Graphs
What’s a Graph?

A bunch of vertices connected by edges.
Why Graph Algorithms?

• They’re fun.
• They’re interesting.
• They have surprisingly many applications.
Graphs are Everywhere
Adjacency as a Graph

Each vertex represents a state, country, etc.

There is an edge between two vertices if the corresponding areas share a border.
When a Graph?

Graphs are a good representation for any collection of objects and binary relation among them:

- The relationship in space of places or objects
- The ordering in time of events or activities
- Family relationships
- Taxonomy (e.g. animal - mammal - dog)
- Precedence (x must come before y)
- Conflict (x conflicts or is incompatible with y)
- Etc.
Our Menu

Depth-First Search
- Connected components
- Cycle detection
- Topological sort

Minimal Spanning Tree
- Kruskal’s
- Prim’s

Single-Source Shortest Paths
- Dijkstra’s
- Bellman-Ford
- DAG-SSSP

All-Pairs Shortest Paths
- Floyd-Warshall
- Johnson’s
Basic Concepts

A *graph* is an ordered pair \((V, E)\).

\(V\) is the set of vertices. (You can think of them as integers 1, 2, \ldots, n.)

\(E\) is the set of edges. An edge is a pair of vertices: \((u, v)\).

Note: since \(E\) is a set, there is at most one edge between two vertices. (*Hypergraphs* permit multiple edges.)

Edges can be labeled with a *weight*:

\[\begin{array}{c}
\text{10}
\end{array}\]
Concepts: Directedness

In a *directed* graph, the edges are “one-way.” So an edge \((u, v)\) means you can go from \(u\) to \(v\), but not vice versa.

In an *undirected* graph, there is no direction on the edges: you can go either way. (Also, no self-loops.)
Concepts: Adjacency

Two vertices are *adjacent* if there is an edge between them.

For a directed graph, u is adjacent to v iff there is an edge (v, u).

- u is adjacent to v.
- v is adjacent to u and w.
- w is adjacent to v.

- u is adjacent to v.
- v is adjacent to w.
Concepts: Degree

Undirected graph: The *degree* of a vertex is the number of edges touching it.

For a directed graph, the *in-degree* is the number of edges entering the vertex, and the *out-degree* is the number leaving it. The *degree* is the *in-degree* + the *out-degree*.
A path is a sequence of adjacent vertices. The length of a path is the number of edges it contains, i.e. one less than the number of vertices.

Is there a path from 1 to 4? What is its length? What about from 4 to 1? How many paths are there from 2 to 3? From 2 to 2? From 1 to 1?

We write $u \Rightarrow v$ if there is path from u to v. (The correct symbol, a wiggly arrow, is not available in standard fonts.) We say v is reachable from u.
A cycle is a path of length at least 1 from a vertex to itself.

A graph with no cycles is acyclic.

A path with no cycles is a simple path.

The path <2, 3, 4, 2> is a cycle.
An undirected graph is *connected* iff there is a path between any two vertices.

The adjacency graph of U.S. states has three connected components. Name them.

(We say a directed graph is *strongly connected* iff there is a path between any two vertices.)
A *free tree* is a connected, acyclic, undirected graph.

To get a *rooted tree* (the kind we’ve used up until now), designate some vertex as the root.

If the graph is disconnected, it’s a *forest*.

Facts about free trees:

- \(|E| = |V| - 1\)
- Any two vertices are connected by exactly one path.
- Removing an edge disconnects the graph.
- Adding an edge results in a cycle.
Graph Size

We describe the time and space complexity of graph algorithms in terms of the number of vertices, \(|V|\), and the number of edges, \(|E|\).

\(|E|\) can range from 0 (a totally disconnected graph) to \(|V|^2\) (a directed graph with every possible edge, including self-loops).

Because the vertical bars get in the way, we drop them most of the time. E.g. we write \(\Theta(V + E)\) instead of \(\Theta(|V| + |E|)\).
Representing Graphs

Adjacency matrix: if there is an edge from vertex i to j, $a_{ij} = 1$; else, $a_{ij} = 0$.

Space: $\Theta(V^2)$

Adjacency list: Adj[v] lists the vertices adjacent to v.

Space: $\Theta(V+E)$

Represent an undirected graph by a directed one:

```
1 2 3 4
1 [0 1 0 1]
2 [0 0 1 0]
3 [0 0 0 1]
4 [0 1 0 0]
```

Adj:
Depth-First Search

A way to “explore” a graph. Useful in several algorithms.

Remember preorder traversal of a binary tree?

Binary-Preorder(x):
1 number x
2 Binary-Preorder(left[x])
3 Binary-Preorder(right[x])

Can easily be generalized to trees whose nodes have any number of children.

This is the basis of depth-first search. We “go deep.”
DFS on Graphs

The wrong way:

Bad-DFS(u)
1 number u
2 for each v in Adj[u] do
3 Bad-DFS(v)

What’s the problem?
Fixing Bad-DFS

We’ve got to indicate when a node has been visited.

Following CLRS, we’ll use a color:

- **WHITE** never seen
- **GRAY** discovered but not finished (still exploring its descendants)
- **BLACK** finished
A Better DFS

- initially, all vertices are WHITE

Better-DFS(u)

 color[u] ← GRAY

 number u with a “discovery time”

 for each v in Adj[u] do
 if color[v] = WHITE then ▶ avoid looping!
 Better-DFS(v)

 color[u] ← BLACK

 number u with a “finishing time”
Depth-First Spanning Tree

As we’ll see, DFS creates a tree as it explores the graph. Let’s keep track of the tree as follows (actually it creates a forest not a tree):

When \(v \) is explored directly from \(u \), we will make \(u \) the parent of \(v \), by setting the predecessor, aka, parent \((\pi) \) field of \(v \) to \(u \):

\[
\pi[v] \leftarrow u
\]
Two More Ideas

1. We will number each vertex with discovery and finishing times—these will be useful later. The “time” is just a unique, increasing number. The book calls these fields $d[u]$ and $f[u]$.

2. The recursive routine we’ve written will only explore a connected component. We will wrap it in another routine to make sure we explore the entire graph.
DFS(G)
1. for each vertex $u \in V[G]$
2. \hspace{1em} do $\text{color}[u] \leftarrow \text{WHITE}$
3. \hspace{1em} $\pi[u] \leftarrow \text{NIL}$
4. $\text{time} \leftarrow 0$
5. for each vertex $u \in V[G]$
6. \hspace{1em} do if $\text{color}[u] = \text{WHITE}$
7. \hspace{2em} then DFS-VISIT(u)

DFS-VISIT(u)
1. $\text{color}[u] \leftarrow \text{GRAY}$ \hspace{1em} \triangleright White vertex u has just been discovered.
2. $\text{time} \leftarrow \text{time} + 1$
3. $d[u] \leftarrow \text{time}$
4. for each $v \in \text{Adj}[u]$ \hspace{1em} \triangleright Explore edge (u, v).
5. \hspace{1em} do if $\text{color}[v] = \text{WHITE}$
6. \hspace{2em} then $\pi[v] \leftarrow u$
7. \hspace{2em} DFS-VISIT(v)
8. $\text{color}[u] \leftarrow \text{BLACK}$ \hspace{1em} \triangleright Blacken u; it is finished.
9. $f[u] \leftarrow \text{time} \leftarrow \text{time} + 1$
graphs from p. 1081

(a)

(b)

(c)