declaration in the innermost
enclosing block

◆ Most languages use some variant of this

■ dynamic: binding of a name is given by the most recent declaration
encountered at runtime

◆ Used in Lisp, Snobol, APL



Scoping example
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var x = 1;

function f () { print x; }

function g () { var x = 10; f(); }

function h () { var x = 100; f(); }

f(); g(); h();

Scoping Output

Static 1 1 1

Dynamic 1 10 100



Static scoping variations
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What is the scope of x?

{

statements1;

var x = 5;

statements2;

}

■ C++, Ada: statements2
■ Javascript: entire block
■ Pascal: entire block, but not allowed to be used in statements1!



Control Structures
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A control structure is any mechanism that departs from the default of
straight-line execution.

■ selection

◆ if statements
◆ case statements

■ iteration

◆ while loops (unbounded)
◆ for loops
◆ iteration over collections

■ other

◆ goto
◆ call/return
◆ exceptions
◆ continuations



The Infamous GoTo
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■ In machine language, there are no if statements or loops.
■ We only have branches, which can be either unconditional or conditional

(on a very simple condition).
■ With this, we can implement loops, if statements, and case statements. In

fact, we only need

1. increment
2. decrement
3. branch on zero

to build a universal machine (one that is Turing complete).
■ We don’t do this in high-level languages because unstructured use of the

goto can lead to confusing programs. See “Go To Statement Considered
Harmful” by Edgar Dijkstra.



Selection
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■ if Condition then Statement – Pascal, Ada
■ if (Condition) Statement – C/C++, Java
■ To avoid ambiguities, use end marker: end if, “}”
■ To deal with multiple alternatives, use keyword or bracketing:

if Condition then

Statements

elsif Condition then

Statements

else

Statements

end if;



Nesting
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if Condition1 then

if Condition2 then

Statements1

end if;

else

Statements2

end if;



Statement Grouping
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■ Pascal introduces begin-end pair to mark sequence
■ C/C++/Java abbreviate keywords to { }

■ Ada dispenses with brackets for sequences; keywords for the enclosing
control structure are sufficient
for J in 1..N loop ... end loop

◆ More writing but more readable

■ Another possibility – make indentation significant (e.g., ABC, Python,
Haskell)



Short-circuit evaluation
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if x/y > 5 then z := ... -- what if y = 0?

if y /= 0 and x/y > 5 then z := ...

But binary operators normally evaluate both arguments.

Solutions:

■ a lazy evaluation rule for logical operators (Lisp, C)

C1 && C2 // don’t evaluate C2 if C1 is false

C1 || C2 // don’t evaluate C2 if C1 is true

■ a control structure with a different syntax (Ada)

-- don ’t evaluate C2

if C1 and then C2 then -- if C1 is false

if C1 or else C2 then -- if C1 is true



Multiway selection
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Case statement needed when there are many possibilities “at the same logical
level” (i.e., depending on the same condition)

case Next_Char is

when ’I’ => Val := 1;

when ’V’ => Val := 5;

when ’X’ => Val := 10;

when ’C’ => Val := 100;

when ’D’ => Val := 500;

when ’M’ => Val := 1000;

when others => raise Illegal_Numeral ;

end case;

Can be simulated by sequence of if-statements, but logic is obscured.



The Ada case statement
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■ no flow-through (unlike C/C++)
■ all possible choices are covered

◆ mechanism to specify default action for choices not given explicitly

■ no inaccessible branches:

◆ no duplicate choices (C/C++, Ada, Java)

■ choices must be static (Ada, C/C++, Java, ML)
■ in many languages, type of expression must be discrete (e.g., no floating

point, no string)



Implementation of case
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A possible implementation for C/C++/Java/Ada style case:

(If we have a finite set of possibilities, and the choices are computable at
compile-time.)

■ build table of addresses, one for each choice
■ compute value
■ transform into table index
■ get table element at index and branch to that address
■ execute
■ branch to end of case statement

This is not the typical implementation for a ML/Haskell style case.



Complications
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case (n+1) is

when integer ’first ..0 ⇒ Put_Line ("negative ");

when 1 ⇒ Put_Line ("unit");

when 3 | 5 | 7 | 11 ⇒ Put_Line ("small prime");

when 2 | 4 | 6 | 8 | 10 ⇒ Put_Line ("small even");

when 21 ⇒ Put_Line ("house wins");

when 12..20 | 22..99 ⇒ Put_Line ("manageable ");

when others ⇒ Put_Line ("irrelevant ");

end case;

Implementation would be a combination of tables and if statements.



Unstructured Flow (Duff’s device)
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void send (int *to, int *from , int count) {

int n = (count + 7) / 8;

switch (count % 8) {

case 0: do { *to++ = *from ++;

case 7: *to++ = *from ++;

case 6: *to++ = *from ++;

case 5: *to++ = *from ++;

case 4: *to++ = *from ++;

case 3: *to++ = *from ++;

case 2: *to++ = *from ++;

case 1: *to++ = *from ++;

} while (--n > 0);

}

}



Indefinite loops
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■ All loops can be expressed as while-loops

◆ good for invariant/assertion reasoning

■ condition evaluated at each iteration
■ if condition initially false, loop is never executed

while condition loop ... end loop;

is equivalent to

if condition then

while condition loop ... end loop;

end if;

if condition has no side-effects



Executing while at least once
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Sometimes we want to check condition at end instead of at beginning; this
will guarantee loop is executed at least once.

■ repeat ... until condition; (Pascal)
■ do { ... } while (condition); (C)

can be simulated by while + a boolean variable:

first := True;

while (first or else condition ) loop

...
first := False;

end loop;



Breaking out
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A more common need is to be able to break out of the loop in the middle of
an iteration.

■ break (C/C++, Java)
■ last (Perl)
■ exit (Ada)

loop

... part A ...
exit when condition ;

... part B ...
end loop;



Breaking way out
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Sometimes, we want to break out of several levels of a nested loop

■ give names to loops (Ada, Perl)
■ use a goto (C/C++)

Outer: while C1 loop ...
Inner: while C2 loop ...

Innermost : while C3 loop ...
exit Outer when Major_Failure ;

exit Inner when Small_Annoyance ;

...
end loop Innermost ;

end loop Inner;

end loop Outer;



Definite Loops
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Counting loops are iterators over discrete domains:

■ for J in 1..10 loop ... end loop;

■ for (int i = 0; i < n; i++) { ... }

Design issues:

■ evaluation of bounds
■ scope of loop variable
■ empty loops
■ increments other than 1
■ backwards iteration
■ non-numeric domains



Evaluation of bounds
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for J in 1..N loop

...
N := N + 1;

end loop; -- terminates ?

Yes – in Ada, bounds are evaluated once before iteration starts.
Note: the above loop uses abominable style.

C/C++/Java loop has hybrid semantics:

for (int j = 0; j < last; j++) {

...
last ++; -- terminates ?

}

No – the condition “j < last” is evaluated at the end of each iteration.



The loop variable
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■ is it mutable?
■ what is its scope? (i.e., local to loop?)

Constant and local is a better choice:

■ constant: disallows changes to the variable, which can affect the loop
execution and be confusing

■ local: don’t need to worry about value of variable after loop exits

Count: integer := 17;

...
for Count in 1..10 loop

...
end loop;

... -- Count is still 17



Different increments
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Algol60:

for j from exp1 to exp2 by exp3 do ...

■ too rich for most cases; typically, exp3 is +1 or -1.
■ what are semantics if exp1 > exp2 and exp3 < 0?

C/C++:

for (int j = exp1; j <= exp2; j += exp3) ...

Ada:

for J in 1..N loop ...
for J in reverse 1..N loop ...

Everything else can be programmed with a while loop



Non-numeric domains
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Ada form generalizes to discrete types:

for M in months loop ... end loop;

Basic pattern on other data types:

■ define primitive operations: first, next, more_elements
■ implement for loop as:

iterator = Collection .Iterate ();

element thing = iterator .first;

for (element thing = iterator .first;

iterator .more_elements ();

thing = iterator .next ()) {

...
}



Pre- and Post-conditions
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How can we prove that a loop does what we want? pre-conditions and

post-conditions:

{P} S {Q}

If proposition P holds before executing S, and the execution of S
terminates, then proposition Q holds afterwards.

Need to formulate:

■ pre- and post-conditions for all statement forms
■ syntax-directed rules of inference

{P and C} S {P}

{P and C} while C do S endloop {P and not C}



Efficient exponentiation
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function Exp (Base: Integer;

Expon: Integer) return Integer is

N: Integer := Expon; -- successive bits of exponent

Res: Integer := 1; -- running result

Pow: Integer := Base; -- successive powers : Base2I

begin

while N > 0 loop

if N mod 2 = 1 then

Res := Res * Pow;

end if;

Pow := Pow * Pow;

N := N / 2;

end loop;

return Res;

end Exp;



Adding invariants
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function Exp (Base: Integer;

Expon: Integer) return Integer is

N: Integer := Expon; -- successive bits of exponent

Res: Integer := 1; -- running result

Pow: Integer := Base; -- successive powers : Base2I

begin {i = 0} -- count iterations

while N > 0 loop {i := i + 1}
if N mod 2 = 1 then -- ith bit of Expon from left

Res := Res * Pow; {Res := Base(Expon mod 2i)}
end if;

Pow := Pow * Pow; {Pow := Base2i

}
N := N / 2; {N := Expon/(2i)}

end loop;

return Res; {i = lg Expon; Res = BaseExpon; N = 0}
end Exp;
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