CSCI-UA.0480-003
Parallel Computing

Lecture 17: GPUs - Intro

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Two Main Goals for Current Architectures

• Maintain execution speed of old sequential programs

• Increase throughput of parallel programs
Two Main Goals for Current Architectures

• Maintain execution speed of old sequential programs
 ➔ CPU

• Increase throughput of parallel programs
 ➔ GPU
Performance

Theoretical GFLOP/s at base clock

Source: NVIDIA CUDA C Programming Guide
CPU is optimized for sequential code performance
Almost 10x the bandwidth of multicore (relaxed memory model)
Memory Bandwidth

Source: NVIDIA CUDA C Programming Guide
Where do GPU stand among other chips?
What are GPUs good for?
Regularity + Massive Parallelism
Is Any Application Suitable for GPU?

• Heck no!
• You will get the best performance from GPU if your application is:
 – Computation intensive
 – Many independent computations
 – Many similar computations
Let’s Remember Flynn Classification

• A taxonomy of computer architecture
• Proposed by Micheal Flynn in 1966
• It is based two things:
 – Instructions
 – Data

<table>
<thead>
<tr>
<th></th>
<th>Single instruction</th>
<th>Multiple instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single data</td>
<td>SISD</td>
<td>MISD</td>
</tr>
<tr>
<td>Multiple data</td>
<td>SIMD</td>
<td>MIMD</td>
</tr>
</tbody>
</table>
PU = Processing Unit
Problems Faced by GPUs

- Need enough parallelism
- Under-utilization
- Bandwidth to CPU
Let's Take A Closer Look: The Hardware
• PCIe 3.0 speeds ~32 GB-transfers per second per lane
• PCIe 4.0 is about the double of version 3.0
• widest supported links = 16 lanes
• Recently: NVLINK
With the new NVLink

Bandwidth of ~80GB/s per link

Source: NVIDIA
A Modern GPUs

PASCAL GP100 GPU

DGX-1

x124

SATURN V
(Top 500 list, Nov 2016)
A Glimpse at At A GPGPU: GeForce 8800 (2007)

16 highly threaded SM's, >128 FPU's, 367 GFLOPS, 768 MB DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU
A Glimpse at A Modern GPU

Streaming Multiprocessor (SM)
A Glimpse at A Modern GPU

SPs within SM share control logic and instruction cache
Scalar vs Threaded

Scalar program (i.e. sequential)

```c
float A[4][8];
for(int i=0;i<4;i++){
    for(int j=0;j<8;j++){
        A[i][j]++;
    }
}
```
Multithreaded: \((4 \times 1)\) blocks – \((8 \times 1)\) threads

Grid

kernelF contains \(4 \times 1\) thread blocks

block 0,0 block 0,1 block 0,2 block 0,3

Thread Block

Each thread block contains \(8 \times 1\) threads
Multithreaded: (2x2)blocks – (4x2) threads

Grid

kernelF contains 2 x 2 thread blocks

block 0,0 block 0,1
[] []
block 1,0 block 1,1
[] []

Thread Block

thread 0,0 thread 0,1 thread 0,2 thread 0,3
[] [] [] []
thread 1,0 thread 1,1 thread 1,2 thread 1,3
[] [] [] []

Each thread block contains 4 x 2 threads
Scheduling Thread Blocks on SM

Grid

Example:
Scheduling 4 thread blocks on 3 SMs.

Each thread block contains 4 x 2 threads.
Another NVIDIA GPU: FERMI

32 cores/SM

~3B Transistors
Another NVIDIA GPU: Kepler

~7.1B transistors
192 cores per SMX
Nvidia Chip GK110 Based on Kepler Architecture

• 7.1 billion transistors
• More then 1 TFlop of double precision throughput
 – 3x performance per watt of Fermi
• New capabilities:
 – Dynamic parallelism
 – Hyper-Q (several cores using the same GPU)
 – Nvidia GPUDirect
Another NVIDIA GPU: Maxwell

~8B transistors
128 cores per SMM
(Nvidia claims a 128 CUDA core SMM has 90% of the performance of a 192 CUDA core SMX.)
Main Goals of Newer GPUs

• Increasing floating-point throughput
• Allowing software developers to focus on algorithm design rather than the details of how to map the algorithm to the hardware
• Power efficiency
Quick Glimpse At Programming Models

Application → Kernels → Threads → Blocks

Grid → Thread Block → Grid

Thread
Quick Glimpse At Programming Models

- **Application** can include multiple kernels
- **Threads** of the same block run on the same SM
 - So threads in SM can operate and share memory
 - Block in an SM is divided into **warps** of 32 threads each
 - A warp is the fundamental unit of dispatch in an SM
- **Blocks in a grid** can coordinate using global shared memory
- **Each grid executes a kernel**
Scheduling In NVIDIA GPUs

• At any point of time the entire device is dedicated to a single application
 – Switch from an application to another takes ~25 microseconds

• Modern GPUs can simultaneously execute multiple kernels of the same application

• Two warps from different blocks (or even different kernels) can be issued and executed simultaneously

• More advanced GPUs can do more than that but we will concentrate on the above only here.
Scheduling In NVIDIA GPUs

• Two-level, distributed thread scheduler
 – At the chip level: a global work distribution engine schedules thread blocks to various SMs
 – At the SM level, each warp scheduler distributes warps of 32 threads to its execution units.
An SM in Fermi

- 32 cores
- SFU = Special Function Unit
- 64KB of SRAM split between cache and local mem

Each core can perform one single-precision fused multiply-add (FMA) operation in each clock period and one double-precision FMA in two clock periods.
The Memory Hierarchy

- All addresses in the GPU are allocated from a continuous 40-bit (one terabyte) address space.
- **Global, shared, and local** addresses are defined as ranges within this address space and can be accessed by common load/store instructions.
- The load/store instructions support 64-bit addresses to allow for future growth.
The Memory Hierarchy

- Local memory in each SM
- The ability to use some of this local memory as a first-level (L1) cache for global memory references.
- Beside L1, each SM has also shared memory.
- Because the access latency to this memory is also completely predictable, algorithms can be written to interleave loads, calculations, and stores with maximum efficiency.
- GPUs are also equipped with an L2 cache, shared among all SMs.
GPUs Today

• Are more and more general purpose and not only for graphics

• Discrete
 – separate chip on-board like all Nvidia GPUs and AMD GPUs

• Integrated
 – With the CPU on the same chip like the GPU in Intel Sandy Bridge and Ivy Bridge
Memory Bus

- Memory bus
 - Path between GPU itself and the video card memory
 - **Bus width and speed of memory** → bandwidth (GB/s) → more is better
 - Example:
 - GTX 680: 6GHz memory and 256-bit interface → 192.2 GB/s
 - GTX Titan: 6GHz memory and 384-bit interface → 288.4 GB/s
 - Since most modern GPUs use 6GHz memory, the bus width is the one that makes the difference.
Conclusions

• The main keywords:
 – data parallelism
 – kernel, grid, block, and thread
 – warp

• Some applications are better run on CPU while others on GPU

• Main limitations
 – The parallelizable portion of the code
 – The communication overhead between CPU and GPU
 – Memory bandwidth saturation