Programming Languages G22.2110-001

Assignment # 3: λ -calculus

Due date: June 22th

- 1. Using the definitions of PLUS, ISZERO, and SUCC from the lecture, determine the normal form of the following. Show each intermediate step (i.e., each β -reduction).
 - (a) PLUS $\lceil 3 \rceil \lceil 2 \rceil$
 - (b) ISZERO $\lceil 2 \rceil$
 - (c) SUCC $\lceil 3 \rceil$
- 2. Show that application is not associative for closed terms. That is,

 $M_1(M_2M_3) \neq (M_1M_2)M_3$

when M_1 , M_2 , and M_3 are closed terms. (A closed term is one which has no free variables.)

Note: If A and B are two λ -calculus expressions, for purposes of these exercises, we say that A = B if we can use β - and/or α -reductions to reduce A and B to the same expression.

For this exercise, it is enough to show closed terms M_1 , M_2 , and M_3 for which the equality is not true.

- 3. Show that $(\lambda y.(\lambda x.M)) N = \lambda x.((\lambda y.M)N)$, for any N and M.
- 4. Draw syntax trees for the following λ -terms:
 - (a) $\lambda x y . y (x y)$
 - (b) $\lambda x y z . x y z$
 - (c) $(\lambda x \cdot x x)(\lambda x \cdot x x)$

Use the BNF syntax for lambda terms given on slide 3, after expanding out any shorthands in the terms above.

- 5. Using the definitions in the lecture slides, which of the following terms are in normal form? If a term is not in normal form, identify a redex.
 - (a) IF
 - (b) AND
 - (c) OR TRUE FALSE
 - (d) $\lceil 2 \rceil$
 - $(e) \ {\tt PLUS}$
 - (f) PRED $\lceil 0 \rceil$
 - (g) FIX
- 6. Suppose a symbol of the λ -calculus alphabet is 0.5 cm wide. Write down a λ -term less than 20 cm wide having a normal form with length at least $10^{10^{10}}$ lightyears. The speed of light is approximately $3 * 10^{10}$ cm/sec. (Please do not attempt to reduce this term to normal form on paper.)