More Searching

Dan Barrish-Flood
Running time of Dynamic Set Operations

• we’ve seen that all our dynamic set operations can be done in $\Theta(h)$ time (worst-case) on a binary search tree of height h.
• a binary search tree of n nodes has height $\Theta(\lg n)$
• so all dynamic set operations take $\Theta(\lg n)$ time on a binary search tree.
• right? WRONG!
• insert these numbers to form a binary search tree, in this order: 1, 2, 3, 4, 5
Binary Search Tree Random Insertion & Deletion

• What is the average depth of a BST after n insertions of random values?
• The root is equally likely to be the smallest, 2nd smallest, ..., largest, of the n values. So with equal probability, the two subtrees are of sizes

 1 & $n-2$ \textit{(not $n-1$, don’t forget the root!)}
 2 & $n-3$
 ...
 $n-3$ & 2
 $n-2$ & 1

Wait til you see the next slide!...
Random Insertion/Deletion (Cont’d)

• The analysis is *identical* to Quicksort!
• The root key is like the *pivot*.
• So n insertions take $O(n \log n)$ on average, thus each insertion takes $O(\log n)$, which is the tree height.
Balanced Search Trees

• Careful, I may have used **BST** in the past for “**binary** search tree” not “**balanced** search tree”, I will try to avoid this confusion!

• The general idea (there are exceptions)
 – do extra work during INSERT and DELETE to **ensure** the tree’s height is $\Theta(\lg n)$
 – the rest of the dynamic set operations are unchanged.

• Two examples:
 – Red-Black Trees (CLRS ch. 13)
 • elegant definition
 • wicked hairy insert/delete
 – 2-3 Trees
 • simpler to understand
 • not true binary trees
a taste of Red-Black Trees

• a Red-Black tree is a binary search tree where
 1. the root is BLACK
 2. each node is colored RED or BLACK
 3. every leaf is black
 4. each of a red node’s children are black
 5. every path from a node to one of its descendant leaves contains the same number of black nodes

• (a minor twist: we consider the NIL’s as leaves, and all the nodes with keys as internal nodes)

• the **height** of a node (for trees in general) is the # of edges on the **longest** downward path from that node to a leaf.
RBT, each leaf (NIL) is black

the tiny number next to a node is its "black-height"
Dynamic Set Operations as implemented with RBT’s

It’s not that hard to prove (by induction) that the RBT properties imply:

• a RBT with n internal nodes has $\text{height} \leq 2 \log(n+1)$
• don’t worry about the proof, but see CLRS p. 274 if you’re interested in the details
• The height of a RBT is $O(\log n)$, so all dynamic set operations run in $O(\log n)$ time.
• But wait! INSERT, DELETE may destroy the RBT property! But, it turns out, these two operations can indeed be supported in $O(\log n)$ time, too.
More on tree-traversal, here is **pre-order traversal**
(note this is not a binary tree)

First “process” (e.g. print) the root (hence *pre*),
then recursively process the root’s left subtree(s),
then recursively process the root’s right
subtree(s). For this tree, we get 1,2,3,...,9
More on tree traversal, here is \textit{post-order traversal} (note this is not a binary tree)

First recursively process the root’s left subtree(s), then recursively process the root’s right subtree(s), then \textit{lastly} (hence \textit{post}) “process” (e.g. print) the root. For this tree, we again get 1,2,3,...,9.
2-3 Trees

- Another kind of Balanced Search Tree
- What are the structural requirements:
 - every non-leaf (i.e. internal) node has exactly 2 or 3 children
 - all leaves are at the same level
 - here are three 2-3 trees (not showing keys!)
2-3 Trees, more structural info

• the “thinnest” 2-3 tree is a complete binary tree (see picture on prev. slide)
• the “fattest” 2-3 tree is a complete 3-ary tree (again see prev. slide).
• If the tree has height h, (recall all leaves are at the same level), the number of leaves, l, is between 2^h and 3^h.
• A 2-3 tree of n nodes (total) has a height between $\log_3 n$ and $\log_2 n$, and since $\log_3 n = \log_3 2 \times \log_2 n$ (why?), the height h is guaranteed to be within a small constant factor of $\log_2 n$.

4a-Searching-More 13
Where is the data in a 2-3 tree? All the records (keys, other satellite data) are in the leaves. The records are in sorted order. Each internal node has one or two guides: the greatest value in its leftmost one (or two) subtree(s).
Searching in a 2-3 Tree: Suppose I’m searching the above 2-3 tree (the one with the guides 8, 29 in the root) for the key 27. Start at the root. $27 \leq 8$? No, so forget about the root’s leftmost subtree. $27 \leq 29$? Yes, so we know our target (if it exists) is in the root’s middle subtree. Thus proceed to the node directly below the root? $27 \leq 11$? No. So forget about this node’s leftmost subtree. $27 \leq 21$? No, so we know our target (if it exists) must be in this node’s rightmost subtree. So follow our current node’s rightmost pointer down. We’re at a leaf (the good stuff is in here!), **and we find our target 27 stored in this leaf**. We use this method to always reach the “right” leaf, where we will either find our target in that leaf, or find that our target does not exist.

SEARCH(2-3_tree, key) clearly, because of the height of the tree, runs in worst-case time $O(lg n)$.

I don’t have any good pseudo-code (maybe I’ll make or find some) for this routine.
2-3 Tree Insert (let’s insert 15 into the prev. tree)

tree has increased in height!
2-3 Tree Delete; let’s delete 10 from the 1st tree to get the 2nd one (one method).

here we stole 11 from a sibling
2-3 Tree Delete; let’s delete 10 from the 1st tree to get the 2nd one (other method).

here we merged nodes
2-3 Tree Delete; let’s delete 3 from the 1st tree to get the 3rd, there’s just one way).

again, we stole from a sibling
2-3 Tree Delete; let’s delete 5

tree loses a level!