
Programming Languages

G22.2110
Summer 2010

Introduction

Introduction

2 / 22

The main themes of programming language design and use:

■ Paradigm (Model of computation)
■ Expressiveness

◆ control structures
◆ abstraction mechanisms
◆ types and their operations
◆ tools for programming in the large

■ Ease of use: Writeability / Readability / Maintainability

Language as a tool for thought

3 / 22

■ Role of language as a communication vehicle among programmers is more
important than ease of writing

■ All general-purpose languages are Turing complete (They can compute
the same things)

■ But languages can make expression of certain algorithms difficult or easy.

◆ Try multiplying two Roman numerals

■ Idioms in language A may be useful inspiration when writing in language
B.

Idioms

4 / 22

■ Copying a string q to p in C:

while (*p++ = *q++) ;

■ Removing duplicates from the list @xs in Perl:

my %seen = ();

@xs = grep { ! $seen{$_}++; } @xs;

■ Computing the sum of numbers in list xs in Haskell:

foldr (+) 0 xs

Is this natural? It is if you’re used to it

Course Goals

5 / 22

■ Intellectual: help you understand benefit/pitfalls of different approaches
to language design, and how they work.

■ Practical:

◆ you will probably design languages in your career (at least small ones)
◆ understanding how to use a programming paradigm can improve your

programming even in languages that don’t support it
◆ knowing how feature is implemented helps us understand time/space

complexity

■ Academic: good start on core exam

Compilation overview

6 / 22

Major phases of a compiler:

1. lexer: text −→ tokens
2. parser: tokens −→ parse tree
3. intermediate code generation
4. optimization
5. target code generation
6. optimization

Programming paradigms

7 / 22

■ Imperative (von Neumann): Fortran, Pascal, C, Ada

◆ programs have mutable storage (state) modified by assignments
◆ the most common and familiar paradigm

■ Functional (applicative): Scheme, Lisp, ML, Haskell

◆ functions are first-class values
◆ side effects (e.g., assignments) discouraged

■ Logical (declarative): Prolog, Mercury

◆ programs are sets of assertions and rules

■ Object-Oriented: Simula 67, Smalltalk, C++, Ada95, Java, C#

◆ data structures and their operations are bundled together
◆ inheritance

■ Functional + Logical: Curry

■ Functional + Object-Oriented: O’Caml, O’Haskell

Genealogy

8 / 22

■ FORTRAN (1957) ⇒ Fortran90, HP

■ COBOL (1956) ⇒ COBOL 2000

◆ still a large chunk of installed software

■ Algol60 ⇒ Algol68 ⇒ Pascal ⇒ Ada

■ Algol60 ⇒ BCPL ⇒ C ⇒ C++

■ APL ⇒ J

■ Snobol ⇒ Icon

■ Simula ⇒ Smalltalk

■ Lisp ⇒ Scheme ⇒ ML ⇒ Haskell

with lots of cross-pollination: e.g., Java is influenced by C++, Smalltalk,
Lisp, Ada, etc.

Predictable performance vs. ease of

writing

9 / 22

■ Low-level languages mirror the physical machine:

◆ Assembly, C, Fortran

■ High-level languages model an abstract machine with useful capabilities:

◆ ML, Setl, Prolog, SQL, Haskell

■ Wide-spectrum languages try to do both:

◆ Ada, C++, Java, C#

■ High-level languages have garbage collection, are often interpreted, and
cannot be used for real-time programming. The higher the level, the
harder it is to determine cost of operations.

Common Ideas

10 / 22

Modern imperative languages (e.g., Ada, C++, Java) have similar
characteristics:

■ large number of features (grammar with several hundred productions, 500
page reference manuals, . . .)

■ a complex type system
■ procedural mechanisms
■ object-oriented facilities
■ abstraction mechanisms, with information hiding
■ several storage-allocation mechanisms
■ facilities for concurrent programming (not C++)
■ facilities for generic programming (new in Java)

Language libraries

11 / 22

The programming environment may be larger than the language.

■ The predefined libraries are indispensable to the proper use of the
language, and its popularity.

■ The libraries are defined in the language itself, but they have to be
internalized by a good programmer.

Examples:

■ C++ standard template library
■ Java Swing classes
■ Ada I/O packages

Language definition

12 / 22

■ Different users have different needs:

◆ programmers: tutorials, reference manuals, programming guides
(idioms)

◆ implementors: precise operational semantics

◆ verifiers: rigorous axiomatic or natural semantics

◆ language designers and lawyers: all of the above

■ Different levels of detail and precision

◆ but none should be sloppy!

Syntax and semantics

13 / 22

■ Syntax refers to external representation:

◆ Given some text, is it a well-formed program?

■ Semantics denotes meaning:

◆ Given a well-formed program, what does it mean?
◆ Often depends on context.

The division is somewhat arbitrary.

■ Note: It is possible to fully describe the syntax and sematics of a
programming language by syntactic means (e.g., Algol68 and
W-grammars), but this is highly impractical.

Typically use a grammar for the context-free aspects, and different
method for the rest.

■ Similar looking constructs in different languages often have subtly (or
not-so-subtly) different meanings

Grammars

14 / 22

A grammar G is a tuple (Σ, N, S, δ)

■ N is the set of non-terminal symbols
■ S is the distinguished non-terminal: the root symbol
■ Σ is the set of terminal symbols (alphabet)
■ δ is the set of rewrite rules (productions) of the form:

ABC . . . ::= XYZ . . .

where A, B, C, D, X, Y, Z are terminals and non terminals.
■ The language is the set of sentences containing only terminal symbols

that can be generated by applying the rewriting rules starting from the
root symbol (let’s call such sentences strings)

The Chomsky hierarchy

15 / 22

■ Regular grammars (Type 3)

◆ all productions can be written in the form: N ::= TN
◆ one non-terminal on left side; at most one on right

■ Context-free grammars (Type 2)

◆ all productions can be written in the form: N ::= XYZ
◆ one non-terminal on the left-hand side; mixture on right

■ Context-sensitive grammars (Type 1)

◆ number of symbols on the left is no greater than on the right
◆ no production shrinks the size of the sentential form

■ Type-0 grammars

◆ no restrictions

Regular expressions

16 / 22

An alternate way of describing a regular language is with regular expressions.

We say that a regular expression R denotes the language [[R]].
Recall that a language is a set of strings.

Basic regular expressions:

■ ǫ denotes ∅
■ a character x, where x ∈ Σ, denotes {x}
■ (sequencing) a sequence of two regular expressions RS denotes

{αβ |α ∈ [[R]], β ∈ [[S]]}
■ (alternation) R|S denotes [[R]] ∪ [[S]]
■ (Kleene star) R∗ denotes the set of strings which are concatenations of

zero or more strings from [[R]]
■ parentheses are used for grouping

Shorthands:

■ R? ≡ ǫ|R
■ R+ ≡ RR∗

Regular grammar example

17 / 22

A grammar for floating point numbers:

Float ::= Digits | Digits . Digits
Digits ::= Digit | DigitDigits
Digit ::= 0|1|2|3|4|5|6|7|8|9

A regular expression for floating point numbers:

(0|1|2|3|4|5|6|7|8|9)+(.(0|1|2|3|4|5|6|7|8|9)+)?

Perl offer some shorthands:

[0 -9]+(\.[0 -9]+)?

or

\d+(\.\d+)?

Lexical Issues

18 / 22

Lexical: formation of words or tokens.

■ Described (mainly) by regular grammars
■ Terminals are characters. Some choices:

◆ character set: ASCII, Latin-1, ISO646, Unicode, etc.
◆ is case significant?

■ Is indentation significant?

◆ Python, Occam, Haskell

Example: identifiers

Id ::= Letter IdRest
IdRest ::= ǫ | Letter IdRest | Digit IdRest

Missing from above grammar: limit of identifier length

BNF: notation for context-free grammars

19 / 22

(BNF = Backus-Naur Form) Some conventional abbreviations:

■ alternation: Symb ::= Letter | Digit
■ repetition: Id ::= Letter {Symb}

or we can use a Kleene star: Id ::= Letter Symb∗

for one or more repetitions: Int ::= Digit+

■ option: Num ::= Digit+[. Digit∗]

■ abbreviations do not add to expressive power of grammar
■ need convention for metasymbols – what if “|” is in the language?

Parse trees

20 / 22

A parse tree describes the grammatical structure of a sentence

■ root of tree is root symbol of grammar
■ leaf nodes are terminal symbols
■ internal nodes are non-terminal symbols
■ an internal node and its descendants correspond to some production for

that non terminal
■ top-down tree traversal represents the process of generating the given

sentence from the grammar
■ construction of tree from sentence is parsing

Ambiguity

21 / 22

If the parse tree for a sentence is not unique, the grammar is ambiguous:

E ::= E + E | E ∗ E | Id

Two possible parse trees for “A + B ∗ C”:

■ ((A + B) ∗ C)
■ (A + (B ∗ C))

One solution: rearrange grammar:

E ::= E + T | T
T ::= T ∗ Id | Id

Harder problems – disambiguate these (courtesy of Ada):

■ function call ::= name (expression list)
■ indexed component ::= name (index list)
■ type conversion ::= name (expression)

Dangling else problem

22 / 22

Consider:
S ::= if E then S
S ::= if E then S else S

The sentence

if E1 then if E2 then S1 else S2

is ambiguous (Which then does else S2 match?)

Solutions:

■ Pascal rule: else matches most recent if
■ grammatical solution: different productions for balanced and unbalanced

if-statements
■ grammatical solution: introduce explicit end-marker

The general ambiguity problem is unsolvable

	Introduction
	Language as a tool for thought
	Idioms
	Course Goals
	Compilation overview
	Programming paradigms
	Genealogy
	Predictable performance vs. ease of writing
	Common Ideas
	Language libraries
	Language definition
	Syntax and semantics
	Grammars
	The Chomsky hierarchy
	Regular expressions
	Regular grammar example
	Lexical Issues
	BNF: notation for context-free grammars
	Parse trees
	Ambiguity
	Dangling else problem

