(More) Graphs
show strongly connected comps

see next slide
from prev slide
On an **undirected** graph, any edge that is not a “tree” edge is a “back” edge (from descendant to ancestor).
DFS Examples

UNDIRECTED

START HERE

BACK EDGE

TREE EDGE
DFS Example: digraph

Here, we get a forest (two trees).

B = back edge (descendant to ancestor, or self-loop)
F = forward edge (ancestor to descendant)
C = cross edge (between branches of a tree, or between trees)
DFS running time is $\Theta(V+E)$
we visit each vertex once; we traverse each edge once

DFS(G)
1 for each vertex $u \in V[G]$
2 do $\text{color}[u] \leftarrow \text{WHITE}$
3 $\pi[u] \leftarrow \text{NIL}$
4 $\text{time} \leftarrow 0$
5 for each vertex $u \in V[G]$
6 do if $\text{color}[u] = \text{WHITE}$
7 then $\text{DFS-VISIT}(u)$

DFS-VISIT(u)
1 $\text{color}[u] \leftarrow \text{GRAY}$ \(\triangleright\) White vertex u has just been discovered.
2 $\text{time} \leftarrow \text{time} +1$
3 $d[u] \leftarrow \text{time}$
4 for each $v \in \text{Adj}[u]$ \(\triangleright\) Explore edge (u, v).
5 do if $\text{color}[v] = \text{WHITE}$
6 then $\pi[v] \leftarrow u$
7 $\text{DFS-VISIT}(v)$
8 $\text{color}[u] \leftarrow \text{BLACK}$ \(\triangleright\) Blacken u; it is finished.
9 $f[u] \leftarrow \text{time} \leftarrow \text{time} +1$

6a-Graphs-More
Connected components of an undirected graph. Each call to DFS_VISIT (from DFS) explores an entire connected component (see ex. 22.3-11).

So modify DFS to count the number of times it calls DFS_VISIT:

5 for each vertex \(u \in V[G] \\
6 \quad \text{do if color}[u] = \text{WHITE} \\
6.5 \quad \text{then } \text{cc_counter} \leftarrow \text{cc_counter} + 1 \\
7 \quad \text{DFS_VISIT}(u)

Note: it would be easy to label each vertex with its cc number, if we wanted to (i.e. add a field to each vertex that would tell us which conn comp it belongs to).
Applications of DFS

Cycle detection: Does a given graph G contain a cycle?

Idea #1: If DFS ever returns to a vertex it has visited, there is a cycle; otherwise, there isn’t.

OK for **undirected** graphs, but what about:

No cycles, but a DFS from 1 will reach 4 twice. Hint: what kind of edge is (3, 4)?
Cycle detection theorem

Theorem: A graph G (directed or not) contains a cycle if and only if a DFS of G yields a back edge.

\rightarrow: Assume G contains a cycle. Let v be the first vertex reached on the cycle by a DFS of G. All the vertices reachable from v will be explored from v, including the vertex u that is just “before” v in the cycle. Since v is an ancestor of u, the edge (u,v) will be a back edge.

\leftarrow: Say the DFS results in a back edge from u to v. Clearly, $u \rightarrow v$ (that should be a wiggly arrow, which means, “there is a path from u to v”, or “v is reachable from u”). And since v is an ancestor of u (by def of back edge), $v \rightarrow u$ (again should be wiggly). So v and u must be part of a cycle. QED.
Back Edge Detection

How can we detect back edges with DFS? For **undirected** graphs, easy: see if we’ve visited the vertex before, i.e. $color \neq WHITE$.

For **directed** graphs: Recall that we color a vertex GRAY while its adjacent vertices are being explored. If we re-visit the vertex while it is still GRAY, we have a back edge.

We blacken a vertex when its adjacency list has been examined completely. So any edges to a BLACK vertex cannot be back edges.
TOPOLOGICAL SORT

“Sort” the vertices so all edges go left to right.
TOPOLOGICAL SORT

For topological sort to work, the graph G must be a **DAG** (directed acyclic graph). G's undirected version (i.e. the version of G with the “directions” removed from the edges) need not be connected.

Theorem: Listing a dag’s vertices in reverse order of finishing time (i.e. from highest to lowest) yields a topological sort.

Implementation: modify DFS to stick each vertex onto the front of a linked list as the vertex is finished.

see examples next slide....
Topological Sort Examples

vertex: 3 4 1 2 5
f: 10 9 6 5 3

vertex: 3 1 2 5 4
f: 10 8 7 4 2
More on Topological Sort

Theorem (again): Listing a dag’s vertices in order of highest to lowest finishing time results in a topological sort. Putting it another way: If there is an edge \((u,v)\), then \(f[u] > f[v]\).

Proof: Assume there is an edge \((u,v)\).

Case 1: DFS visits \(u\) first. Then \(v\) will be visited and finished before \(u\) is finished, so \(f[u] > f[v]\).

Case 2: DFS visits \(v\) first. There cannot be a path from \(v\) to \(u\) (why not?), so \(v\) will be finished before \(u\) is even discovered. So again, \(f[u] > f[v]\).

QED.